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In Western music culture instruments have been developed according to unique
instrument acoustical features based on types of excitation, resonance, and radia-
tion. These include the woodwind, brass, bowed and plucked string, and percussion
families of instruments. On the other hand, instrument performance depends on
musical training, and music listening depends on perception of instrument output.
Since musical signals are easier to understand in the frequency domain than the time
domain, much effort has been made to perform spectral analysis and extract salient
parameters, such as spectral centroids, in order to create simplified synthesis models
for musical instrument sound synthesis. Moreover, perceptual tests have been made
to determine the relative importance of various parameters, such as spectral cen-
troid variation, spectral incoherence, and spectral irregularity. It turns out that the
importance of particular parameters depends on both their strengths within musical
sounds as well as the robustness of their effect on perception. Methods that the au-
thor and his colleagues have used to explore timbre perception are: 1) discrimination
of parameter reduction or elimination; 2) dissimilarity judgments together with mul-
tidimensional scaling; 3) informal listening to sound morphing examples. This paper
discusses ramifications of this work for sound synthesis and timbre transposition.

Keywords: musical timbre, music synthesis, loudness, pitch, duration, attack, decay,
spectral envelope, spectral centroid, spectral irregularity, spectral flux, vibrato, in-
harmonicity, discrimination, dissimilarity, multidimensional scaling (MDS), timbre
transposition, rms amplitude, fundamental frequency, correspondence.

1. Introduction

The principal long-term goal of this study is to achieve a synthesis system
where a minimal set of independent but perceptually meaningful parameters are

(∗) This paper is based on a talk of the same title given by the author at the Second Vienna
Talk on Musical Acoustics, held in Vienna, Austria during September 19–21, 2010, and on the
associated proceedings paper of the same title.
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used to control and synthesize musically useful sounds, including sounds of tra-
ditional musical instruments. Basic steps for accomplishing this goal are a) using
spectral analysis to obtain static and time-varying parameters; b) building syn-
thesis models to utilize these parameters; c) conducting formal listening tests
on single sounds to test the efficacy of the models; and d) conducting informal
listening tests using synthesis of extended musical passages.

Although it might seem that this goal could be achieved in a few weeks or
months, in practice, musical timbre has been studied for decades using a series of
less ambitious steps. Typically the first step is to select a group of musical sounds
to study. The parameters to be identified from the sounds are first of all the
time-varying amplitudes and frequencies obtained from spectral analysis. Then,
more detailed, possibly perceptually important parameters can be inferred, such
as attack and decay times, spectral envelope features (such as spectral centroid,
spectral irregularity, and spectral flux), vibrato characteristics, and inharmonicity
(McAdams et al., 1999; Beauchamp, Lakatos, 2002).

Conducting a formal listening test for timbre requires the following steps:
• Stimuli preparation.
• Psychoacoustic testing (the actual listening test).
• Data processing and presentation.
• Interpretation of results.
Either synthetic or recorded acoustic (“real”) sounds can be used as stimuli,

but in either case they should be normalized to eliminate sonic attributes that are
not part of timbre, namely, loudness, pitch, and duration. The latter two are not
a problem for synthetic sounds (sounds consisting solely of harmonically related
frequencies), but for either sound type loudness equalization through gain factor
adjustment must be achieved by additional loudness testing, by using a loudness
prediction program (Moore, 1997), or by randomizing the levels of the stimuli
(Dai, 2008). For pitch normalization of harmonic sounds it is generally acceptable
to make certain that the fundamental frequencies are the same. Duration is a bit
more complicated, but a method is given in (McAdams et al., 1999), where
attack and decay structures are retained and the total duration is reduced to
a standard 2 s.

If a test is designed to only compare different acoustic sounds, as in the case
of a dissimilarity test, no further stimuli modifications may be necessary. Physical
(spectral) differences between sounds can be measured in terms of specific pa-
rameters and correlated with the measured perceptual differences. However, for
a discrimination test the experimenter will often want to modify specific acoustic
parameters of the sounds and then examine how discrimination ability varies with
each parameter that is changed or, in more detail, the amount of change of each
parameter.

Important questions are: 1) What specific parameters should be varied? 2) Why
do we choose these particular parameters? 3) How do we measure them? 4) How
do we vary them? For the studies reviewed in this paper, the specific parame-
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ters are spectral irregularity, spectral flux, spectral centroid variation, amplitude
and frequency microvariations, and inharmonicity. Reasons for choosing these
parameters are discussed in the timbre literature (see Hajda (2007) and Don-
nadieu (2007) for reviews.) Methods for measuring and varying them are given
in (McAdams et al., 1999) and (Beauchamp, Lakatos, 2002).

