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The sound radiation from vehicles travelling on the city roads with T junction was considered. The
wind effect on acoustic field was taken into account. The solution of this problem was found with the
help of the integral Fourier transforms and stationary phase method as the superposition of solutions for
the cases of vehicles moving along the straight roads and roads with right-angle bend. As an example,
the numerical analysis of traffic noise characteristics was carried out for the T junction city road on one
of streets in the town of Łódź (Poland).
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1. Introduction

The communication noise depends not only on
types of its sources but in large measure of roads ge-
ometry, on which the transport vehicles move. The
geometry of city roads as a rule is characterized by
the straight lines of motion, bends, roundabouts and
cross-roads different types. These road elements influ-
ence, under certain conditions, forming the structure
of acoustic field radiated from moving cars and other
transport facilities. T junction of the roads is one of
many elements of city streets too. With changes in
the direction of cars motion, this element is the im-
portant source of noise. Noise generated at T junction
bend must be different from the noise generated by
cars travelling on straight road. However, theoretical
investigations of this field of acoustic environment have
been insufficiently developed yet.
The last years researchers directed their attention

to developing of new noise prediction models founded
on the data measurement and empirical approaches for
case of noise generation on the complicated road inter-
sections with variable traffic dynamics. Thus,Cheval-
lier et al. (2009a) described and critically analyzed
three types of road noise prediction models (static,

analytic and micro-simulation models) for the problem
of noise levels determination at road crossings. It was
shown that the micro-simulation packages which cou-
ple microscopic traffic simulation tool with noise emis-
sion laws and sound propagation algorithms, were ef-
fective above all. Halliwell (1980) studied the ef-
fect of stop signs and traffic lights on the noise level.
It was revealed a small but measurable increase of noise
level in the vicinity of roadways intersection and road
T junction. Jahandar et al. (2012) investigated traf-
fic noise on most critical areas near the intersections,
crossroads and T junctions and reached the similar
conclusion. Yoshihisa et al. (2004) asserted on the
base of their results of measurements that noise level at
roadsides was almost independent of the distance from
intersection. The strong influence of geometry and gen-
eral features of the road on forming of vehicular flow
noise was also shown (Guarnaccia, 2010). The me-
thods for predicting noise with taken into account ef-
fects of vehicle acceleration and deceleration by signals
on intersection zone was developed also by Namikawa
et al. (2010). The distribution of noise level near roads
junction which reminds T junction was investigated
using the theoretical consideration and modelling ve-
hicular flow by the electrical current. Sykes, Drew
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(2011) described the using software library and ex-
perimental data for computer micro-simulation traf-
fic noise levels near and far from the signalized road
T junctions and studied the effects of speed and acce-
lerating traffic flows on noise and also summation ef-
fect of noise from the several vehicles. Makarewicz,
Kokowski (2007) and Covaciu et al. (2013) also in-
vestigated the speed and acceleration of vehicles cau-
sing traffic noise near roundabout and road junctions.
It was denoted on the importance of accuracy in col-
lecting traffic data for the analysis of noise levels dis-
tribution near these elements of roads. Cyril, Koshy
(2013) consisted short historical excursus in the deve-
lopment of road traffic noise models. On the base of
the collected data authors constructed the statistical
regression model for traffic noise predicting on the T
junction of roads.
The problem in modelling of the conflict-free

routes on a signalled T junction, closely constrained
with the investigation of traffic noise, was raised by
Fotherby (2002). Similarly, the optimal signalization
and stop-control procedures regulation of the traffic
flow on roundabout and road T junction were devel-
oped (Chodur, 2007;Mohyla et al., 2013; Johnson,
2014).
This short review of publications and their analy-

sis shows that many different models for description
of noise impact around intersections and roundabouts
were proposed and discussed. However, as the result
of complexity of the problem, many of these works are
based on the empirical and technical acoustical models
with minimum application of the mathematical physics
apparatus.
Recently, the attention of researchers on this sub-

ject was focused on the problems of mathematical
modelling of noise generated from particular elements
of city streets and roads. So, it was carried out study-
ing the case, in which cars move on straight multi-lines
road taking into account velocity and direction of wind
(Piddubniak et al., 2009b). The similar research was
fulfilled for controlled cross-roads (Piddubniak et al.,
2009a). The models of sound propagation from pas-
senger cars and trucks moving on roundabout were
proposed by Makarewicz, Golebiewski (2007),
Chevallier et al. (2009b) and Piddubniak, Pid-
dubniak (2010). The effect of right-angle bend in
the road on noise level was investigated by Zhao
et al. (2012) and Piddubniak et al. (2012a). Our in-
vestigations of noise on straight road (including the
case of road intersections), roundabout and road with
a right-angle bend became the base for mathemati-
cal modelling of sound generation from vehicles mov-
ing on the road T and Y junctions (see shorts reports
that have thesis character: Piddubniak et al., 2013;
2014).
The main goal of this work was to formulate more

profoundly and numerically realized the asymptoti-

cally exact analytical algorithm for analysis of acoustic
pressure and power flow density caused by many vehi-
cles travelling in two mutually opposite directions on
city dual-carriageway road with T junction in windy
conditions.

2. The problem statement and method
for its solution

Let us consider the problem of sound radiation
from moving motor vehicles on the elements of road,
geometric characteristics of which are represented in
Fig. 1. In this figure the six lines with directions of
vehicles motion are shown. These vehicles as passen-
ger cars (L) and trucks (C) moved, respectively, with
constant velocities vL and vC . The intervals between
vehicles ∆L and ∆C are invariable. We considered the
vehicles as the point sound sources with frequencies
ΩL and ΩC wafting in the acoustic medium parallel to
road surface on constant heights z = hL and z = hC
(hL < hC) with force vector intensities FL and FC .
It was assumed that acoustic medium moves parallel
to the road plane with constant velocity vw in direction
θ = θw to axis 0x: vw = (vwx, vwy, 0); vwx = vw cos θw,
vwy = vw sin θw, vw = |vw|.

