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Independent Component Analysis (ICA) can be used for single channel audio
separation, if a mixed signal is transformed into time-frequency domain and the
resulting matrix of magnitude coefficients is processed by ICA. Previous works used
only frequency (spectral) vectors and Kullback-Leibler distance measure for this
task. New decomposition bases are proposed: time vectors and time-frequency com-
ponents. The applicability of several different measures of distance of components
are analysed. An algorithm for clustering of components is presented. It was tested
on mixes of two and three sounds. The perceptual quality of separation obtained
with the measures of distance proposed was evaluated by listening tests, indicating
“beta” and “correlation” measures as the most appropriate. The “Euclidean” distance
is shown to be appropriate for sounds with varying amplitudes. The perceptual effect
of the amount of variance used was also evaluated.

Keywords: audio unmixing, blind signal separation, independent component analy-
sis, measures of distance.

1. Introduction

Blind separation of signals (BSS) from mixtures has extensive bibliography.
An excellent survey was written by Cardoso (1998). The most successful ap-
proaches were based on Independent Component Analysis (ICA) (Hyvarinen
et al., 2001). This method was originally developed to address the cocktail party
effect but has gained popularity in a wide range of applications, including e.g.
financial analysis.
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In audio engineering, besides speech segregation and recognition, signal sep-
aration (also called unmixing or demixing) can also be used in automatic music
transcription, musical information retrieval systems, speech/instrument identifi-
cation, forensic audio, karaoke and special sound effects. The number of appli-
cations will grow considerably as soon as the technology permits to achieve high
perceptual quality of separated sounds.

The ICA technique is most useful when signals are recorded by a set of mi-
crophones or sensors where each sensor receives a different combination of source
signals. The highest efficiency of separation can be obtained when the number of
microphones is greater or equal to the number of sound sources. This arrangement
can be represented compactly by a so called mixing equation:

x(t) = As(t), (1)

where x(t) is a column vector containing m values (from m sensors) of observed
signals (mixes), s(t) is a column vector containing n values (from n sources)
of source signals, A is a m × n mixing matrix, and m ≥ n. The matrix A is
nonsingular and the solution to the separation problem becomes:

y(t) = Wx(t), (2)

where y(t) is an estimation of s(t) and W is an estimation of the inverse of A.
Various techniques based on ICA were used for the separation of mixed signals

(Lee, Lewicki, 2000; Casey, 2001; Jang, Lee, 2003; Barry et al., 2005).
The essence of ICA is in appropriate processing of a mixed multichannel signal
so that its constituent components, seen as random variables, are statistically
independent (Hyvarinen et al., 2001).

In audio engineering, the need for separation usually occurs in stereophonic or
single channel mixes. Therefore, the model given by (1) and (2) can not be directly
used. Both stereo and single channel cases, in terms of BSS, are under-determined,
as m < n. However, in stereo recordings intensity and phase differences between
channels can be used as valuable cues to discriminate sources (Barry et al.,
2004; Cooney et al., 2006; Master, 2006; Vinyes et al., 2006).

For single channel separation, the collection of perceptually motivated tech-
niques jointly called Computational Auditory Scene Analysis (CASA) (Wang,
Brown, 2006) is typically used. The efficiency is limited and some a priori knowl-
edge of the signals is often needed. Within these techniques, differences between
time-frequency (t-f) distributions of sources are frequently used. Most works in
this case were concentrated on the isolation of speech signals (Bach, Jordan,
2005;Yilmaz, Rickard, 2004), and an often exploited cue is so called W-disjoint
orthogonality of signals, i.e. their non-overlapping in the t-f plane (Rickard,
Yilmaz, 2002; Brungart et al., 2006; Vinyes et al., 2006).

A family of computing methods based on intelligent algorithms, including
artificial neural networks, fuzzy sets or rough sets are widely used in recogni-



ICA-based Single Channel Audio Separation. . . 313

tion of acoustic signals (Kostek, 2005). Single channel separation is one of the
application areas (Dziubiński, Kostek, 2010).

ICA in its basic form can not be applied to single channel separation, as only
one observation is available. Jang and Lee (2003) proposed single channel ICA
unmixing, where the basis functions were obtained by learning the properties of
constituent signals, so that they capture the statistical structures of the sources
(Jang, Lee, 2002).

Taghia and Doostari (2009) used band-wide decomposition of components
of the mix and applied ICA to a mixed signal in the time domain. The SCICA
method (Single Channel ICA) proposed by Davies and James (2007) is also
based on the time signal.

