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The Least Mean Square (LMS) algorithm and its variants are currently the most frequently used
adaptation algorithms; therefore, it is desirable to understand them thoroughly from both theoretical
and practical points of view. One of the main aspects studied in the literature is the influence of the step
size on stability or convergence of LMS-based algorithms. Different publications provide different stability
upper bounds, but a lower bound is always set to zero. However, they are mostly based on statistical
analysis. In this paper we show, by means of control theoretic analysis confirmed by simulations, that for
the leaky LMS algorithm, a small negative step size is allowed. Moreover, the control theoretic approach
alows to minimize the number of assumptions necessary to prove the new condition. Thus, although
a positive step size is fully justified for practical applications since it reduces the mean-square error,
knowledge about an allowed small negative step size is important from a cognitive point of view.
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1. Introduction

Studies on the Least Mean Square (LMS) algorithm
stability, using different sets of assumptions, have re-
sulted in many different upper bounds on the step
size that we know so far. There are two general at-
titudes towards the LMS algorithm analysis: one uses
the independence theory (i.e., the sequence of input
vectors is i.i.d. – independent, identically distributed)
(Gardner, 1984), the other uses the small-step-size-
assumption (Haykin, 2002). Both approaches result in
step-size upper bounds given by some positive values
depending on the input signal. However, there is no
doubt that the step size should be positive to guaran-
tee stable operation of the LMS algorithm.
The two probably most frequently used LMS-based

algorithms are the normalized LMS (NLMS) and the
leaky LMS (LLMS) (Bismor et al., 2016). The sta-
bility and convergence of the LLMS algorithm has
been studied in (Mayyas, Aboulnasr, 1997; Nasci-
mento, Sayed, 1999). In this paper, we show that
the equal-to-zero lower bound for the step size result-
ing from those studies defines only a sufficient stability
condition, contrary to common understanding. We also

show that the LLMS algorithm is capable of stable op-
eration with a negative step size, and we will define
proper stability bounds with a very minimal set of as-
sumptions, which do not restrict areas of application.
Particularly, we avoid both the i.i.d. and small-step-
size assumptions.
The reason for studying the case of a negative step

size is twofold. First of all, showing that the LLMS al-
gorithm can use a negative step size and remain stable
brings new insight into this algorithm. Second, stable
operation with a negative step size may be misleading
in some situations, and useful in others. Misleading, for
example, when the LLMS algorithm is used for active
noise control without secondary path modeling, but
with the step-size sign being self-tuned to maintain
the stability and convergence. Such novel algorithms
are already under development (Kurczyk, Pawel-
czyk, 2014a; 2014b), and use increasing or decreasing
error values to decide about the change of the step-size
sign. Awareness that a small negative step size may
not make the control system output diverge can bring
new insight and affect parameterisation of soft comput-
ing algorithms employed for tuning parameters of the
active control filter without a secondary path model.
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A usefulness of the negative-step-size stable operation
lies in the fact that it can let the filter coefficients to
leave a local optimum in cases when the error surface
is not convex, e.g., during bilinear model identification
(Maliński, 2012), or in other sophisticated scenarios
(Ławryńczuk, 2009). To the best of our knowledge,
these important issues have not yet been addressed in
the literature.
The adaptive filtering problem considered in this

paper is depicted in Fig. 1. We use the usual nota-
tion, with u(n) being the input signal vector, d(n)
the desired signal, and e(n) the error signals, sam-
pled at time instant n. Usually, the input signal vec-
tor consists of samples of the same signal delayed
in time: u(n) = [u(n), u(n− 1), . . . , u(n− L+ 1)]

T

(Haykin, 2002). The adaptive filter is of finite im-
pulse response type; therefore, the filter output can
be calculated as y(n) = uT(n)w(n), where w(n) =

[w0(n), w1(n), . . . , wL−1(n)]
T is the vector of adapted

filter coefficients.

Fig. 1. The adaptive filtering problem.