Fig. 1. Configuration of T intersection of city roads in sys-
tem of coordinates 0xy with six passenger cars and trucks

moving lines.

As follows from Fig. 1 we had to deal with three
types of road lanes (Figs. 2a, b, c).
From the mathematical point of view the problem

consisted in solution of system of equations of acoustics
for a half-space over road (z > 0) and equations of
dynamic elasticity theory for a half-space under road
(z < 0) taking into consideration junction conditions
of acoustic and elastic media on surface z = 0. The
basic relations for linear acoustics of the moving media
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a)

b)

c)

Fig. 2. Scheme of transference of point
sound sources along straight lines and
curve lines with the local system of po-
lar coordinates (ξ, θ): a) source motion for-
ward (1) and back (2) on straight lines;
b) source motion in counter-clockwise di-
rection; c) source motion in clockwise di-
rection; (x10, x20, x0, y0 are coordinates
of point sound sources locations in certain

moment of motion).

are equations of motion and mass balance (Morse,
Ingart, 1968):

ρ
dv(x, t)
dt

= −∇p(x, t) + F(x, t),

∇ · v(x, t) = − 1

ρc2
dp(x, t)
dt

,

(1)

where p(x, t) is the acoustic pressure, v(x, t) is the par-
ticle velocity, ρ is the acoustic density, c is the sound

velocity, t is the time, ∇ is the Hamilton operator,
∇ = ∇⊥+iz∂/∂z, where∇⊥ = ix∂/∂x+iy∂/∂y, ix, iy,
iz are the unit vectors. The global derivative with re-
spect to time is determined as d/dt ≡ ∂/∂t+vw ·∇⊥.
It should be noted that the particle velocity vector is
connected with particle displacement vector in moving
acoustic medium by the relation:

v(x, t) = du(x, t)/dt = ∂u(x, t)/∂t+ vw · ∇⊥u(x, t).

In Eqs. (1) F(x, t) is the complex mass load vector,
F(x, t) = F0G(ξ, t)δ(z− z0), where F0 is the vector of
constant mass load real amplitudes, δ(z) is the Dirac
function, G(ξ, t) is the function characterized complex
mass load distribution in plane Oxy; x = ξ + izz and
ξ = ixx+ iyy are the radius-vectors in space 0xyz and
plane 0xy, respectively.
On the acoustic medium – elastic half-space inter-

face (z = 0) the following conditions satisfy:

σz + ptot = 0, τxz = 0, τyz = 0, usz = utot,z,

where ptot = prad + pref , utot,z = urad,z + uref,z are the
total acoustic pressure and total normal component of
particle displacement vector in acoustic medium z > 0,
respectively, σz, τxz and τyz are the stress tensor com-
ponents in elastic half-space z < 0, and usz is the com-
ponent of elastic displacement vector. The “rad” and
“ref” indices denote, respectively, waves radiated by a
sound source and reflected from plane z = 0 in the
acoustic medium. The source term in Eq. (1)1 for re-
flected wave may be neglected.
Elastic stress tensor σ(x, t) and displacement vec-

tor us(x, t) are expressed by the scalar and vector
potentials ϕ and ψ, which satisfy the following wave
equations (Achenbach, 1973):

∇2ϕ− 1

c2L

∂2ϕ

∂t2
= 0,

∇2ψ− 1

c2T

∂2ψ

∂t2
= 0, (∇ ·ψ = 0, ∇2 ≡ ∇ · ∇).

Here, cL =
√

(λ+ 2µ)/ρs and cT =
√
µ/ρs are the

velocities of longitudinal and transversal waves, λ and
µ are the Lamé elastic parameters while ρs is the ma-
terial density of solid.
We apply the complex integral Fourier transforms

over space variables x, y and time t to solve the
problem. By solving the problem in Fourier trans-
forms and returning to the originals, as shown before
(Piddubniak, Piddubniak, 2010), we obtain:

prad(x, t) = F0 · ∇Prad(x, t), (2)

pref(x, t) = F0 · ∇∗Pref(x, t), (3)
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where ∇∗ = ∇⊥ − iz∂/∂z and

Prad(x, t) = − 1

4π

∞∫
−∞

∞∫
−∞

G(a∗)
dξ′

Rw(ξ
′, z − z0)

, (4)

Pref(x, t) = − 1

4π

∞∫
−∞

∞∫
−∞

G(b∗)
R(ξ′, z + z0) dξ

′

Rw(ξ
′, z + z0)

, (5)

where

G(a∗)≡G
{
ξ−ξ′, t− 1

cαxy

[
Rw(ξ

′, z − z0)−Mw · ξ′
]}
,

G(b∗)≡G
{
ξ−ξ′, t− 1

cαxy

[
Rw(ξ

′, z + z0)−Mw · ξ′
]}
.

Here, ξ′ = (x′, y′), dξ′ = dx′ dy′

Rw(x) =
√
αyx2 + αxy2 + βxyxy + αxyz2,

R(x) = V −(x)/V +(x),

V ±(x) = [S2
T − 2S2(x)]2 + 4S2(x)SzL(x)SzT (x)

±NsS
2
T (c/cT )

2[1−Mw · ξ/Rw(x)]
2

×SzL(x)/Sz(x),

S(x) = |S(x)|,

S(x) = r(ξ)/Rw(x)−Mw,

r(ξ) = (αyx+ βxyy, βxyx+ αxy),

SzA(x) =
√
S2
A − S2(x),

SA = αxyc/cA (A = L, T ),

Sz(x) = αxyz/Rw(x),

Ns = ρ/ρs,

Mw = vw/c,

αx = 1−M2
wx,

αy = 1−M2
wy,

αxy = 1−M2
w,

βxy = 2MwxMwy,

R(x) is the reflection coefficient, as the function of an-
gle spherical coordinates and physical-mechanical pa-

rameters of the acoustic and elastic media, Mw is the
Mach number vector for wind.
It may be noticed that Eq. (4) is exact, but Eq. (5)

is found as the inverse of Fourier transformations with
the application of the stationary-phase approximation
method (Felsen, Markuvitz, 1973). The Eq. (5)
does not take into account the small contribution of
Rayleigh surface wave in reflected field.
For one-point source radiated harmonic sound wave

with circular frequency Ω0 and moved with velocity v0
on height z = z0 along a line the function G(ξ, t) may
be represented as