Casey (2001) proposed an original approach for single channel ICA demixing.
He first obtained a t-f representation of a mixed signal by the Short Time Fourier
Transform (STFT) according to:

xmix(t)−−−−−→STFT TFDmix
[m×n] (3)

and then treated the rows of the obtained Time Frequency Distribution (TFD)
matrix as individual channels in a multichannel signal, so that they could be seen
as “multichannel” by ICA. He then used ICA estimation to obtain statistically
independent components of the t-f representation of a mixed one-channel signal.
The results were satisfying. An important advantage of this technique is that it
does not require any prior knowledge about the signals to be separated.

A similar, but simplified approach was taken by Barry et al. (2005). They
performed separation of two sounds by taking just two rows of the TFD ma-
trix corresponding to two spectrograms separated by 330 ms and assuming that
spectra were stationary over this time. The perceptual results of separation were
good, but their sounds (a flute and a bass) were separated spectrally anyway.
Wang and Plumbley (2006) used Nonnegative Matrix Factorisation (NMF) on
STFT matrix of a single channel mix, but that algorithm needed a proper training
set. Mijovic et al. (2010), besides the wavelet transform, used a combination of
Empirical Mode Decomposition and ICA for the separation of ECG signals and
compared their results to the SCICA method. These methods are usually called
Spectral-Decomposition-Based methods.

Litvin and Cohen (2009) proposed the Bark Scale aligned Wavelet Packet
Decomposition (BS-WPD) instead of STFT, and at the stage of separation used
the Gaussian Mixture Model (GMM). Duan et al. (2008) presented a combina-
tion of various single-channel separation techniques including elements of CASA,
Spectral-Decomposition-Based methods and Model-Based methods.

Considering the TFDmix
[m×n] matrix as a m-channel signal, each consisting of

n-samples, and performing the ICA estimation upon this multichannel signal we
obtain statistically independent components zi of the t-f representation of a one
channel signal.
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The following relation holds between a TFDmag
mix matrix, where mag denotes

magnitude, and Z is a matrix of statistically independent components (Casey,
2001):

TFDmag
mix = [A][m×n] · [Z][n×n]

=
∑

i

(Ai · zi) =
∑

i

TFDi =
∑

c

TFDi, (4)

where TFDmag
mix is the magnitude form of t-f signal representation TFDmix

[m×n],
matrix [A] of dimensions m× n is a mixing matrix, Ai is an i-th column of [A],
zi is an i-th row of [Z], TFDi = Ai · zi is an i-th t-f component of a mixed one
channel signal, TFDi is a t-f distribution of an i-th constituent signal.

The statistically independent components zi (rows of Z) are called spectral
bases in this work, and the columns of A, characteristic of time functions of
spectral components zi – are called time bases (denoted further Ti). The matrix
TFDi equal to the product of the time basis Ti and the spectral basis zi is called
i-th t-f component.

Casey (2001) reported that by an appropriate grouping of spectral bases zi

into c (where c is a number of the constituent signals in the mix) disjoint sub-
groups we can obtain c bases of subspaces generating the constituent components
of the mix (or their t-f representations to be more precise).

Mika (2009) noticed that it was also possible to group Ti or TFDi into c
bases and obtain similar results. This option offers additional flexibility in single
channel unmixing.

In this work, Casey’s idea is generalised, by investigating the performance of
Ti and TFDi bases and by extensive examination of the properties of different
measures of distance. The performances of those measures were mainly tested
with the time (Ti) bases. For spectral zi and t-f (TFDi) bases only one measure
of distance was tested, respectively. Two ways of verification of the results were
used: perceptual, by way of listening tests, and graphical, by visual inspection of
t-f spectra of separated signals. The results are discussed in Secs. 4 and 5 and in
Conclusions.

2. Procedure

In practical applications only those components of Ai and zi, are used for
which the variance exceeds a pre-determined threshold. Assuming that we will
use only ϕ of signals’ variance, Eq. (4) takes the form:

TFDmag
mix = [A][m×n] · [Z][n×n]

≈
∑

i,σ=ϕ

(Ai · zi) =
∑

i,σ=ϕ

TFDi =
∑

c

TFDi, (5)
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where TFDi components are summed from the largest value of variance to the
lowest until the pre-determined value of variance ϕ is reached. The choice of ϕ
determines the number of bases involved in ICA estimation, i.e. the number of
ICA terms used. Those bases define an input subspace, which is a maximally
informative subspace.