Also, it should be remarked that two specific parameters, average spectral
centroid and attack time, have proved to be so salient that they are sometimes
factored out (equalized or normalized) from the stimuli. Such was the case with
(Beauchamp, Lakatos, 2002) and (Horner et al., 2006) and is a method
utilized in the second study covered in this paper.

Preparation of a psychoacoustic test requires the selection of listener subjects
and the design of the test. Chosen listeners are generally young people with good
hearing and are divided between those with extensive and those with meager mu-
sical experience. The two formal tests described in this review paper use either
timbre discrimination or dissimilarity judgments. With discrimination, the sub-
jects are generally asked to judge whether pairs of sounds are same or different.
With a dissimilarity judgment task, they are asked to estimate the amount of
timbral difference between tone pairs on a scale of say 0 to 10.

Once a test is completed and the data is collected, the data can be processed
in various ways. Discrimination averages can be simply presented, or graphs of
discrimination vs. a particular parameter can be illustrated. In the case of dissim-
ilarity judgments, the method of multidimensional scaling (MDS) is commonly
used to display the positions of the sound stimuli in a two- or three-dimensional
space (Miller, Carterette, 1975; Grey, 1977). To show trends within the
space the dimensions can be correlated with measures of various spectrotemporal
parameters of the stimuli.

Finally, an interpretation of the data is usually given. One of the biggest
problems is estimating the scope of validity of the results. The scope is necessarily
limited because it is difficult to design tests that cover a wide range of cases and
can still be conducted over a reasonable time period.

2. Three timbre studies

Three projects are reviewed, a timbre discrimination study (McAdams et al.,
1999), a timbre dissimilarity judgment study with MDS solution (Beauchamp
et al., 2006; Hall et al., 2010), and a timbre transposition study (Beauchamp,
Bay, 2008).

2.1. Timbre discrimination study

The objective of this study (McAdams et al., 1999), originally published in
1999, was to investigate the relative importance of some different spectrotem-
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poral parameters by simplifying musical sounds with respect to these parame-
ters. The stimuli prototypes (reference sounds) consisted of tones performed on
seven different instruments: clarinet, flute, oboe, trumpet, violin, harpsichord,
and marimba at pitch Eb

4 (311 Hz). Loudnesses were equalized using a brief test,
and durations were equalized to 2 s using a method described in (McAdams
et al., 1999). The sound signals were analyzed using a pitch-synchronous short-
time Fourier transform program (Beauchamp, 2007), and the resulting partial
amplitude and frequency data were simplified as follows:

1) partial amplitude-vs.-time envelopes smoothed,
2) spectral envelope smoothed (irregularity reduced),
3) spectral flux (otherwise referred to as incoherence) eliminated,
4) partial frequency-vs.-time envelopes smoothed,
5) partial frequencies locked to harmonics of a time-varying fundamental,
6) partial frequencies flattened to harmonics of a fixed fundamental.
The sounds were then resynthesized to the time domain by additive synthesis.

Note that the word partial is used here instead of harmonic because even though
the frequencies of these tones are close to harmonic, departures from harmonicity
are possible.

Although there was considerable variation with instrument (see McAdams
et al., (1999) for details), the discrimination results averaged over the seven in-
struments were:

a) spectral envelope smoothed – 96%,
b) spectral flux eliminated – 91%,
c) frequencies flattened – 71%,
d) frequency envelopes smoothed – 70%,
e) frequencies locked harmonically – 69%,
f) amplitude envelopes smoothed – 66%.
An interpretation of these results is that the spectral parameters spectral

irregularity (i.e., spectral jaggedness) and spectral flux (change of spectrum shape
over time) are, for this set of instruments, most salient. Smoothing the amplitude
and frequency envelopes (using a 10 Hz cutoff low-pass filter) eliminates fine-
grained temporal detail, but this elimination is relatively unnoticeable. So is
locking the frequencies harmonically or removing any trace departure from fixed
harmonics.