G(ξ, t) = G1(ξ, t)

= δ(x+ x10 − v0t)δ(y + ξ0)e
−iΩ0t (6)

if source moves along straight line −∞ < x < ∞,
y = −ξ0 in positive direction of axis Ox;

G(ξ, t) = G2(ξ, t)

= δ(x− x20 + v0t)δ(y − ξ0)e
−iΩ0t (7)

if source moves along straight line −∞ < x < ∞,
y = ξ0 in negative direction of axis Ox;

G(ξ, t)≡G+(ξ, t)

= [G+
I (ξ, t) +G+

II (ξ, t) +G+
III (ξ, t)]e

−iΩ0t (8)

with

G+
I (ξ, t) = δ(x+ x0 − v0t)δ(y + ξ0)H(−x),

G+
II (ξ, t) = δ(x+ x0 − ξ0)δ[y − v0(t− t+1 )]H(y),

G+
III (ξ, t) = δ(ξ − ξ0)δ[ξ0(θ − 3π/2)− v0(t− t+0 )]

× [H(2π − θ)−H(3π/2− θ)]

(9)

for source that moves along line with a bend in counter-
clockwise order of motion;

G(ξ, t)≡G−(ξ, t)

= [G−
I (ξ, t) +G−

II (ξ, t) +G−
III (ξ, t)]e

−iΩ0t (10)

with

G−
II (ξ, t) = δ(x− ξ0)δ(y − y0 + v0t)H(y),

G−
I (ξ, t) = δ[x+ v0(t− t−1 )]δ(y + ξ0)H(−x),

G+
III (ξ, t) = δ(ξ − ξ0)δ[ξ0(2π − θ)− v0(t− t−0 )]

× [H(2π − θ)−H(3π/2− θ)]

(11)

for source that moves along line with a bend in clock-
wise order.
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Here H(x) is the Heaviside function and

t+0 = x0/v0,

t+1 = t+0 + (π/2)ξ0/v0 = s+/v0,

s+ = x0 + (π/2)ξ0,

t−0 = y0/v0,

t−1 = t−0 + (π/2)ξ0/v0 = s−/v0,

s− = y0 + (π/2)ξ0.

(12)

Substituting function G(ξ, t) from (6)–(11) into in-
tegrals (4) and (5) after some transformations we ob-
tained the complex amplitudes of acoustical pressure
in the waves radiated from single sources moving along
considering routes in two opposite directions, and the
waves reflected from the surface of interface of acous-
tical and elastic media.
Then for the total acoustical pressures we found:

ptot(x, t, Ω0)≡ [prad(x, t, Ω0)+pref(x, t, Ω0)]e
−iΩ0t, (13)

where, respectively,

pj(x, t, Ω0) ≡ pj, 12(x, t, Ω0) = p+j, 12(x, t, Ω0)

+ p−j, 12(x, t, Ω0), (j = rad, ref) (14)

are solutions for the case of travelling along straight
lines (Fig. 2a) and

pj(x, t, Ω0) ≡ p±j (x, t, Ω0)

=
III∑
S=I

p±j, S(x, t, Ω0), (j = rad, ref) (15)

are solutions for the case of travelling along routes with
a road bend (Fig. 2b, c) with functions p±j, 12(x, t, Ω0)

and p±j, S(x, t, Ω0) (S = I, II , III ; j = rad, ref) pre-
sented in Appendix.
In the case with many sources travelling along men-

tioned above road lanes the summation of correspon-
dent expressions for complex amplitude of acoustical
pressure was carried out.
Thus, for the routes 1–2 we have (Fig. 2a)

ptot, 12 (x, t) =
∑

A=L,C

[
NA1∑
j=0

p+tot, 12(x+x10+j∆A−vAt,

y + ξ0, z, hA, ΩA)

+

NA2∑
j=0

p−tot, 12(x− x20 − j∆A + vAt,

y − ξ0, z, hA, ΩA)

]
. (16)

Similarly, for the case of routes shown in the
Fig. 2 b,c, respectively, we obtain:

p+tot (x, t) =
∑

A=L,C

N+
A∑

j=0

{
p+tot,I(x+ xA0 + j∆A − vAt,

y + ξ0, z, hA, ΩA)

+ p+tot,II [x− ξ0, y + s+Aj(t), z, hA, ΩA]

+ p+tot,III [x− ξ0 cos θ
+
Aj(t),

y − ξ0 sin θ
+
Aj(t), z, hA, ΩA]

}
, (17)

p−tot (x, t) =
∑

A=L,C

N−
A∑

j=0

{
p−tot,II(x− ξ0, y − yA0

− j∆A + vAt, z, hA, ΩA)

+ p−tot,I [x− s−Aj(t), y + ξ0, z, hA, ΩA]

+ p−tot,III[x− ξ0 cos θ
−
Aj(t),

y − ξ0 sin θ
−
Aj(t), z, hA, ΩA]

}
, (18)

where

s+Aj(t) = x0A + j∆A − vAt+ (π/2)ξ0,

s−Aj(t) = y0A + j∆A − vAt+ (π/2)ξ0,

θ+Aj(t) = 3π/2 + (vAt− x0A − j∆A)/ξ0,

θ−Aj(t) = 2π − (v0At− y0A − j∆A)/ξ0.