For simplicity of presentation, we will express the
LLMS algorithm in its original form (Sethares et al.,
1986):

w(n+ 1) = γw(n) + µu(n)e(n), (1)

where 0 � γ ≤ 1 is the leakage, and µ is the step size.
Another representation of the LLMS algorithm, used,
e.g., by Mayyas and Aboulnasr (1997), is given by:

w(n+ 1) = (1− βµ)w(n) + µu(n)e(n), (2)

where β ≥ 0 is a parameter that relates the step size
to the leakage. This representation, which comes as
a direct result of the optimization problem resulting
in the LLMS algorithm, allows one to understand that
the leakage and the step size are related, i.e., when one
is increased the other should be decreased to keep the
same cost function value.
As in (Bismor, 2015), we will assume the input

and the desired signals are real-valued and bounded,
and that the adaptive filter is a linear (for frozen time),
transversal filter of finite impulse response (FIR).
In this publication we intentionally use bounded-

input bounded-output (BIBO) stability (reffered to as
simply “stability”), which ensures that a discrete sys-
tem is “well behaved”, i.e., it produces bounded out-
puts for bounded inputs (Zames, 1966). For the adap-
tive filtering problem, such understanding of stability

assures that the adaptive filter coefficients do not di-
verge, which is important from a practical point of
view. The formal definition of BIBO stability can be
found e.g., in (Lin, Varaiya, 1967).

2. Leaky LMS stability sufficient condition

A sufficient stability condition for the LMS algo-
rithm, derived based on control system theory, with-
out using either the independence, or small-step-size
assumptions, has been recently presented in (Bismor,
2015). The same approach will be applied here to de-
rive a sufficient stability condition for the LLMS algo-
rithm. Substituting

e(n) = d(n)− y(n) = d(n)− uT(n)w(n) (3)

for the error signal into the LLMS algorithm update
Eq. (1) and rearranging the terms, yields:

w(n+1)=
[
γI− µu(n)uT(n)

]
w(n) + µu(n)d(n), (4)

where I ∈ RL×L is the identity matrix.
Treating the above equation as a state equation of

a nonstationary discrete-time system (Bismor, 2015),
we recognize the state transition matrix as:

A(n) = γI− µu(n)uT(n). (5)

This matrix is responsible for stability of the LLMS
algorithm, and therefore will be referred to as the sta-
bility matrix. Observe that the matrix is symmetric.
For this matrix, the following theorem holds.

Theorem 1 (Leaky LMS Stability Matrix Eigenval-
ues and Eigenvector). Assume matrix A(n) ∈ RL×L is
the LLMS stability matrix, (5) at any discrete time n.
Then, the matrix has an eigenvalue:

λ1(n) = γ − µ
L−1∑
i=0

u2(n− i), (6)

with the corresponding eigenvector u(n). The remain-
ing eigenvalues are all equal to γ.

The proof of this theorem is given in Appendix.
In (Bubnicki, 2005), a theorem has been proven

that relates the eigenvalues of a symmetric state tran-
sition matrix with the stability of a nonstationary
system (Theorem 10.5 on page 272). The theorem
states that if all the eigenvalues of a symmetric state
transition matrix describing a nonstationary system
have magnitudes less than 1, the system is asymptot-
ically stable. Considering that theorem, Theorem 1,
and control-theory results extensively discussed in
(Bismor, 2015), we conclude that for the stability
of the LLMS algorithm, it suffices that the absolute
value of the only non-γ eigenvalue of (5) at any dis-
crete time n has magnitude less than 1:

∀n |λ1(n)| =

∣∣∣∣∣γ − µ
L−1∑
i=0

u2(n− i)

∣∣∣∣∣ < 1. (7)
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The solution of the above inequality is:

∀n
γ − 1

L−1∑
i=0

u2(n− i)

< µ <
γ + 1

L−1∑
i=0

u2(n− i)

, (8)

for
L−1∑
i=0

u2(n− i) = ‖u(n)‖2 6= 0. Therefore, for γ < 1,

the lower bound for the step size, defined by the left-
hand side of the above inequality, is negative. For
example, with γ = 0.98, the step size should have
a value greater than −0.02/‖u(n)‖2, and less than
1.98/‖u(n)‖2.
Mayyas, Aboulnasr (1997) derive a condition

that guarantees convergence in the mean as:

0 < µ <
2

β + λmax
, (9)

where λmax is the largest eigenvalue of the input signal
autocorrelation matrix. Please observe that the repre-
sentation of the LLMS algorithm in Eq. (2) assumes
a positive step size, because 1 − µβ > 1 for µ < 0,
which would make the filter weights divergent. How-
ever, we can compare the upper bound on the step
size from (Mayyas, Aboulnasr, 1997) with the con-
dition in (8). To do this, we will substitute 1−µβ for γ
in the right-hand side of (8), and solve the inequality
for µ. This results in:

µ <
2

β +
L−1∑
i=0

u2(n− i)

=
2

β + ‖u(n)‖2
. (10)

Thus, the only difference in the upper bound for the
step size is in the second component of the denomina-
tor, which is equal to the largest eigenvalue of the in-
put signal autocorrelation matrix for the condition pro-
vided in (Mayyas, Aboulnasr, 1997), and is equal
to the norm of the input vector for the new condi-
tion developed in this paper. Clearly, the condition in
Mayyas, Aboulnasr, (1997) relates the stability to
the statistical properties of the input signal, whereas
the new condition uses instantaneous properties of the
input signal instead. Observe that the latter may be
easier to calculate in practical, real-time applications
because the estimation of the input signal autocorrela-
tion matrix is time-consuming. The calculation of the
input signal squared norm is commonly used, e.g.,in
the NLMS algorithm.
To summarize, the main difference between the

lower bound for the step size known from the litera-
ture and the one derived above is that the latter allows
for small negative values of the step size, which will be
confirmed in Sec. 5 by means of a number of simulation
examples.

3. Leaky LMS instability sufficient condition

The condition defined by (8) is a stability sufficient
condition, which means that if the step size is limited
by the upper and lower bounds, the LLMS algorithm
is stable. However, if the step size is not within these
bounds, we still do not know whether the algorithm is
stable or not. Therefore, we use the theorem below to
define the instability range. We again refer to control
theory, whereby for stationary systems, the following
lemma can be found (Kaczorek, 1993).

Lemma 1. The discrete-time, stationary system
given by the state equation:

x(n+ 1) = Ax(n) +Bũ(n), (11)

where A ∈ RL×L is a state transition matrix, is un-
stable, if:

L∑
i=1

|aii| =
L∑

i=1

|λi| > L, (12)

where λi are the eigenvalues of the state matrix A.

To apply this lemma to the nonstationary system
(5) we shall assume the condition holds at any discrete
time n; which constitutes the instability sufficient con-
dition.
From Theorem 1 we know that all the eigenvalues

but one are equal to γ, and therefore they are all pos-
itive. The remaining eigenvalue may be non-negative
or negative. We will discuss both cases separately.

3.1. Eigenvalue λ1 ≥ 0

If the non-γ eigenvalue is non-negative, it follows
from (6) that:

λ1 = γ − µ
L−1∑
i=0

u2(n− i) ≥ 0. (13)

Therefore, again assuming
L−1∑
i=0

u2(n− i) 6= 0, the step

size must obey:

µ ≤ γ
L−1∑
i=0

u2(n− i)

. (14)

Thus, in this subsection we are dealing with small pos-
itive or negative step sizes.
Assuming (14) holds and substituting all positive

eigenvalues into (12), yields:

L∑
i=1

|λi| = (L− 1)γ + γ − µ
L−1∑
i=0

u2(n− i) > L. (15)

Solving this inequality for µ, gives:

µ <
L(γ − 1)

L−1∑
i=0

u2(n− i)

. (16)
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This solution is within the domain, because the right-
hand side of (16) is negative or equal to zero, and there-
fore is smaller than the right-hand side of (14).
The above condition is the LLMS algorithm insta-

bility sufficient condition. Comparing this condition
with the left-hand side of inequality (8), we notice that
to be sure the leaky LMS algorithm is unstable, the
negative value of the step size must be L times larger
than in the stability condition. In-between these two
limits, we are unable to say whether the algorithm is
stable or not.