However, when an error metric (similar to those discussed in (Horner et al.,
2006) was constructed based on differences between reference and modified partial
amplitudes and a regression line was constructed to fit discrimination (given in
terms of d′) against the log of this error, it was found that the regression straight
line explained 77% of the discrimination variance (88% if one outlier point was
removed). Since modifications a), b), and f) could also change the spectral cen-
troid, d′ was also plotted against the log of normalized spectral centroid difference
between the reference and modified sounds. In this case, a regression straight line
explained only 54% of variance, but when both the spectral centroid difference
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and the partial amplitude error metric were combined together, 83% of variance
was explained (with no outliers removed).

A final interpretation from these results is that, yes, spectral irregularity and
flux are important specific parameters, but discrimination is also strongly cor-
related with a total metric difference between the time-varying spectra of two
similar sounds.

2.2. Timbre dissimilarity study

With this study, originally presented as a talk in 2006 (Beauchamp et al.,
2006), subjects were presented with the task of judging dissimilarity between mu-
sical sounds. The original stimuli consisted of tones performed on ten sustained-
tone instruments: bassoon, cello, clarinet, flute, horn, oboe, recorder, alto sax-
ophone, trumpet, and violin. Two types of tones were constructed from these:
dynamic (with flux) and static (without flux). The tones were also equalized
with respect to pitch (F0 = 311 Hz), attack time (.05 s), decay time (.05 s static,
.15 s dynamic), total duration (0.5 s static, 2.0 s dynamic), loudness (Moore
et al., 1997), and average normalized spectral centroid (3.7). Average centroids
were equalized by applying a fixed multiplier kp to each harmonic k’s ampli-
tude, where p was varied to achieve the desired centroid value, as described in
(Beauchamp, Lakatos, 2002).

The listening test employed ten musically experienced subjects to judge dis-
similarity between tone pairs using a method of triadic comparison (Plomp,
1970). While average dissimilarity scores could theoretically vary from 0 to 17,
actual scores varied from about 4 to 13. The scores were placed in 10×10 dissim-
ilarity matrices (see Table 1).

Two different classical multidimensional scaling (MDS) programs, SPSS and
Matlab, were used to process the dissimilarity matrices. For the static tones,
only 2D solutions were made, whereas both 2D and 3D solutions were made for
the dynamic tones. Stresses (average normalized difference between inter-timbre
distances given by a dissimilarity matrix and those given by a corresponding MDS
solution) for the 2D SPSS and Matlab solutions were both 0.12 for the static case
and 0.15–0.17 for the dynamic case; for both 3D solutions for the dynamic case,
stresses were reduced to 0.095.

(It was somewhat of a surprise for this author to discover the degree to which
the distances between pairs of timbres in an MDS solution do not exactly match
the values given by the dissimilarity matrix and that stress is commonly given
by MDS programs as an important measure of their average agreement. Stress
generally decreases as the number of dimensions increases, but for visualization
2 or 3 dimensional solutions are preferred. Stress is useful for estimating the
accuracy of an MDS solution. Unfortunately, in reading several papers on musical
timbre employing the MDS method, this author could not find a single mention
of the word stress, even though it is a very basic concept in the theory of MDS.)
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Table 1. Dissimilarity matrices for static (upper) and dynamic (lower) tones (Bs = bassoon,
Ce = cello, Cl = clarinet, Fl = flute, Hn = horn, Ob = oboe, Rc = recorder, Sx = saxophone,
Tp = trumpet, Vn = violin). (Reproduced by permission from Table 1 of (Hall et al., 2010).)

Static tones:
Bs Ce Cl Fl Hn Ob Rc Sx Tp Vn

Bs 0 10.6 11.3 5.3 8.3 8.4 11.6 7.5 7.4 8.4
Ce 10.6 0 3.8 7.6 11.4 11.4 4.9 10.4 9.4 9.8
Cl 11.3 3.8 0 8.2 12.7 8.8 3.6 11.5 10.8 9.7
Fl 5.3 7.6 8.2 0 9.9 8.5 9.3 6.7 9.2 9.5
Hn 8.3 11.4 12.7 9.9 0 9.0 11.9 7.9 9.8 9.5
Ob 8.4 11.4 8.8 8.5 9.0 0 10.0 10.3 5.8 7.3
Rc 11.6 4.9 3.6 9.3 11.9 10.0 0 11.8 9.6 10.0
Sx 7.5 10.4 11.5 6.7 7.9 10.3 11.8 0 9.3 8.4
Tp 7.4 9.4 10.8 9.2 9.8 5.8 9.6 9.3 0 8.5
Vn 8.4 9.8 9.7 9.5 9.5 7.3 10.0 8.4 8.5 0