The process of grouping of the bases: zi, Ti, or TFDi is in fact a process
of clustering, i.e. grouping of elements into so called clusters (Jain et al., 1999;
Jain, Dubes, 1988; McQueen, 1967). A result of clustering depends on many
factors, of which the measure of distance used in this process and the clustering
algorithm are the most important. A distance may be defined in a number of
ways. The choice of a particular type of distance depends on a number of factors
such as: frequency composition of the constituent signals in the mix, the amount
of overlapping of constituent signals both in time and in frequency, precision of
separation required and spectral similarity of components. Casey (2001) used
one measure of distance (“Kullback–Leibler”, see Subsec. 3.3) and in the clustering
stage he used stochastic annealing.

The entire procedure of ICA-based single channel separation can be divided
into four stages. Each one can be modified and adapted to a particular application
independently of the others.

1. The generation of input data – a t-f representation of the mix: TFDmix
[m×n].

2. The estimation of independent components. Implemented by ICA or Non-
negative Matrix Factorization (NMF).

3. The grouping (clustering) of bases.
4. The reverse transform of separated t-f signals TFDi

[m×n] back to the time
signal.

In Stage 1 we used the STFT, and implemented it with Matlab “specgram”
function. In Stage 2 we applied the “FastICA” Matlab function based on (Hyva-
rinen et al., 2001), to the t-f representation from Stage 1. Our original contribu-
tion is concentrated in Stage 3 where we performed grouping by the application of
specifically derived distance measures between particular elements (zi, Ti, TFDi,
TFDi). All algorithms were written in Matlab.

3. Definitions of distances used

The distances between spectral, time, and time-frequency vectors were com-
puted according to a number of measures of distance often used in related lit-
erature. Cost functions estimating statistical independence of the components
of the mixed signal were also computed. The computations were performed for
example signals (see Sec. 4). This Section presents the measures of distance that
can possibly be used for the clustering of basis components. Section 4 presents
the results for those measures of distance and cost functions which provided best
separation of components.
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3.1. Standard Euclidean distance between zi vectors:

D2
i,j =

∥∥∥Ẑi − Ẑj

∥∥∥
2

=
n∑

k=1

(zik − zjk)
2, (6)

where || . || symbol denotes the Euclidean metrics. The Euclidean distance can
be used also for Ti vectors (columns of matrix A).

3.2. Euclidean distance for t-f components (Paatero, Tapper, 1997),
referred to as TFDi in Sec. 1

This distance has been defined as:

D2
TFD(i, j) = ‖TFDi −TFDj‖2 . (7)

As in (6) the || . || symbol denotes the Euclidean metrics.

3.3. The Kullback-Leibler distance

Defined as a symmetrised kind of the Kullback-Leibler’s (K-L) divergence
between two probability distributions (Hyvarinen et al., 2001) and is given
by (8):

KLs(p, q) =
1
2

∫
p(û) log

(
p(û)
q(û)

)
dû +

1
2

∫
q(û) log

(
q(û)
p(û)

)
dû. (8)

By denoting the probability distributions of variables zi and zj as Pzi(û) and
Pzj (û) in our case we obtain (Casey, 2001):

DKL(i, j) = KLs(Pzi(û),Pzj (û)). (9)

3.4. Maximisation of negentropy of TFDi components

Any two recordings of different acoustic sources are statistically indepen-
dent, therefore their negentropy is maximum (Hyvarinen et al., 2001; Cover,
Thomas, 1991; Papoulis, 1991).

We need to find such TFDi components for which their sum of negetropies
is at the maximum (Mika, 2009):

(TFDi) ⇒ max
∑

i

J(TFDi
rec). (10)

The following approximation of negentropy was used (Hyvarinen et al., 2001;
Papoulis, 1991):

J(y) ∼ [E{G(y)} − E{G(v)}]2. (11)
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3.5. Clustering based on a β distance of Gaussian distribution

The definition of generalised Gauss distribution is given by (Box, Tiao,
1973):

p(y|µ, σ, β) =
ω(β)

σ
exp

[
−c(β)

∣∣∣∣
y − µ

σ

∣∣∣∣
2/(1+β)

]
. (12)