3.2. Eigenvalue λ1 < 0

For completeness, we now check the instability suf-
ficient condition for large, positive µ, that is for

µ >
γ

L−1∑
i=0

u2(n− i)

. (17)

In this case, the eigenvalue λ1 < 0, and therefore |λ1| =
−λ1. Considering this and substituting the eigenvalues
into (12), yields:

L∑
i=1

|λi| = (L− 1)γ − γ + µ

L−1∑
i=0

u2(n− i) > L. (18)

Solving the above inequality for µ gives:

µ >
L(1− γ) + 2γ
L−1∑
i=0

u2(n− i)

. (19)

This solution is within the domain, because the right-
hand side of (19) is always greater than the right-hand
side of (17).

4. Leaky NLMS algorithm stability
and instability conditions

The results presented in Sec. 2 take particularly
simple forms if applied to the leaky normalized LMS
algorithm. The leaky NLMS algorithm is defined as:

w(n+ 1) = γw(n) + µ(n)u(n)e(n), (20)

where
µ(n) =

µ
L−1∑
i=0

u2(n− i)

. (21)

Combining (8) and (21), we conclude that for this al-
gorithm to be stable it suffices that:

γ − 1 < µ < γ + 1. (22)

For example, with γ = 0.98, the normalized step
size should be greater than −0.02, and should be less
than 1.98.

Condition (22) is only a stability sufficient condi-
tion. Using (16) and (19), the instability sufficient con-
dition is:

µ < L(γ − 1) or µ > L(1− γ) + 2γ. (23)

One should, however, be aware that following the
derivation of the LLMS algorithm in (Mayyas,
Aboulnasr, 1997), a negative step size results in
a negative weight of the filter parameters term in the
minimised cost function. The authors do not intend
to justify such kind of operation of the algorithm for
a long period of time, but want to indicate that stabil-
ity of such solution can be cleverly used for temporary
operations, e.g., when retuning the algorithm in case
of phase modelling errors in active control.

5. Validation by simulations

Unfortunately, it is impossible to perform simula-
tions using standard NLMS implementations provided
in Matlab or Simulink because they require the step
size to be positive. Simulations with negative step sizes
need custom implementation of the LLMS or the leaky
NLMS algorithm.
The simulations presented below use the leaky

NLMS algorithm, defined by Eqs. (20) and (21)). This
algorithm has been chosen, because of the very clear
and simple stability condition given by (22). Note that
if the LLMS algorithm were used, the condition given
by (8) should be applied, which connects the stabil-
ity bound with the squared norm of the input vector.
In that case, to operate near the stability bound, one
would need to modify the step size in each iteration,
based on this norm. Effectively, that would be equiva-
lent to normalization of the step size, as in the NLMS
algorithm.

5.1. Identification of a 2-parameter FIR filter

To shed some light on the effect of a negative step
size on stable operation of the leaky NLMS algorithm,
we will initially consider the very basic and simple case
of system identification of a two-parameter FIR filter:

W (z−1) = w1z
−1 + w2z

−2. (24)

The values of the parameters were selected as w1 = 0.5
and w2 = 0.8. The experiments were performed with
non-zero initial conditions: w1(0) = −0.2, w2(0) = 0.2.
The filter was excited using a white noise sequence

of unit variance. The output was disturbed by an-
other independent white noise sequence, of variance
10−4. The identified model was also in the form of
a 2-parameter FIR filter. The leakage factor was γ =
0.98. The simulations were repeated 100 times and av-
eraged (using different noise sequences). The NLMS
algorithm without leakage was also simulated for com-
parison.
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For the selected leakage factor, the leaky NLMS al-
gorithm stability sufficient condition is −0.02 ≤ µ ≤
1.98. Figure 2 presents the mean squared error (MSE)1

evolution for different values of the step size. The
NLMS algorithm (without leakage), with the step size
µ = 0.1, converges very fast, giving a MSE value close
to the variance of the additive noise. The leaky NLMS
algorithm with µ = 0.03 and µ = 0.1 converges, giv-
ing MSE values lower than the initial MSE. However,
they are considerably higher than for the case with-
out leakage. This is common for the LLMS algorithm,
which is a solution to the optimisation problem being
a trade-off between minimisation of the MSE and sum
of squares of the filter parameters. The leaky NLMS
algorithm with a negative step size µ = −0.02 remains
stable (i.e. the MSE does not grow unboundedly), al-
though the final value of the MSE is higher than the
initial value.