Dynamic tones:
Bs Ce Cl Fl Hn Ob Rc Sx Tp Vn

Bs 0 11.0 9.7 7.3 5.6 6.6 10.2 6.2 7.9 9.4
Ce 11.0 0 7.3 9.7 13.3 11.1 8.0 9.4 9.5 7.5
Cl 9.7 7.3 0 10.1 11.6 6.4 4.7 9.6 9.9 11.9
Fl 7.3 9.7 10.1 0 9.7 9.5 6.7 9.8 8.0 10.3
Hn 5.6 13.3 11.6 9.7 0 6.3 11.1 7.9 9.6 9.1
Ob 6.6 11.1 6.4 9.5 6.3 0 9.4 9.4 7.3 8.8
Rc 10.2 8.0 4.7 6.7 11.1 9.4 0 10.9 9.6 11.1
Sx 6.2 9.4 9.6 9.8 7.9 9.4 10.9 0 8.7 9.8
Tp 7.9 9.5 9.9 8.0 9.6 7.3 9.6 8.7 0 8.1
Vn 9.4 7.5 11.9 10.3 9.1 8.8 11.1 9.8 8.1 0

Meanwhile, static tone solutions were correlated with two parameters mea-
sured from the sound signals, even/odd harmonic ratio (ratio of the average rms
amplitude of the even harmonic amplitudes to that of the odd harmonics) and
spectral irregularity. The dynamic tone solutions were correlated with those pa-
rameters plus two others: spectral flux (also referred to as incoherence) and nor-
malized spectral centroid variation (spectral centroid standard deviation divided
by its average value). All MDS solutions were rotated so that the best possible
even/odd correlation aligned with the horizontal axis. For the other parameters,
best-fit straight lines of highest correlation to the various parameters were com-
puted.

As can be seen in Figs. 1–3, the corresponding SPSS and Matlab solutions can
be quite different. However, for the 2D cases, instrument groupings appear to be
very similar (see Figs. 1 and 2). The most obvious 2D static case groupings are
{recorder, clarinet, cello} and {trumpet, oboe, violin}. R2 correspondences with
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Fig. 1. Two-dimensional MDS solutions for the static tones: SPSS (left), Matlab (right).
(Reproduced and enhanced from Fig. 1 of (Hall et al., 2010) by permission).

Fig. 2. Two-dimensional MDS solutions for the dynamic tones: SPSS (left), Matlab (right).
(Reproduced and enhanced from Fig. 2 of (Hall et al., 2010) by permission).

the even/odd (E/O) and spectral irregularity (SIR) parameters were measured
at 78–79% and 69–75%, respectively, for the two solutions. For the 2D dynamic
case (see Fig. 2), the correspondences were 71–69% for even/odd, 68–68% for
spectral centroid variation, 56–53% for spectral incoherence, and 39–40% for
spectral irregularity. Also, the spectral centroid variation (SCV) and spectral
incoherence (SIN) straight lines of greatest correspondence appear close together,
suggesting that these variables are tightly correlated in the stimuli.

For the 3D dynamic case (see Fig. 3), the correspondences for even/odd,
spectral centroid variation, spectral incoherence, and spectral irregularity were
82–68%, 83–82%, 53–83%, and 82–71%, respectively, indicating rather strong dis-
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a) b)

Fig. 3. Three-dimensional MDS solutions for the dynamic tones: SPSS (a), Matlab (b). (Repro-
duced and enhanced from Fig. 3 of (Hall et al., 2010) by permission).

agreement between the SPSS and Matlab solutions as to the saliency of 3 out
of 4 of the parameters. Averaging over the two solutions gives 82.5% for spectral
centroid variation, 76.5% for spectral irregularity, 75% for even/odd, and 68%
for spectral incoherence. Therefore, assuming that 3D solutions are best for the
dynamic case because of their relatively low stress, it appears that for dynamic
tones, spectral centroid variation is the parameter with the highest and most con-
sistent saliency (beyond average centroid and attack/decay, which were equalized
in the stimuli). On the other hand, any of the four parameters corresponds as
well as the others for at least one of the two solutions. Also, it is curious that the
average correspondence for the four parameters is about the same for the SPSS
solution (75%) as for the Matlab solution (76%), which means it would be difficult
to conclude that one solution is better than the other, even though they certainly
are significantly different (average correspondence difference equals 14%).