The β parameter describes a type of a random variable y. In the case when
spectrograms of original constituent components of the mix are known we can
find the βorg

i , i.e. the parameter of the distribution of a random variable with
realisations given by those spectrograms. Then it is possible to minimise the dis-
tance between βorg

i and the parameter β characterising the TFDi
rec distribution

and hence we can determine the correct contents of a TFDi spectrogram, so that
it is as close as possible in the statistic sense to the original spectrogram of the
i-th constituent component of the mix (Mika, 2009):

Dβ =

∣∣∣∣∣β
org
i − βi

(∑
a

TFDa

)∣∣∣∣∣ , (13)

TFDi → minDβ. (14)

The estimation of βi is performed by finding the maximum of β parameter
a posteriori. The a posteriori distribution of β parameter when observations of
TFDi

rec = {x1, x2, . . . , xN} variable are available was given by (Lee, Lewicki,
2000):

p(β|x) ∝ p(x|β)p(β), (15)

where p(x|β) is a data likelihood (Lee, Lewicki, 2000).

3.6. Distances based on time bases

1. Euclidean distance for time bases Ti:

DEuclidean2

ij = ‖Ti −Tj‖2 . (16)

2. “Cityblock” distance (Saber, 1984):

Dcity
ij = ‖Ti −Tj‖ =

∑

k

|Tki − Tkj | , (17)

where ‖ . ‖ denotes a Minkowski metrics (L1) and Tki is k-th element of i-th
time basis Ti.

3. “Cosine” distance:
Defined as one minus the cosine of the angle between the Ti and Tj vectors
(Saber, 1984):

Dcosine
ij = 1− cos (∠(Ti,Tj)) . (18)
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4. “Correlation” distance
Defined as one minus the correlation coefficient between the Ti and Tj vectors
(Saber, 1984):

Dcorrelation
ij = 1−TT

i Tj , (19)

where Ti and Tj – are used as column vectors.

4. Results of processing and discussion

The experiments consisted in demixing one-channel mixes of two and three
signals. The signals were chosen so that both their respective types of sources
and their spectral composition were different. S1(t) signal was a recording of
an electric ringer and S2(t) signal was a baby cry. S3(t) component is a sound
generated by a percussive instrument – “tom”, i.e. it is a typical impulsive signal.
A three-component mixed signal was generated by adding the percussive “tom”
signal S3(t) to the two-component mix.

Both signals were 1.2 seconds long and recorded at the sampling frequency
Fs = 8 kHz. The spectrograms shown below present the frequency range from 0
through 4000 Hz. The signals were analysed with the STFT, using blocks 256
samples long, 50% overlapped, and the Kaiser time window. The first 3968 and
next 5888 samples (two separate blocks) were used in t-f analysis of each sig-
nal because of better stationarity of the respective spectra. Full signals of 9856
individual samples were used in the computation of β distance of the Gaussian
distribution.

Figure 1 presents the spectrograms of S1(t) and S2(t) and the spectrogram
of their sum: Smix(t) = S1(t) + S2(t). In all subsequent figures the graph on the
left corresponds to the “ringer” sound and on the right to the “baby” sound.

Fig. 1. Spectrograms of constituent signals: S1 – “ringer”, S2 – “baby” (upper diagrams),
and the spectrogram of the mixed signal S1 + S2 (lower diagram).
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Fig. 2. The first 7 statistically independent spectral bases zi obtained as a result of an ICA
estimation of the spectrogram of the mixed signal for signal variance ϕ = 85%.

Fig. 3. The first 7 time bases Ti obtained for the spectrogram of the mixed signal at signal
variance ϕ = 85%.

The t-f spectrum of the two-component mixed signal Smix(t) was analysed
by ICA procedure. The statistically independent components – zi spectral bases
were obtained. Figure 2 presents the bases with signal variance ϕ of 85%, and
Fig. 3 presents the corresponding time bases Ti. In this figure, and in some of the
next figures, the results of ICA performed on the first block of samples (from 0
through 0.51 s) are shown.

In stage 3 of the analysis we used hierarchical clustering (Jain, Dubes, 1988)
and the k-mean partitional clustering (McQueen, 1967). We used the Euclidean
distance as a measure of t-f components TFDi. The results of this clustering are
depicted in Figs. 4a and 4b.

a) b)

Fig. 4. a) A dendrogram obtained for the Euclidean distance for t-f components TFDi, b) Vi-
sualisation of groups of distances between TFDi components obtained by multidimensional
scaling (Saber, 1984). Coloured ellipses correspond to components grouped in the dendrogram

shown in a).