Fig. 2. Identification experiment showing MSE plots for
2-parameter FIR filter, with γ = 0.98 for different norma-

lized step sizes.

The best way to understand this behavior is
by analysing the parameter trajectories depicted in
Fig. 3a. The parameter trajectories represent plots of
w1(n) vs. w2(n), and contain also the points result-
ing from the operation γw(n) (before the application
of the correction term µ(n)u(n)e(n)). All the trajec-
tories start at the point (−0.2, 0.2) defined by the ini-
tial condition. The trajectory of the NLMS algorithm
goes to the optimum point (0.5, 0.8) in a straight line.
This point is the optimum Wiener filter solution, ob-
tained as the product of the inverse input signal auto-
correlation matrix and the input-desired signal cross-
correlation vector. The filter satisfies the orthogonal-
ity principle, and cancels the correlation between the
minimised error signal and the input signal over the
1By the mean squared error we understand the mean-square

value of the difference between the desired signal and the filter
output.

a)

b)

Fig. 3. Identification experiment showing parameter tra-
jectories for a 2-parameter FIR filter, with γ = 0.98 for
different normalized step sizes: a) the first 100 iterations,

b) zoomed plot from (a).

length of the filter. Hence, the MSE is equal to that of
the additive noise. As also expected, the trajectories
of the leaky NLMS algorithm with positive step sizes
go to some vicinity of the optimum point, but do not
reach it. This is due to the fact that the leaky NLMS
exhibits a bias in the estimate – the inverted matrix
in the optimal Wiener filter estimate is then the in-
put signal autocorrelation with the main diagonal ex-
tended by the control filter weighting factor in the cost
function being minimised (Haykin, 2002). Neverthe-
less, it can be observed that these trajectories tend in
the right direction, although they end rather far from
the optimum Wiener solution point. The trajectory of
the leaky NLMS algorithm with the negative step size,
on the other hand, goes in a direction opposite to the
optimum point.
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Further conclusions may be drawn if the plot from
Fig. 3a is zoomed, as in Fig. 3b. From the zoomed
plot, we conclude that the leakage pulls the trajec-
tory towards the origin (0, 0). The higher the absolute
value of the parameter, the stronger the parameters
are attracted to zero values. Finally, a balance is es-
tablished between the two update terms of the filter
vector, and the trajectory stops. Therefore, the algo-
rithm, although not convergent to the optimum point,
remains stable (i.e.,the MSE does not grow unbound-
edly).

5.2. Identification of an IIR filter

As another system identification experiment we
now consider an IIR filter with transfer function:

K(z−1) =
1

(z − 0.8)(z − 0.9)
. (25)

First, the system was excited using a white noise se-
quence of unit variance. The output was disturbed with
another independent white noise sequence, of vari-
ance 10−2. The identified model was in the form of
a FIR filter with 10 parameters. The leakage factor
was γ = 0.98. The simulations were repeated 100 times
with different noise sequences, and the mean squared
error (MSE) was averaged. The results of these exper-
iments, for different values of the step size, are pre-
sented in Fig. 4a.
For the leakage factor γ = 0.98 and the assumed

model length equal to 10, the stability sufficient condi-
tion is −0.02 < µ < 1.98 and the instability sufficient
condition is: µ < −0.2 or µ > 2.16. From Fig. 4a, it
is clear that the leaky NLMS algorithm remains stable
(although not convergent) for µ ≥ −0.02; moreover, it
is even stable for µ = −0.03. On the other hand, the
algorithm is unstable for µ < −0.2.
The fact that the leaky NLMS algorithm remains

stable with µ = −0.03 can be explained by considering
that the condition in (22) is the stability sufficient con-
dition only. To make it clearer, the results from another
experiment are presented in Fig. 4b. The experimental
conditions were the same, except for the input signal
(excitation), which was a square wave. Now the algo-
rithms remains stable for µ ≥ −0.02, and the value
µ = −0.021 makes it unstable.
Figure 5 presents the MSE for IIR identification

experiments with white noise input and the step size
equal to −0.51, for different values of the leakage fac-
tor. The cyan curve is for γ = 0.95; in this case the sta-
bility sufficient condition is −0.05 ≤ µ ≤ 1.95, and the
instability sufficient condition is µ < −0.5 or µ > 2.4.
The step size has slightly lower value than the instabil-
ity sufficient condition, and therefore the leaky NLMS
algorithm is unstable. The red curve is for γ = 0.9
and the green curve is for γ = 0.8; in both cases the
step size falls somewhere between the instability suf-
ficient condition and the stability sufficient condition,

a)

b)

Fig. 4. Identification experiment showing MSE plots for
an IIR filter, γ = 0.98, for different normalized step sizes:
a) white noise excitation, b) square wave excitation.