After making all of these computations one might ask: What is the advan-
tage of using MDS? Why not just correlate with the original dissimilarity data?
Certainly MDS yields some attractive pictures, showing the relative positions of
timbres relative to one another. But as the two 3D solutions for dynamic tones
show, different solutions with the same stress can result in instruments in very
different positions in “timbre space” and can yield quite different correspondences.
At least with the original dissimilarity matrix, there is only one set of data to
correlate with, and it has no stress.

2.3. Timbre transposition study

The point of this study, presented as a talk in 2008 (Beauchamp, Bay, 2008),
was to explore synthesis using a small set of time-variable control parameters and
a family of spectral envelopes (Beauchamp, 2007; Luce, Clark, 1967), which
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represent a particular instrument, but then switch the spectral envelope family
to a different instrument and see what happens. Either the spectral envelopes
or the temporal data will dominate, or a hybrid instrument that shares char-
acteristics of both instruments will be produced. The instrument supplying the
time-varying parameters is called the source instrument, and the one supplying
the spectral envelope family is called the target instrument. The process is called
timbre transposition.

In an earlier project we discovered that by using three time-varying parame-
ters, rms amplitude, fundamental frequency (pitch), and spectral centroid (i.e.,
Arms(t), f0(t), and fc(t)), combined with a spectral envelope family based on
spectral centroid clustering, we could produce trumpet tones that were quite
realistic (Beauchamp, 2007). The spectral envelope family was derived from
a training set of trumpet tones that covered a wide gamut of pitches and dy-
namics (i.e., intensity levels). Every frame of every tone was analyzed (using
the pitch-synchronous analyzer) and sorted into different “bins” based on ranges
of centroid values, 0–200, 200–400, etc. The spectra in each bin were normal-
ized and then sorted into critical bands, and finally the amplitudes within each
band were averaged to give a single value that represents the band amplitude
for a particular centroid range. These amplitudes as functions of the band cen-
ter frequencies formed a collection of spectral envelopes each of which corre-
sponded to a range of centroids. A demonstration of this method using a re-
stricted parametric model for the temporal variations is given on the author’s
website (http://ems.music.uiuc.edu/beaucham/). This includes the addition of
low-frequency noise microvariations to the pitch and amplitude controls to in-
crease the realism of the trumpet synthesis.

This method can be applied to other instruments as well. Synthesis is done
by first deriving representative time-varying parameters Arms(t), f0(t), and fc(t)
from a solo recording. For each time instant, fc(t) is used to retrieve a spectral
envelope from a spectral envelope library, and estimated harmonic amplitudes are
obtained from the spectral envelope by sampling it at frequencies kf0(t), where
k is the harmonic number. These amplitudes are then easily scaled to match
the total amplitude Arms(t). The sound is synthesized using additive sinusoidal
synthesis. Figure 4 shows block diagrams for the analysis/resynthesis procedures.

There is a question of whether, for a given instrument, a library containing
a single spectral envelope family is adequate for all fundamental frequencies (f0’s)
or whether the library families need to change as a function of f0. It seems to be
the case (but is not proven) that single families are adequate for brass instruments
(Luce, Clark, 1967), which have robust global spectral envelopes that work over
a wide range of f0, but not for some woodwinds or strings, where specific spectral
envelopes for a variety of pitches may be needed. However, with the abundance
of memory available in computers these days, it is entirely reasonable to com-
pute and store a different family for many different values of f0. Thus, spectral
envelope can become a function of both spectral centroid (fc) and pitch (f0).
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a) b)

Fig. 4. Block diagrams for: a) target spectrum library computation (upper left) and time-
varying pitch and harmonic amplitude computation (lower left); b) spectral centroid and rms
amplitude computation, target spectrum retrieval, and harmonic amplitude scaling for rms

amplitude preservation (upper right) and sinusoidal additive synthesis (lower right).

Figure 5 shows a family of spectral envelopes for an oboe, which is averaged
over a range of f0’s (262 ≤ f0 ≤ 1187 Hz), and for a clarinet, which is valid only
for a specific value of f0 (233 Hz). Note that if global spectral envelopes were
attempted for the clarinet, the relative weaknesses of the first few even harmonics
would be smeared out, severely compromising resynthesis.

a) b)

Fig. 5. Spectral envelope families for oboe (left) and clarinet (right). The oboe family is averaged
over frequency and each spectral envelope represents a range of spectral centroids as given in
the box. The clarinet family is specific to the pitch Bb

3 (f0 = 233 Hz), and each envelope has
its centroid given in the box. For both cases, maximum amplitudes of the spectral envelopes

are normalized to 1.0.