(19)

In Eqs. (16)–(18) NA1, NA2, N+
A , N

−
A are the numbers

of sources, ∆A are the distances between them, xA0,
yA0 are the initial source locations in moment t = 0
(A = L,C). It was noted that in the formulae (34)
components of mass load vectors F0x, F0y, F0z, F0ξ,
F0θ are replaced with FAx, FAy, FAz, FAξ, FAθ (A =
L,C).
Having the solutions of particular problems for the

cases of straight and of curve lines, we may construct
the solution to our general problem. However, each
particular task was analyzed in their different systems
of coordinates. Therefore, it was necessary to attach
the local coordinate systems, added to appropriate
lines of roads, to general system of coordinates Oxy
represented in Fig. 1. Figure 3a shows the road with
straight lines 1–2.
Next, Figs. 3b and 3c illustrate the lines of motion

4–5 and 3–6, respectively, with their local coordinate
systems, denoted by subscripts. Here, the coordinates
with prime symbol correspond to local systems of co-
ordinates, as on Figs. 2b, c, and without this sign –
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a)

b)

c)

Fig. 3. Scheme of roads with the local systems of Cartesian
and polar coordinates: a) lines of straight motion 1 and 2;
b) lines of motion on right-angle bend 4 and 5; c) lines of

motion on right-angle bend 3 and 6.

to systems oriented on system Oxy. Thus, from these
figures we obtained the following relations:

x′4 = y4 = y + ξ0 − ξ4,

y′4 = −x4 = −(x− ξ1 + ξ4),

x′5 = y5 = y + 2ξ0 + ξ5,

y′5 = −x5 = −(x+ ξ1 + ξ5),

x′3 = −x3 = −(x+ ξ1 − ξ3),

y′3 = −y3 = −(y − ξ0 + ξ3),

x′6 = −x6 = −(x− 2ξ1 − ξ6),

y′6 = −y6 = −(y + 2ξ0 + ξ6),

(20)

where ξ0 is the line distance of motion from main road
axis, ξ1 is the line distance of motion from axis of minor
road perpendicular to main road, ξj (j = 3, 4, 5, 6) are
the radii of bend of appropriated lines of motion.
For determination of complex amplitudes of acous-

tic pressure in the case of sound sources on routes 3,
4, 5 and 6 (Fig. 3b, c) the variables x′j , y

′
j (j = 3, 4,

5, 6) from Eqs. (20) were substituted to corresponding
functions in the Eqs. (17), (18) instead of variables x
and y. It means that for the routes 3 and 4 we used
the functions from Eq. (17), and for the routes 5 and 6
– the functions from Eq. (18).
For determination of the acoustic field on cross-

road displayed in Fig. 1 we presumed that motion oc-
curs periodically during time period t0 = t12+t45+t36,
where t12, t45, t36 are, respectively, the during times of
motion along lanes 1–2, 4–5, 3–6. Then for total acous-
tical pressure the following expression was obtained:

ptot(x, t)=

M∑
m=1

{ptot, 12(x, t1m)H(t1m)

+[ptot,4(x, t2m)+ptot,5(x, t2m)]H(t2m)

+[ptot,3(x, t3m)+ptot,6(x, t2n)]H(t3m)}, (21)

where t1m = t− (m− 1)t0, t2m = t− (m− 1)t0 − t12,
t3m = t− (m− 1)t0− t12− t45 (m = 1, 2, . . . ,M), M is
the number accounted periods. In the Eqs. (21), (17)
and (18) the numbers N+

A were changed on NA3 and
NA4 for vehicles on lanes 3 and 4, and number N−

A was
changed on NA5 and NA6 for vehicles on lanes 5 and 6
(A = L,C).
Using Eq. (21) the instantaneous acoustic pressure

level from the considered sources of noise (in dB or
phones) was determined

Lp(x, t) = 20 log10

(
|ptot(x, t)|

p0

)
, (22)

where p0 = 2 · 10−5 Pa is the threshold pressure.
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The other energetic characteristic used as a result
of noise analysis is the acoustic pressure level averaged
over some time period T0 (Müller, Möser, 2013)

Lp,av(x) = 10 log10

 1

T0

t∗+T0∫
t∗

[
|ptot(x, t)|

p0

]2
dt


(t∗ ≥ 0). (23)

3. Numerical analysis of the acoustic field
from vehicles as an example
of the city roads T junction

For numerical analysis we take FAx = FAy =
FAz = FAξ = FAθ = FA (A = L, C). It can be
shown that FAKA ≈ 4π · 10Lp,A/20p0 · 1 metre, where
Lp,A is the average acoustical pressure level measured
at one-metre distance from unmoved individual sound
source of A-type, KA = ΩA/c (A = L,C). Then for
numerical calculations we also take Lp,L = 75 dB for
passenger cars and Lp,C = 85 dB for trucks (Engel,
2001). Similarly, the frequencies of source vibrations
are ΩL = 300 Hz and ΩC = 250 Hz. The motor vehi-
cles move in air medium with density ρ = 1.293 kg/m3

and sound speed c = 331 m/s. The road is coated
by asphalt with material density ρs = 2000 kg/m3

and velocities of longitudinal and transversal waves
cL = 3468 m/s, cT = 1667 m/s (Kettil et al., 2005).
The heights of sources are hL = 1 m and hC = 2 m.
As model situation we considered a typical T junc-

tion of Wólczańska and Wróblewskiego streets in Łódź
(Poland) taking into consideration the wind influence.
The distances of motion lanes from road axes were ξ0 =
ξ1 = 5 m, and the radii of bend were ξ3 = ξ4 = 7 m,
ξ5 = ξ6 = 20 m. From 1 to 2 pm on October 23rd, 2012
it was observed that 1956 passenger cars and 66 trucks
passed in different directions1. On average within 120 s
we obtained: NL1 = 11, NL2 = 15, NL3 = 13, NL4 = 6,
NL5 = 7, NL6 = 13, NCn = 1 (n = 1, 6). Assuming
approximately that on the small area within a cross-
road the vehicles velocities were identical and equal
vL = vC = 40 km/h, we found the following parame-
ters ∆Ln = 40 m, ∆Cn = 1000 m (n = 1, 6). For this
time the average 13 passenger cars (or 40%) passed on
routes 1–2 and 3–6, and also 7 (20%) passed on routes
4–5. In such conditions we divided the times of passing
across this part of road for 120 s in following rations:
t12 = t36 = 50 s and t45 = 20 s. The calculations were
mainly done for height z = 4 m.
The total acoustic pressure Re(ptot) (in Pa) is dis-

played in Figs. 4a, b, c, d as function of time for wind-
less conditions on the ray goes out from the origin of
coordinates Oxy with θ = 315◦. The numerical calcu-