By summing the TFDi t-f components grouped in Fig. 4b in green and black
ellipses (the latter corresponds to red and blue colours in a dendrogram of Fig. 4a)
we obtain the spectrograms of the first and second components of the mixed
signal:
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TFD1 =
∑

1,2,3,4,6,
7,10,11,13

TFDi, (20)

TFD2 =
∑

5,8,9,12

TFDi. (21)

T-f signal components TFDi = Tizi are presented in Fig. 5.

TFD1 TFD2 TFD3 TFD4 TFD5

TFD6 TFD7 TFD8 TFD9 TFD10

TFD11 TFD12 TFD13

Fig. 5. The first 13 t-f components TFDi of the spectrogram TFDmag
mix for signal ϕ = 85%. The

sum of the presented signals is the t-f amplitude spectrum of the analysed mixed one-channel
fragment TFDmag

mix . The scales for all TFDi range from 0 through 129, which corresponds to
the frequency range from 0 through 4 kHz. The range 0–30 in the time scale corresponds to
the range 0–0.51 s. When Fig. 5 is compared to Fig. 1 it can be clearly seen that components

no. 4, 7 and 11 belong to signal S1 i.e. the ringer.

The reconstructed components of the mix TFD1 and TFD2 are shown in
Fig. 6.

Figure 7 presents the result of separation with the use of an algorithm max-
imising the sum of negentropies of TFDi components.

Below, the results of clustering with the use of β distance of the Gaussian
distribution are shown. As can be seen in the picture this technique seems to
be efficient but the results depend on the length of a signal analysed and on its
variance (ϕ parameter), and consequently, on the number of TFDi components.
The lower this number the better are the results of clustering. However, reducing
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the number of TFDi components involves deterioration of reconstruction quality
of the spectrograms of components.

TFD1 TFD2

Fig. 6. Reconstructed components of the mix obtained by hierarchical clustering with the use
of Euclidean distance for t-f components TFDi. TFD1 – the part of the spectrogram of S1

(“ringer”) corresponding to the first 0.51 s of this signal, TFD2 – the spectrogram of “baby”.
The harmonic structure corresponding to the original spectra of Fig. 1 can be clearly seen.

TFD1 TFD2

Fig. 7. TFDi components obtained with an algorithm maximising the sum of their negentropies.
The variance ϕ = 90% of the mixed signal was used. TFD1 – the spectrogram of “ringer”, TFD2

– the spectrogram of “baby” (0.51 s of the mixed signal of Fig. 1 was analysed).

TFD1 TFD2

a)

b)

Fig. 8. Spectrograms of separated components of the mix with the use of β distance of Gaussian
distribution. The results are obtained respectively for a) ϕ = 70% and b) ϕ = 80% of variance
and the signal duration of 1.2 s. TFD1 – the spectrogram of “ringer”, TFD2 – the spectrogram
of “baby”. The similarity to original spectrograms of Fig. 1 can be clearly seen. The quality of
separation is noticeably worse for ϕ = 70% which manifests in mutual penetration of spectra

in a), especially for “baby” (diagrams on the right).
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TFD1 TFD2

Fig. 9. The results of separation obtained by hierarchical clustering with Euclidean distance
for time bases Ti and variance ϕ = 90%. TFD1 – the spectrogram of “ringer”, TFD2 – the
spectrogram of “baby”. The analysis was performed separately for two time frames corresponding

to 0–0.51 s and 0.51–1.2 s of the analysed mixed signal of Fig. 1.

TFD1 TFD2

Fig. 10. The results of separation obtained with k-means clustering and “cityblock” distance
(as defined in Subsec. 3.6) for time bases Ti and variance ϕ = 90%. TFD1 – the spectrogram
of “ringer”, TFD2 – the spectrogram of “baby”. The result of separation is identical to that
presented in Fig. 9. This is often the case when the number of basis components is low and the

measures of distance are based on the same components (Ti in both Fig. 9 and 10).

The results obtained with other types of distances based on time bases are
shown below. The results of k-means clustering obtained with distance matrixes
defined in par. 3.7.2, 3.7.3 and 3.7.4 will be presented.

Figure 12 presents an attempt to separate a three-component mix, obtained
by summing signals S1, S2 and S3 (see the beginning of this paragraph).

In this case stages 1 and 2 of the analysis were held exactly as for the two-
component mix. After STFT and ICA estimation, in the 3rd stage the compo-
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TFD1 TFD2

Fig. 11. The results of separation obtained with k-means clustering and “cosine” distance for
time bases Ti and variance ϕ = 90%. TFD1 – the spectrogram of “ringer”, TFD2 – the
spectrogram of “baby”. In this case the separation is worse which can be seen in the mutual

penetration of spectra.