Fig. 5. Identification experiment showing MSE plot for an
IIR filter, white noise excitation, µ = −0.5, for different

leakage factors.

and in both cases, the leaky NLMS algorithm is stable.
The latter two leakage factors are, however, unusually
low and not suitable for practical applications, which
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clearly demonstrates the correctness of the developed
theory, and is important from a cognitive point of view.
Many additional simulations were also performed

to make sure the adaptive filter remains stable in differ-
ent scenarios if the step size obeys the derived stability
condition. These included different identified transfer
functions, different filter lengths (including long filters
with more than 100 taps), different excitation signals,
different experiment duration and different numbers of
averages. In all cases, a small negative step size allowed
for stable operation of the leaky NLMS algorithm.

5.3. Adaptive line enhancement

Another experiments were performed for a different
application of the leaky NLMS algorithm – the adap-
tive line enhancer (ALE) (Haykin, 2002). The ALE is
a very popular application, frequently used in audio
and speech processing (Latos, Pawelczyk, 2010).
The input signal for the ALE was a speech recording,
sampled at 8 kHz, disturbed by four sinusoids of dif-
ferent constant frequencies. This application was cho-
sen due to the fact that a speech signal is nonstation-
ary, and therefore neither the independence theory, nor
the small-step-size theory applies. Since the derivations
presented in this paper do not use either the indepen-
dence theory assumptions, or the small-step-size the-
ory assumptions, the results can be applied to such
nonstationary signals as well.
For the experiments presented below, the ALE

length and the decorrelation delay were both equal
to 10. The leakage factor was again γ = 0.98, and the
stability and instability conditions remain the same
as described above. The experimental results are pre-
sented in Fig. 6. The leaky NLMS algorithm remains
stable for µ ≥ −0.05, but a step size equal to −0.11
makes it unstable. This is again in agreement with
the theoretical stability and instability sufficient con-
ditions developed above.

Fig. 6. Simulations of the adaptive line enhancer
with different normalized step sizes.

5.4. Active noise control

Active noise control (ANC) applications usually
use the filtered-x LMS (FxLMS) structure, which dif-
fers from classical adaptive filtering applications by
the presence of a secondary path and its estimate
(Kuo, Morgan, 1996). This difference seriously com-
plicates the stability and convergence analysis. How-
ever, it might be expected that the conclusions from
Subsec. 5.1 apply to ANC applications as well: the
leakage also stabilizes the system with the FxLMS
adaptation (Elliott et al., 1987). To confirm this,
the following simulations were performed.
The ANC system considered was a classical feed-

forward system (refer to (Kuo, Morgan, 1999) or
(Kuo, Morgan, 1999) for details), using a sampling
frequency of 1 kHz. The primary and secondary path
transfer functions were modeled as FIR filters with
256 coefficients – the models were obtained during
the identification experiments, using real data acquired
from the active casing (Wrona, Pawelczyk, 2013).
A perfect secondary path model was initially assumed.
The reference signal consisted of narrowband noise,
with energy concentrated between 150 and 250 Hz,
and a sinusoid signal, with frequency 200 Hz. The
variance of the noise was 0.01, and the amplitude of
the sinusoid was 1. The ANC filter length was 64
and it was adapted using the leaky NLMS algorithm,
with a leakage factor γ = 0.98, as previously consid-
ered.
The simulation results are presented in Fig. 7. The

NLMS algorithm (without leakage) converges in about
one second to a value of approximately 10−3. The leaky
NLMS algorithm with µ = −0.02 (which is within the
stability sufficient limits) and with µ = −0.03 (which
is outside the stability sufficient limits) does not con-
verge, but the MSE does not grow unboundedly. The
leaky NLMS algorithm with µ = −0.04 and −0.05 is
unstable.