1The observations were done by student of Lodz University
of Technology Oleksandr Krasnyk.

a)

b)

c)

d)

Fig. 4. Acoustic pressure Re(ptot) as time vari-
able function in windless conditions calculated
in different points of observation: a) in cen-
ter of road bend: x = −25, y = −30; b) on
the axis of this bend: x = −39.4, y = −44.4;
c) x = −53.3, y = −58.3; d) x = −67.4,

y = −72.4 (in meters).
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lations were done in four points on axis of symmetry
of 5th road lane:

a) x = −[ξ1 + ξ5(1−
√
2)] ≈ −10.9 m,

y = −[2ξ0 + ξ5(1−
√
2)] ≈ −15.9 m,

b) x = −(ξ1 + ξ5) = −25 m,

y = −(2ξ0 + ξ5) = −30 m,

c) x = −[ξ1 + ξ5(1 +
√
2)] ≈ −29.1 m,

y = −[2ξ0 + ξ5(1 +
√
2)] ≈ −44.1 m

during 360 s (i.e. for three time periods, M = 3)
for each case. In consequence of different frequencies
ΩL and ΩC of sound radiation from acoustic sources
and non-symmetric conditions of cars motion the to-
tal wave field is incoherent and structure of acoustic
pressure pulses in these points of observation is com-
plicated. The signal of acoustic pressure is presented
by superposition of short quasi-monochromatic wave
packets, the amplitude of which decreases with dis-
tance from source as a result of geometric divergence
of sound waves. The great amplitudes in Fig. 4a corre-
spond to signals radiated from trucks, number of which
at this time is small. Therefore, in general case the sig-
nals were formed by passenger cars.
In Fig. 5 the influence of wind velocity (vw = 20, 40

and 60 km/h; θw = 180◦) on structure acoustical pres-
sure is illustrated. The signals were calculated on dis-
tance 40 m from the bend of road (x = −y = 192 m).
These graphs illustrate the signal ‘diffusion’ and de-
creasing in such way of acoustic pressure amplitude
caused by increasing wind velocity. Similar effects were
noted in the structure of signals radiated by vehicles on
roundabout (Piddubniak, Piddubniak, 2010). Thus,
the influence of wind parameters on the radiated signal
is evident.
The effect of wind direction on the structure of

acoustic signals is shown in Figs. 6 and 7. There, the
value of Re(ptot) was calculated also at distance of
40 m from the axis of road bend (x = −y = 192 m) as
a function of time with wind velocity (vw = 40 km/h)
for four mutually opposite wind directions, namely,
θw = 0◦ and 180◦, 45◦ and 225◦, 90◦ and 270◦, 135◦

and 315◦.
Thus, the changes in the Doppler effect, caused by

the presence of wind, substantially affect inner struc-
ture of observed sound pulses.
Figure 8 displays the space distribution of acoustic

pressure level Lp(x, y) ≡ Lp(x, y, 0) (in dB), calculated
on the basis of Eqs. (21) and (22). The calculations
were carried out in windy conditions (vw = 40 km/h,
θw = 315◦). As it is shown in this case, sound prop-
agation is characterized by a high acoustic pressure
level (over 75 dB) over straight road and curved road
section and considerable reduction (near 50–60 dB) on
the same distance of 40–60 m from road.

a)

b)

c)

Fig. 5. Acoustic pressure Re(ptot) as time vari-
able function calculated on distance 40 m from
the right bend of road (x = −y = 192 m) with
taking into consideration wind velocity (θw =
180◦): a) vw = 20 km/h; b) vw = 40 km/h;

c) vw = 60 km/h.

Figures 9–11 show the space distribution of acous-
tic sound level Lp,av(x) (in dB) averaged over time pe-
riod T0 = t0 = 120 s. The calculations were obtained
with Eqs. (21) and (23) (t∗ = 0) in the plane Oxy
on the heights 4, 8 and 12 m but neglecting the wind
effect. It may be noted that T junction of city roads
is the place of high noise concentration (near 80 dB),
which amplitude gradually decreases with increasing
of distance from this road element. In particular, on
distance of 100 m from the center of T intersection the
averaged acoustic pressure level decreases almost to
55 dB.
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a)

b)

c)

d)

Fig. 6. Acoustic pressure Re(ptot) at the dis-
tance of 40 m from the road bend (x = −y =
192 m) vs. time taking wind direction into
consideration (vw = 40 km/h): a) θw = 0◦;
b) θw = 180◦; c) θw = 45◦; d) θw = 225◦.

a)

b)

c)

d)

Fig. 7. Acoustic pressure Re(ptot) at the dis-
tance of 40 m from the road bend (x = −y =
192 m) vs. time taking wind direction into
consideration (vw = 40 km/h): a) θw = 90◦;
b) θw = 270◦; c) θw = 135◦; d) θw = 315◦.
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Fig. 8. Acoustic sound level distribution in space Lp(x, y) in the moment of time t = 11 s on
the square 200× 150 m, z = 4 m for vw = 30 km/h and θw = 315◦.

Fig. 9. Average sound intensity distribution Lp, av(x, y) on the area x × y = 200 × 150 m,
z = 4 m in windless conditions.

Fig. 10. Average sound intensity distribution Lp, av(x, y) on the area x × y = 200 × 150 m,
z = 8 m in windless conditions.
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Fig. 11. Average sound intensity distribution Lp, av(x, y) on the area x × y = 200 × 150 m,
z = 12 m in windless conditions.