Fig. 12. Spectrograms of particular constituent signals and of the mixed signal. S1 – “ringer”,
S2 – “baby”, S3 – “tom”. The lower diagram shows the spectrogram of the mixed signal.

nents were grouped into three classes. The results in Fig. 14 were obtained with
the use of Euclidean distance for TFDi bases presented in Fig. 13.

For each of the versions of decompositions presented above, the STFTs of
the separated constituent signals have been converted back to the time signal.
A specific algorithm written in Matlab was used. The STFT is not a perfectly
invertible transform and in our implementation the inverse STFT was based
on magnitude coefficients only, which resulted in the loss of phase information
contained in the input signals.
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TFD1 TFD2 TFD3 TFD4 TFD5

TFD6 TFD7 TFD8 TFD9 TFD10

Fig. 13. TFDi components, for 80% of signal variance. The scales for all TFDi range from 0
through 129, which corresponds to the frequency range from 0 through 4 kHz. The range 0–30
in the time scale corresponds to the range 0–0.51 s. Similarities of TFDi elements with the
constituent sounds of the mixed signals can be clearly seen. For example, TFD1, TFD2 and
TFD8 belong to “ringer”, TFD5, TFD7 and TFD9 belong to “tom” and other components

belong to “baby”.

TFD1 TFD2

TFD3

Fig. 14. The results of separation of a three-component signal obtained with hierarchical group-
ing and Euclidean distance for t-f bases TFDi. Duration 0.51 s – TFD1 – the spectrogram of
“ringer”, TFD2 – the spectrogram of “tom”, TFD3 – the spectrogram of “baby”. There is an

obvious similarity to original spectrograms in Fig. 12.

5. Perceptual evaluation

5.1. Experiment

The objective of the tests was to compare the original sound (a constituent
of the mix) with its equivalent obtained from separation. All sounds were system
sounds of Microsoft Windows and were resampled to 8 kHz. As separation was
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performed with only magnitude spectrograms, all separated signals were syn-
thesized with zero phase. The objective of the test was a mutual comparison of
techniques, therefore the references for this test were also re-synthesized with zero
phase, to eliminate the effect of phase distortion. The RMS values of all original
and separated sounds were normalised.

Five mixes were evaluated:
1) “ringer” + „baby”;
2) “notify” + ”tada”;
3) “ringer” + “tom”;
4) “baby” + “tom”;
5) “baby” + ”ringer” + ”tom”.
Each of them was unmixed in a number of processing setups, with different

bases, different measures of distance and in some cases different amounts of vari-
ance used. Many possible combinations of options were not included in the test,
as they were found less efficient, on the basis of spectrograms and informal lis-
tening tests. Among these were: decorrelation and maximisation of negentropy
of TFDj

rec components and most of the distances for spectral and TFDi bases.
The total of 107 different pairs: original (reference) sound plus separated

sound were prepared. These pairs will be referred to as “samples”.
Five sets of samples were generated, each containing all 107 samples. In each

set the sequence was random and different. The samples were separated by 3 to 4 s
of silence and within each sample both intervals were separated by 500 ms. The
reproduction of each set of samples lasted about 9 minutes. A listener took a short
break and then evaluated the next set. This way, each participant listened to each
sample for five times. Five listeners participated, including one audio engineer,
two musicians and two subjects not active in music. Four of them were about 30
and one was 40.

Each listener heard samples at the same loudness (over 80 dB, this level was
preferred by most listeners) over the closed headphones AKG K271 Studio, in
a silenced studio room.

The listeners rated the quality of separation using the degradation category
rating scale (Bech, Zacharov, 2006). The original 5-point scale was extended
to 6 points, following suggestions from listeners. The lowest score of 1 denoted
“very annoying difference” and the highest of 6 denoted “imperceptible difference”.
Before the actual test, each participant went through a short training session.
Listeners wrote down their answers in a scoring sheet.

5.2. Results and discussion

Tables 1 through 8 show mean values and standard deviations of evaluation
scores for eight different processing setups, separately for each sound.