Examples of f0(t), Arms(t), and fc(t) for a short musical phrase performed
on a clarinet are given in Fig. 6. These parameters are used to control sound
synthesis as depicted in Fig. 4.
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a)

b)

c)

Fig. 6. Parameters to control synthesis of a clarinet phrase: a) pitch (f0(t)),
b) rms amplitude (Arms(t)), and c) spectral centroid (fc(t)).
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It is fairly obvious that there needs to be a match between the pitch and cen-
troid ranges of the source and target instruments. Thus, if the source and target
pitch ranges and centroid ranges do not overlap sufficiently, timbre transposition
will not work. However, the control ranges coming from the source can be eas-
ily mapped to correspond to the best ranges for the target using simple linear
equations.

Findings for this study were informal. It appears that if the temporal data
of the source instrument is similar to that of the target instrument, the result
will likely be identified as the target instrument. On the other hand, if the target
instrument’s spectral envelope family is similar to that of the source, the temporal
information of the source may dominate and the result may still be identified as
the source instrument. We have found this to be true if the source is a bassoon
playing a series of low-pitched short-duration notes, and a horn is the target. In
between these cases are cases where neither the temporal information nor the
spectral data are similar for the two instruments, so a true hybrid is produced.
For example, if horn is the source and clarinet is the target, a situation ensues
where the resulting hybrid sound can be recognized simultaneously as a horn in
terms its temporal envelopes and as a clarinet in terms of its unique spectrum
with emphasis on odd harmonics.

Gradual morphing or interpolation between the instruments could be pro-
duced by cross-fading the temporal controls or the spectral envelopes or both.
We haven’t actually tried this yet, but there is no reason why the method should
not produce interesting results.

Another possibility to investigate is the addition of external controls designed
to modify parameters such as those shown to be salient in the 1999 and 2006
timbre studies discussed above. Exactly how to accomplish this has yet to be
determined.

3. Conclusions

The 1999 timbre study, which utilized parameter simplification and discrimi-
nation, indicated that spectral irregularity and spectral flux were more important
than amplitude and frequency microvariations and inharmonicity. However, this
author would take that result with a grain of salt because it is well known that
temporal details and inharmonicity are important for instrument recognition and
for warmth and realism.

The 2006 dissimilarity study, which used multidimensional scaling to sum-
marize relative perceptual distances between instrument timbres, yielded some
interesting results and raised some nontrivial issues. One issue was the unexpected
importance of the concept of stress (see above). Another was the usefulness of
rotation for comparing solutions using different MDS programs (SPSS and Mat-
lab). Yet another was that solutions from different MDS programs can be quite
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different, although for the same number of dimensions their stresses tend to be
in approximate agreement. Still another was that straight lines aligned to max-
imize R2 correspondence with particular spectral parameters do not normally
correspond to dimensional axes, although rotation can be used force one of the
lines to coincide with an axis. Finally, different MDS programs can yield different
correspondences with same spectral parameters, making exact conclusions about
the saliency of these parameters problematic. Nonetheless, our conclusions from
the MDS solutions can be summarized as follows: For static tones (those without
flux), two different 2D solutions, with stresses of 12%, had quite high correspon-
dences with even/odd harmonic ratio (78–79%), better than spectral irregularity
(69–75%). For dynamic tones (those with flux), for two different 2D solutions
with stresses of 15 and 17%, even/odd corresponded best (69–71%), followed by
spectral centroid variation, spectral flux, and spectral irregularity. With the 3D
solutions for these tones, the stresses dropped to 9.5% and some correspondences
increased to 82–83%, but there was very significant disagreement between the two
solutions, except for spectral centroid variation, where both solutions yielded R2

close to 82%.
The 2008 timbre transposition study showed that combining some time-variant

parameters with fixed spectral envelopes not only provides a compact resynthesis
model for a given instrument, but it can also serve as a method for merging the
temporal characteristics of one instrument with the spectral characteristics of an-
other. In some cases the resulting sounds demonstrate one of the two instruments
dominating the other. However, when differences between corresponding temporal
and spectral characteristics of the two instruments are both pronounced, a true
hybrid is generally produced, where the temporal (articulatory) characteristic
can be recognized as coming from one instrument and the spectral (tone color)
characteristic is perceived to be coming from the other.
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