4. Conclusions

In this work the analytical-numerical approach to
the description of vehicle sound radiation from a T
junction of city roads taking into consideration wave
reflection from the boundary interface: acoustic mo-
ving media – elastic half-space and wind conditions
was developed. The solution of problem was obtained
with the help of Fourier transforms over time and space
variables, and using the stationary phase method. The
general solution in this problem was found as superpo-
sition of the solutions for the cases of road elements in
the forms of straight lines and lines with a bend. The
mathematical modelling was carried out for a dual car-
riageway road with one lane each in opposite directions
for passengers’ cars and heavy trucks. For mathemati-
cal simulation data collected from one of Lodz streets
were used. The main numerical results of this work are
as follows:

1. The acoustic signal from many vehicles as
monopole sound sources moving on the T junc-
tion of city road is presented as a complicated su-
perposition of two series of quasi-monochromatic
sinusoidal pulses (with Doppler effect influence;
see: Appendix). The calculations carried out in
the immediate proximity to the road show acous-
tical pressure amplitudes decreasing from 0.08 to
0.05 Pa in limits of 40 m.

2. The straight and curved road sections are the
places of high concentration of sound energy,
where the acoustic pressure level can increase by
20–30 dB in comparison to the outside of road
(Figs. 8–11).

3. The velocity (in a limits of 20 do 60 km/h) and di-
rection of wind influenced considerably the acous-
tical pressure and acoustical pressure level near

road mainly on inner structure of these character-
istic, but not for amplitude (Figs. 5–7).

4. The analysis shows that maximal values of the
average acoustical pressure level weakened from
80 dB to 63 dB on the height 4–12 m over road
(Figs. 9–11).

5. The offered mathematical modelling shows that
this element of road with travelling vehicles can
be interpreted as linear acoustic antenna in the
form of letter T .

6. The analytical and numerical approach offered in
this article can extend possibilities of empiric and
technical acoustic models for estimation of traffic
noise level on existing and designed roads with
different complex geometry.

Appendix

Substituting function G(ξ, t) from (6)–(11) into in-
tegrals (4) and (5), and applying the property of Dirac
function (Kecs, Teodorescu, 1978):

δ[f(x)] =
∑
j

δ(x− xj)

|f ′(xj)|
, (24)

where xj are zeros of f(x), f ′(xj) is the derivative
of f(x) over x in point x = xj , as well as the prop-
erty of

b∫
a

f(y)δ(x− y) dy = f(x)[H(x− a)−H(x− b)], (25)

we calculated acoustic potentials in radiated and re-
flected waves Prad(x, t) and Pref(x, t):

Pj(x, t) ≡ Pj(x, t, Ω0)e
−iΩ0t, (j = rad, ref). (26)
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Here in the case of travelling along straight routes 1–2
(Fig. 3a) we have (Piddubniak et al., 2009b):

Pj(x, t, Ω0) ≡ Pj, 12(x, t, Ω0)

= P+
j, 12(x, t, Ω0) + P−

j, 12(x, t, Ω0),

(j = rad, ref), (27)

where

P+
rad, 12(x, t, Ω0) =

− 1

4πR+
w(x+x10−v0t, y+ξ0, z−z0)

× exp[iK+L+(x+x10−v0t, y+ξ0, z−z0)],

P+
ref, 12(x, t, Ω0) =

− R[x+x10−v0t, y+ξ0, z+z0]
4πR+

w(x+x0−v0t, y+ξ0, z+z0)

× exp[iK+L+(x+x10−v0t, y+ξ0, z+z0)],

P−
rad, 12(x, t, Ω0) =

− 1

4πR−
w(x−x20+v0t, y−ξ0, z−z0)

× exp[iK−L−(x−x20+v0t, y−ξ0, z−z0)],

P−
ref, 12(x, t, Ω0) =

− R[x−x20+v0t, y−ξ0, z+z0]
4πR−

w(x−x20+v0t, y−ξ0, z+z0)

× exp[iK−L−(x−x20+v0t, y−ξ0, z+z0)]

(28)

with

R±
w(x) =

√
αyx2 + α±

x y2 + 2β±
xyxy + α±

xyz2,

L±(x) = R±
w(x)−M±

wxx−Mwyy,

α±
x = 1− (M±

wx)
2, αy = 1−M2

wy,

β±
xy =M±

wxMwy,

α±
xy = 1− (M±

wx)
2 −M2

wy,

M±
wx =Mwx ∓M0, M0 = v0/c,

K± = K0/α
±
xy, K0 = Ω0/c.

(29)

In the case of travelling along routes with a road bend
shown in Fig. 3b and Fig. 3c we obtained (Piddubniak
et al., 2012):

Pj(x, t, Ω0) ≡ P±
j (x, t, Ω0) =

III∑
S=I

P±
j,S(x, t, Ω0),

(j = rad, ref), (30)

where

P+
rad,I(x, t, Ω0)= − 1

4πR+
w,I(x+x0−v0t, y+ξ0, z−z0)

× exp[iK+
0,IL

+
I (x+x0−v0t, y+ξ0, z−z0)]

×H[x0−v0t
+ ε+I L

+
I (x+x0−v0t, y + ξ0, z−z0)],

P+
ref,I(x, t, Ω0)= − 1

4πR+
w,I(x+x0−v0t, y+ξ0, z+z0)

×R[x+x0−v0t+ε+I L
+
I (x+x0−v0t, y + ξ0,

z+z0), y+ξ0, z+z0]

× exp[iK+
I L

+
I (x+x0−v0t, y+ξ0, z+z0)]

×H[x0−v0t
+ ε+I L

+
I (x+x0−v0t, y + ξ0, z+z0)],

P+
rad,II (x, t, Ω0)= − 1

4πR+
w,II(x−ξ0, y+s+−v0t, z−z0)

× exp[iK+
0,IIL

+
II (x−ξ0, y+s

+−v0t, z−z0)]

×H[−(s+−v0t)
− ε+IIL

+
II (x−ξ0, y + s+−v0t, z−z0)],

P+
ref,II (x, t, Ω0)= − 1

4πR+
w,II (x−ξ0, y+s+−v0t, z+z0)

×R[x−ξ0, y+s+−v0t+ε+IIL
+
II (x−ξ0, y

+ s+−v0t, z+z0), z+z0] (31)

× exp[iK+
0,IIL

+
II (x−ξ0, y+s

+−v0t, z+z0)]