Table 9 presents the effect of the amount of variation of mixed signal used
(70% or 90%) on perceptual quality of separations. Two sounds: “ringer” and
“baby” were evaluated.
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Table 1. Mean scores and standard deviations for each sound obtained with “Beta” distance.
Common mean = 3.42, common σ = 1.34.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 3.42 mean = 4.45 mean = 3.68 mean = 3.84 mean = 2.05
σ = 1.12 σ = 0.99 σ = 1.11 σ = 1.07 σ = 0.8

Table 2. Mean scores and standard deviations for each sound obtained with “correlation”
distance. Common mean = 3.14, common σ = 1.34.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.86 mean = 4.31 mean = 2.2 mean = 4.04 mean = 2
σ = 1.11 σ = 0.86 σ = 1.15 σ = 0.93 σ = 0.79

Table 3. Mean scores and standard deviations for each sound obtained with “cosine” distance.
Common mean = 3.05, common σ = 1.32.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.41 mean = 4.33 mean = 2.28 mean = 4.2 mean = 2.05
σ = 0.9 σ = 0.79 σ = 0.98 σ = 1.04 σ = 0.79

Table 4. Mean scores and standard deviations for each sound obtained with “city” distance.
Common mean = 3.03, common σ = 1.25.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.67 mean = 3.98 mean = 2.68 mean = 3.8 mean = 2.12
σ = 0.99 σ = 1.05 σ = 1.14 σ = 0.96 σ = 0.91

Table 5. Mean scores and standard deviations for each sound obtained with “Euclidean”
distance with variance normalised to the value of 1. Common mean = 2.97, common σ = 1.32.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.97 mean = 3.88 mean = 2.44 mean = 3.84 mean = 1.64
σ = 1.04 σ = 1.15 σ = 1 σ = 0.94 σ = 0.71

Table 6. Mean scores and standard deviations for each sound obtained with “Euclidean”
distance. Common mean = 2.86, common σ = 1.26.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.73 mean = 3.67 mean = 2.88 mean = 4.16 mean = 1.52
σ = 0.89 σ = 0.87 σ = 1.01 σ = 0.94 σ = 0.7

Table 7. Mean scores and standard deviations for each sound obtained with “K-L” distance.
Common mean = 2.53, common σ = 1.14.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.39 mean = 3.41 mean = 3.32 mean = 1.52 mean = 1.6
σ = 0.95 σ = 0.82 σ = 1.14 σ = 0.59 σ = 0.68
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Table 8. Mean scores and standard deviations for each sound obtained with “Euclidean”
distance for TFD bases. Common mean = 2.40, common σ = 1.13.

“Baby” “Ringer” “Notify” “Tada” “Tom”
mean = 2.44 mean = 3.12 mean = 3.44 mean = 1.04 mean = 1.53
σ = 0.9 σ = 1.04 σ = 0.92 σ = 0.2 σ = 0.66

Table 9. The effect of the amount of variance of mixed signal used on perceptual
quality of separation. Mean scores for the “ringer” + “baby” mix.

Measure of distance
“ringer” “baby”

90% 70% 90% 70%
“Beta” 5.00 4.36 4.32 3.04
“city” 4.28 4.20 2.84 1.96
“correlation” 4.40 4.32 3.92 2.60
“cosine” 4.40 4.08 2.36 2.36
“Euclidean” 3.64 3.68 2.44 2.72
“Euclidean_var = 1” 4.52 4.16 3.12 2.88
“Kullback-Leibler” 3.52 3.20 2.60 2.20
“TFD Euclidan” 3.44 4.00 2.44 2.64
Mean score 4.15 4 3.00 2.55

In Table 10 the mean scores of perceptual quality for “ringer” + “baby” sounds
obtained from their mix are compared with the scores for the same sounds ob-
tained from the three-component mix “ringer” + “baby” + “tom”.

Table 10. The comparison of mean scores for “ringer” + “baby” sounds obtained from their mix
and from the three-component mix “ringer” + “baby” + “tom” for different measures of distance.

