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A FEM-BEM coupling approach is used for acoustic fluid-structure interaction analysis. The FEM is
used to model the structure and the BEM is used to model the exterior acoustic domain. The aim of this
work is to improve the computational efficiency and accuracy of the conventional FEM-BEM coupling
approach. The fast multipole method (FMM) is applied to accelerating the matrix-vector products in
BEM. The Burton-Miller formulation is used to overcome the fictitious eigen-frequency problem when
using a single Helmholtz boundary integral equation for exterior acoustic problems. The continuous
higher order boundary elements and discontinuous higher order boundary elements for 2D problem are
developed in this work to achieve higher accuracy in the coupling analysis. The performance for coupled
element types is compared via a simple example with analytical solution, and the optimal element type
is obtained. Numerical examples are presented to show the relative errors of different coupled element
types.
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1. Introduction

The acoustic fluid-structure interaction is a classi-
cal problem in underwater acoustics. The sound pres-
sure surrounding structures always has a big impact
on the dynamic behavior of the structures, then the
interaction between structures and fluid needs to be
taken into account. Thus, developing effective numer-
ical methods is necessary due to the impossibility of
obtaining analytical solutions for realistic problems.
The finite element method (FEM) is widely used for
the simulation of the dynamic behavior of structures.
However, the boundary element method (BEM) offers
the advantage over the FEM for acoustic problems,
because it provides an excellent accuracy and easy
mesh generation. Moreover, the Sommerfeld radiation
condition at infinity is automatically satisfied for ex-
terior acoustic problems. Making the best use of the
advantages of both methods, the FEM-BEM coupling
approach was developed by EVERSTINE, HENDERSON

(1990), and the coupled approach has been widely
adopted (CHEN et al., 1998; RAJAKUMAR, ALI, 1996;
MARQUEZ et al., 2004; FRITZE et al., 2005; SCHNEI-
DER, 2008).

It is well-known that the different element types
always result in different performance, and the discon-
tinuous elements outperform the continuous elements
in many cases, because the discontinuous elements pro-
vide easy treatment of discontinuity, such as corners
and edges. The comparison of different element types
for BEM has been made in details. The performance
of constant, linear, and quadratic boundary elements
in the analysis of the 3D scattering problem was eval-
uated in (TADEU, ANTONIO, 2000), and the authors
found that linear boundary elements outperform the
constant and quadratic elements. Error dependence
in terms of frequency, element size, and location of
nodes on discontinuous elements is presented by MAR-
BURG, SCHNEIDER (2003), and the use of discontinu-
ous quadratic elements is recommended. For discontin-
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uous elements, interpolation nodes are located inside
the element and element performance depends on the
position of the interpolation nodes. The optimal values
of the nodal position for discontinuous elements were
recommended at the zeros of the Legendre polynomi-
als in general (MARBURG, SCHNEIDER, 2003). How-
ever, few papers compared the performance of the dif-
ferent element types for coupled FEM/BEM. PETERS
et al. (2012) used discontinuous linear boundary ele-
ment with quadratic geometric interpolation coupled
with eight-node isoparametric finite element to solve
the 3D fluid structure interaction. ZHANG, ZHANG
(2002) used discontinuous BEM coupled with FEM for
elastostatics and fluid-structure interaction.

In this study, different coupled element types are
used for fluid-structure interaction analysis, and their
performance is investigated to obtain a proper scheme.
Besides, an investigation on boundary element types
and the optimal position of interpolation nodes in dis-
continuous element without FEM coupling is also done
in this work. The Burton-Miller formulation (BURTON,
MILLER, 1971) consisting of a linear combination of
the conventional boundary integral equation and its
normal derivative equation is applied to overcoming
the nonuniqueness problem. And the Cauchy principal
value and the Hadamard finite part integral method
are applied to dealing with the strong singular and
hyper-singular integrals. For different boundary ele-
ment types, the non-singular expressions of bound-
ary integral equations are presented in this work. On
the other hand, the fast multipole method (FMM) is
introduced to accelerate the calculation of BEM in
(COIFMAN et al., 1993; CHEN et al., 2013b; WU et al.,
2011; YU et al., 2012; L1, HuANG, 2011). However, con-
stant boundary element used in (COIFMAN et al., 1993;
CHEN et al., 2013b; WU et al., 2011; YU et al., 2012;
L1, HuaNg, 2011) will produce a solution with a low
accuracy. In this paper, FMM is applied to discontin-
uous boundary element with quadratic shape function
in order to improve the computational accuracy of the
conventional boundary element. So, the proposed algo-
rithm performs more efficiently than the conventional
method in (COIFMAN et al., 1993; CHEN et al., 2013b;
WU et al., 2011; YU et al., 2012; L1, HUANG, 2011).