×H[−(s+−v0t)
− ε+IIL

+
II (x−ξ0, y + s+−v0t, z+z0)],

P+
rad,III (x, t, Ω0)= − 1

4πR+
w,III (ξ, z−z0, t)

× exp[iK+
0,IIIL

+
III (ξ, z−z0, t)]

× {H[2π−θ+1 (ξ, z−z0, t)]

−H[3π/2−θ+1 (ξ, z−z0, t)]},

P+
ref,III(x, t, Ω0)= − R+(ξ, z+z0, t)

4πR+
w,III(ξ, z+z0, t)

× exp[iK+
0,IIIL

+
III(ξ, z+z0, t)]

× {H[2π−θ+1 (ξ, z+z0, t)]

−H[3π/2−θ+1 (ξ, z+z0, t)]},

P−
rad,II(x, t, Ω0)= − 1

4πR−
w,II(x−ξ0, y−y0+v0t, z−z0)

× exp[iK−
0,IIL

−
II(x−ξ0, y−y0+v0t, z−z0)]

×H[y0−v0t+ε−IIL
−
II(x−ξ0, y−y0+v0t, z−z0)],
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P−
ref,II(x, t, Ω0)= − 1

4πR−
w,II(x−ξ0, y−y0+v0t, z+z0)

×R[x−ξ0, y−y0+v0t

− ε−IIL
−
II (x−ξ0, y−y0+v0t, z+z0), z+z0]

× exp[iK−
IIL

−
II (x−ξ0, y−y0+v0t, z+z0)]

×H[y0−v0t+ε−IIL
−
II (x−ξ0, y−y0+v0t, z+z0)],

P−
rad,I(x, t, Ω0) = − 1

4πR−
w,I(x−s−+v0t, y+ξ0, z−z0)

× exp[iK−
0,IL

−
I (x−s

−+v0t, y+ξ0, z−z0)]

×H[−(s−−v0t)

− ε−I L
−
I (x−s

−+v0t, y+ξ0, z−z0)],

P−
ref,I(x, t, Ω0)= − 1

4πR−
w,I(x−s−+v0t, y+ξ0, z+z0)

×R[x−s−+v0t
− ε−I L

−
I (x−s

−+v0t, y+ξ0, z+z0), y+ξ0z+z0]

× exp[iK−
0,IL

−
I (x−s

−+v0t, y+ξ0, z+z0)]

×H[−(s−−v0t)

− ε−I L
−
I (x−s

−+v0t, y+ξ0, z+z0)],

P−
rad,III(x, t, Ω0)=− 1

4πR−
w,III(ξ, z−z0, t)

× exp[iK−
0,IIIL

−
III(ξ, z−z0, t)]

× {H[2π−θ−1 (ξ, z−z0, t)]

−H[3π/2−θ−1 (ξ, z−z0, t)]},

P−
ref,III(x, t, Ω0)=− R−(ξ, z+z0, t)

4πR+
w,III(ξ, z+z0, t)

× exp[iK−
0,IIIL

−
III(ξ, z+z0, t)]

× {H[2π−θ−1 (ξ, z+z0, t)]

−H[3π/2−θ−1 (ξ, z+z0, t)]} (31)Cont.

with

R+
w,I(x)=

√
αyx2+α

+
x,Iy

2+2β+
xy,Ixy+α

+
xy,Iz

2,

R+
w,II(x)=

√
α+
y,IIx

2+αxy2+2β+
xy,IIxy+α

+
xy,IIz

2,

R−
w,I(x)=

√
αyx2+α

−
x,Iy

2+2β−
xy,Ixy+α

−
xy,Iz

2,

R−
w,II(x)=

√
α−
y,IIx

2+αxy2+2β−
xy,IIxy+α

−
xy,IIz

2,

(32)

R±
w,III (x, t)=Rw(ξ−ξ′, z)

∣∣
ξ′=ξ0,θ′=θ±

0
,

L+
I (x)=R

+
w,I(x)−M

+
wx,Ix−Mwyy,

L+
II(x) = R+

w,II(x)−Mwxx−M+
wy,IIy,

L−
I (x) = R−

w,I(x)−M−
wx,Ix−Mwyy,

L−
II(x) = R−

w,II(x)−Mwxx−M−
wy,IIy,

L±
w,III (x, t) = [Rw(ξ−ξ′, z)

−Mw·(ξ−ξ′)]
∣∣
ξ′=ξ0,θ′=θ±

0 (t)
,

α+
x,I = 1− (M+

wx,I)
2,

β+
xy,I =M+

wx,IMwy,

α+
xy,I = 1− (M+

wx,I)
2 −M2

wy,

α+
y,II = 1− (M+

wy,II)
2,

β+
xy,II =MwxM

+
wy,II ,

α+
xy,II = 1−M2

wx − (M+
wy,II)

2,

α−
x,I = 1− (M−

wx,I)
2,

β−
xy,I =M−

wx,IMwy,

α−
xy,I = 1− (M−

wx,I)
2 −M2

wy,

α−
y,II = 1− (M−

wy,II)
2,

β−
xy,II =MwxM

−
wy,II ,

α−
xy,II = 1−M2

wx − (M−
wy,II)

2,

M±
wx,I =M±

wx =Mwx ∓M0,

M±
wy,II =Mwy ∓M0,

K±
0,S = K0/α

±
xy,S ,

ε±S =M0/α
±
xy,S (S = I, II),

ε =M0/αxy,

θ±1 (x, t) = θ±0 (t)− (ε/ξ0)L
±
III (x, t),

θ+0 (t) = 3π/2 + (v0t− x0)/ξ0,

θ−0 (t) = 2π − (v0t− y0)/ξ0. (32)Cont.