Measure of distance

“ringer” “baby”
Three- Two- Three- Two-

component component component component
mix mix mix mix

“Beta” 4.00 5.00 2.84 4.32
“city” 4.60 4.28 2.80 2.84
“correlation” 3.92 4.40 1.84 3.92
“cosine” 4.24 4.40 2.04 2.36
“Euclidean” 4.12 3.64 2.56 2.44
“Euclidean_var =1” 4.44 4.52 2.72 3.12
“Kullback-Leibler” 3.32 3.52 1.68 2.60
“TFD Euclidean” 2.28 3.44 1.64 2.44
Mean score 3.86 4.15 2.26 3.00

The best perceptual quality of separation was obtained for “Beta” measure
of distance, and it was closely followed by “correlation”, “city” and “cosine” dis-
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tances. For each of these cases the mean score exceeded 3. The “ringer” sound was
most efficiently unmixed in any of the distances used. For “Beta”, “correlation”
and “cosine” the mean score exceeded 4. Listeners also favourably evaluated the
„tada” sound (the score over 4 for three of the distances). “Baby” was evaluated
considerably lower, and “tom” turned out to be the most difficult to separate –
the highest scores were around 2. This demonstrates that the algorithms eval-
uated proved to be most efficient for a sound with a quasi-stationary harmonic
spectrum (“ringer”) and least efficient for a highly non-stationary sound with
noise-like spectrum (“tom”).

The quality of separation was higher for higher amount of variation of the
mixed signal used (Table 9). As could be expected, quality was higher in separa-
tion from two-component mixes (Table 10) but the scores on average were better
by only 0.5 point, which is promising for demixing of larger numbers of sounds.

In previous works on single channel separation with ICA only spectral vectors
were grouped and only with the K-L distance. We have proved, that this approach
is often sub-optimal (see fairly poor results for this measure in Tables 9 and 10).

6. Conclusions

In most cases, the time bases Ti provided better separation than spectral
bases used in earlier works.

The results demonstrate that grouping can be performed both by using dis-
tances that require some information on the constituent signals (“Beta” distance
of Gaussian distribution) and by exploiting the bare similarity between the bases.
The aim should be the grouping of bases without using any information about
constituent signals. However, when this is the case, then the choice of distance
depends on the analysed constituent signals Sj(t). If the amplitude of signals
varies in time considerably, then it is appropriate to use the Euclidean distance
for time bases Ti. For successful decomposition the constituent signals should
have stationary spectra within the analysed period. It is possible to overcome
this limitation by shortening the analysed period, but this manifests itself in the
deterioration of audible quality of reconstructed demixed signals. The use of the
K-L distance provides satisfactory results when the basis vectors zi are similar
in terms of their probability density distributions within any of the constituent
signals (inter-signal similarity), while distinctly differing when different signals
are compared (intra-signal dissimilarity). Again, for real signals, time bases be-
longing to one sound source often have completely different probability density
distributions. The application of the K-L distance in such cases produces false
results.

Satisfying results have been obtained when the Euclidean distance was applied
to grouping of the t-f (TFDi) components. This type of distance measure is
naturally suited for grouping both time and spectral features of signals.
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It was demonstrated, that clustering analysis both in its hierarchical and k-
means forms can be successfully applied to grouping of components for signal
separation.

The main limitation of one-channel STFT based ICA signal decomposition is
the lack of an all-purpose procedure. The choice of the type of basis components
(spectral, time, or time-frequency), the measure of distance and a clustering al-
gorithm should depend on time-frequency characteristics of constituent signals of
the mix. Moreover, the result of clustering and quality of separation also depend
on the choice of variance parameter ϕ. Too high a value of ϕ makes clustering
less efficient, as there are too many components to handle, while too low a value
deteriorates the quality of separated components. The quality of separation also
depends on inherent limitations of ICA. As the number of mixed signals increase,
the degree of separation of components obtained from ICA decreases, leading to
mutual penetration of spectra in separated constituent signals.

The procedure developed for this research is an open one. Each of the stages
can be modified and optimized independently. For example, in t-f analysis stage
other methods that STFT may be used, including bilinear transforms, and in the
ICA stage its more advanced versions can be applied.

A comparison of computational load between the procedures evaluated was
not performed. The processing tools developed in Matlab were strongly experiment-
oriented and contained some extra procedures in order to keep better control of
a process. With about 30 basis components the computation time on a 3.2 GHz
PC computer was below 20 s, and computation of the distance matrix took most
of the time. It may be expected that with the use of a compiler the processing
time should approach real time.

Future works will be focused on the application of other t-f signal distribu-
tions, particularly those improving local t-f resolution like Wigner-Ville, and their
effect on the quality of separation. In the ICA stage some more advanced meth-
ods like topographic ICA will be investigated. In order to make the clustering
process automatic and more data independent the application of artificial intelli-
gence algorithms should be evaluated. These methods could acquire information
of the components of the mix at the learning stage and then efficiently cluster
basis components, like in pattern recognition procedures. The current perceptual
estimation can be extended by using pair comparison tests besides comparisons
to the reference.
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