Fig. 7. Simulations of active noise control system,
with perfect secondary path model.
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As mentioned above, the presence of the sec-
ondary path complicates the behavior and analysis of
the FxLMS algorithm. Moreover, imperfect secondary
path modeling adds another degree of complication, as
can be concluded from Fig. 8a, showing simulation re-
sults for the same ANC system, but with an imperfect
secondary path model, where only the first 70 coeffi-
cients (out of 256) of the impulse response were used.
In this case, the leaky NLMS algorithm is stable even
with µ = −0.04.

a)

b)

Fig. 8. Simulations of active noise control system: a) with
truncated secondary path model, b) with error in the delay

estimation.

Finally, in the experiments presented in Fig. 8b,
the secondary path impulse response estimate was as-
sumed to be identical to the actual secondary path,
except that it is shifted by an additional discrete time
delay (Ŝ(z−1) = z−1S(z−1)). The error in the time de-
lay estimate constitutes a very difficult condition for
operation of the LMS algorithm because it results in
an error in the phase response, which increases with
the frequency. Therefore, in this case, the convergence
time of the NLMS algorithm (without delay) is more
than ten times longer than in the previous cases. How-

ever, the influence on the leaky NLMS algorithm with
the negative step size is the opposite: the algorithm is
stable for all selected step sizes, and the final MSE is
even lower than in the previous cases (less amplifica-
tion was achieved).
The authors do not foresee any application where

a negative step size selected on purpose could be ad-
vantageous over a positive step size. However, the au-
thors are aware of an application where knowledge that
a negative step size does not lead to immediate di-
vergence could be advantageous. This application is
an ANC system without the secondary path model,
where a decision about the step size sign change is
made based on current error behavior (convergence or
divergence). If the Leaky LMS algorithm is used, it
must be accounted for that for some value of the step
size there may be no divergence even if the step size
has a wrong sign.

6. Conclusion

In this paper, we have shown that the commonly
used stability necessary condition expressed as µ > 0
is improper for the leaky LMS algorithm. With this al-
gorithm, the step size may take a small negative value
(depending on the leakage factor) and the algorithm
may still be stable in the sense that the MSE will
not grow unboundedly. However, in all the simulations
the final MSE was worse when a negative step size
was used, compared to simulations with positive step
size values. Stability and instability sufficient condi-
tions have been derived based on control system the-
ory. These theoretical results were achieved with a very
small set of assumptions; it was only assumed that the
signals are real valued and bounded. Although these
results do not give direct guidelines on how to choose
the step size for practical applications, they contribute
to an understanding of the behaviour of the leaky LMS
algorithm. Knowledge about the allowed small nega-
tive step-size values can change parameterisation of the
leaky-LMS-based algorithms used for active control of
sound or vibration (as well as for other applications),
with and without secondary path modeling which is of
great practical importance.

Appendix. Proof of the main theorem

In the following proof, for clarity of a presentation,
the LMS stability matrix (5) will be expressed as:

A = γI− µuuT, (26)

(the time index n has been omitted). It is assumed
that the adaptive filter length, and therefore also the
input vector length, and both dimensions of the LMS
stability matrix A are equal to L.
First, consider that each of the columns (or rows)

of the matrix uuT is linearly dependent on all other
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columns (rows); therefore the rank of this matrix is
equal to 1, and therefore only one of its eigenvalues is
non-zero. The direct and easy-to-prove result is that
the LLMS stability matrix (26) has L−1 eigenvalues
equal to γ.
Now consider right-multiplication of the LMS sta-

bility matrix (26) by the vector u:

Au =
(
γI− µuuT

)
u = γu− µuuTu

= u
(
γ − µuTu

)
. (27)

As uTu on the right-hand side of the above equation
is a scalar, being an inner product of the vector u by
itself, the above equation can be expressed as:

Au =

(
γ − µ

L−1∑
i=0

u2i

)
u, (28)

where ui denotes u(n−i). Equation (28) may also be
viewed as a definition of the eigenvalue and the asso-
ciated eigenvector. This concludes the proof.
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