Here the signs “+” and “−”, respectively, corre-
spond to Fig. 2b and Fig. 2c.
Thus, acoustic potentials (26)–(28) and (30), (31)

are described by quasi-spherical waves taking into ac-
count the reflection waves from the acoustic medium –
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elastic half-space interface boundary and the Doppler
effect caused by motion of sound sources and acoustic
medium (wind).
Substituting functions Prad(x, Ω0, t) and

Pref(x, Ω0, t) from Eqs. (26)–(28) and (30), (31)
to Eqs. (2) and (3) we obtained the complex ampli-
tudes of acoustical pressure in the waves radiated
from single sources moving along considering routes in
two opposite directions, and the waves reflected from
the surface of interface of acoustical and elastic media
(13)–(15), where

p+rad, 12(x, t, Ω0) = iK0F
+
0

·A+
rad, 12(x+ x10 − v0t, y + ξ0, z − z0)

× P+
rad, 12(x, t, Ω0),

p+ref, 12(x, t, Ω0) = iK0F
+
0

·A+
ref, 12(x+ x10 − v0t, y + ξ0, z + z0)

× P+
ref, 12(x, t, Ω0),

p−rad, 12(x, t, Ω0) = iK0F
−
0

·A−
rad, 12(x− x20 + v0t, y − ξ0, z − z0)

× P−
rad, 12(x, t, Ω0),

p−ref, 12(x, t, Ω0) = iK0F
−
0

·A−
ref, 12(x− x20 + v0t, y − ξ0, z + z0)

× P−
ref, 12(x, t, Ω0),

p+rad,I(x, t, Ω0) = iK0F
+
0,I

·A+
rad,I(x+ x0 − v0t, y + ξ0, z − z0)

× P+
rad,I(x, t, Ω0),

p+ref,I(x, t, Ω0) = iK0F
+
0,I

·A+
ref,I(x+ x0 − v0t, y + ξ0, z + z0)

× P+
ref,I(x, t, Ω0),

p+rad,II(x, t, Ω0) = iK0F
+
0,II

·A+
rad,II(x− ξ0, y + s+ − v0t, z − z0)

× P+
rad,II(x, t, Ω0),

p+ref,II(x, t, Ω0) = iK0F
+
0,II

·A+
ref,II(x− ξ0, y + s+ − v0t, z + z0)

× P+
ref,II(x, t, Ω0),

p−rad,II(x, t, Ω0) = iK0F
−
0,II

·A−
rad,II(x− ξ0, y − y0 + v0t, z − z0)

× P−
rad,II(x, t, Ω0),

(33)

p−ref,II(x, t, Ω0) = iK0F
−
0,II

·A−
ref,II(x− ξ0, y − y0 + v0t, z + z0)

× P−
ref,II(x, t, Ω0),

p−rad,I(x, t, Ω0) = iK0F
−
0,I

·A−
rad,I(x− s− + v0t, y + ξ0, z − z0)

× P−
rad,I(x, t, Ω0),

p−ref,I(x, t, Ω0) = iK0F
−
0,I

·A−
ref,I(x− s− + v0t, y + ξ0, z + z0)

× P−
ref,I(x, t, Ω0),

p±rad,III(x, t, Ω0) = iK0F
±
0,III

·A±
rad,III(ξ, z − z0, t)

× P±
rad,III(x, t, Ω0),

p±ref,III(x, t, Ω0) = iK0F
±
0,III

·A±
ref,III(ξ, z + z0, t)

× P±
ref,III(x, t, Ω0), (33)Cont.

and

F±
0 (x, t) = (±F0x,±F0y, F0z)},

F±
0,I(x, t) = (±F0x,±F0y, F0z)},

F±
0,II(x, t) = (∓F0x,±F0y, F0z)},

F±
0,III(x, t) = (∓F0ξ,±F0θ, F0z)},

A±
rad, 12(x, t) = {A±

x (x), A
±
y (x), A

±
z (x, t)}, (34)

A±
ref, 12(x, t) = {A±

x (x), A
±
y (x),−A±

z (x, t)},

A±
rad,S(x, t) = {A±

x,S(x), A
±
y,S(x), A

±
z,S(x, t)},

A±
ref,S(x, t) = {A±

x,S(x), A
±
y,S(x),−A

±
z,S(x, t)}

(S = I, II, III)

with

A±
α (x, t) = − 1

α±
xy

{
M±

wα − r±α (ξ)

R±
w(x)

[
1− 1

iK±R±
w(x)

]}
,

A±
z (x, t) =

z

R±
w(x)

[
1− 1

iK±R±
w(x)

]
,

A±
α,β(x) = − 1

α±
xy,β

{
M±

wα,β −
r±α,β(ξ)

R±
wα,β(x)

(35)

×

[
1− 1

iK±
0,βR

±
wα,β(x)

]}
,

A±
z,β(x) =

z

R±
wα,β(x)

[
1− 1

iK±
0,βR

±
wα,β(x)

]
,
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A±
α,III(x, t) = − 1

αxy

〈
Mwx −

{
r±α (ξ, t)

R±
w,III(x, t)

−{1∓Mwε sin[θ
±
0 (t)− θw]}

± εrα[sin θ
±
0 (t), cos θ

±
0 ]

×

[
1− 1

iK±
0,IIIR

±
w,III(x, t)

]}〉
,

A±
z,III(x, t) =

z

R±
w,III(x, t)

{1∓Mwε sin[θ
±
0 (t)− θw]}

×

[
1− 1

iK±
0,IIIR

±
w,III(x, t)

]
,

r±x (ξ) = αyx+ β±
xyy,

r±y (ξ) = β±
xyx+ α±

x y,

r+x,I(ξ) = αyx+ β+
xy,Iy,

r+y,I(ξ) = β+
xy,Ix+ α+

x,Iy,

r+x,II(ξ) = α+
y,IIx+ β+

xy,IIy,

r+y,II(ξ) = β+
xy,IIx+ αxy,

r−x,I(ξ) = αyx+ β−
xy,Iy,

r−y,I(ξ) = β−
xy,Ix+ α−

x,Iy,

r−x,II(ξ) = α−
y,IIx+ β−

xy,IIy,

r−y,II(ξ) = β−
xy,IIx+ αxy,

r±α (ξ, t) = rα(ξ− ξ′)
∣∣
ξ′=ξ0,θ′=θ±

0 (t)

(α = x, y; β = I, II),

M±
wy =Mwy. (35)Cont.
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