2. Structural-acoustic analysis

2.1. BEM for acoustic domain

Consider the following Helmholtz equation govern-
ing the acoustic wave domain:

V2p(x) + k*p(x) =0, Yz € 2, (1)

where V? is the Laplace operator, p is the acoustic

pressure, k = w/c is the wave number, w is the angu-
lar frequency, and c is the wave speed in the acoustic

medium {2. The boundary conditions can be classified
as follows:

p(x) =p(x), x € Sp, (2)
a(z) = gggg —ipt(a),  weS, ()
p(x) = zv(x), r €S, (4)

where n denotes the outward unit normal vector to
boundary S at point z; p is the medium density, v(x)
is the normal velocity, and z is the acoustic impedance.
The quantities with overbars indicate given values
on the boundary condition. S, denotes the Dirichlet
boundary condition, S; denotes the Neumann bound-
ary condition, and S, denotes the Robin boundary con-
dition.

Letting point x approach the boundary, we can
obtain a conventional boundary integral equation re-
ferred to as CBIE:

c(2)p(z) + / F(z,y)p(y) dS()

S

_ / Gz, )a(y)dS@w),  (5)

S

where x is the source point, y is the field point, the
coefficient c(x) is 1/2 if S is smooth around the source
point z, and G(z,y) is the Green’s function, F(z,y)
is the normal derivatives of G(z,y). For 2D acoustic
problems, the kernel functions are given as:

Gla,y) = LHS (k). (6)
Flay) = S = RHO g, (0

where 7 = |z — y/, HLY denotes the n-th order Hankel
function of the first kind.

The CBIE formulation suffers from nonuniqueness
for exterior problems. A remedy to this problem is to
use CBIE in conjunction with its normal derivative
equation.

Taking the derivative of the CBIE with respect to
the outward normal at point x and letting = approach
S if S is smooth around x, we obtain the following
formulation usually referred to HBIE for acoustic wave
problems:

%q(w)Jr %p(y)ds(y)
- [ Glawasw. @

S
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For 2D acoustic problems, the two new kernel functions
are given by:
0G(z,y) ik

on(x) Ty Hl(l)(kr)

or
on(z)’ ®)
OF (z,y) _ ik 1) ()
Tty = o (@ ()

(10)

The Burton-Miller formulation (BURTON, MILLER,
1971) using a linear combination of CBIE (5) and
HBIE (8), as given below, should give a unique so-
lution for all frequencies:

CBIE + oHBIE = 0, (11)

where « is the coupling constant, when k£ > 1, o = i/k,
but o =i for k < 1.

Assuming that the boundary S is discretised into
boundary elements, the following system of linear al-
gebraic equations can be obtained:

Hp = Gq + p;, (12)

where p; denotes the sound pressure from the incident
wave.

For the HBIE formulation, the continuous elements
(such as continuous linear element) may have difficulty
of dealing with the normal vector of corner nodes, as
shown in Fig. 1a. The normal vector of corner node % in
actual smooth curvilinear boundary S is unique (n(x)
in Fig. 1a), but show discontinuity after discretisation.

quadratic curve

i—1
Fig. 1. Special treatment of the corner node of
the continuous element.

The determination of accurate corner node normal vec-
tor according to the actual smooth curvilinear boun-
dary S is always a high cost. Thus, special treatment
of the corner nodes is required for continuous elements.
As shown in Fig. 1b, we can obtain the normal vector
of corner node i close to the accurate value by using
a three noded (i — 1,4,7 + 1) quadratic curve instead
of the actual boundary near the corner node.

Singular boundary integrals in Eqgs. (5) and (8)
can be evaluated explicitly and efficiently by using the
Cauchy principal value and the Hadamard finite part
integral method. The CBIE and HBIE formulations
can be rewritten as:

%p(x) - /G(:c,y)Q(y)dS(y)
Sz

_ / Gz, y)aly) dS(y)
S\ S

- / Flr.yp)dS@w).  (13)

S\ S,

g + [ 25y as)
Sa

= [ T ywasw)
S\ Sz

- / %’”’f)p(y)dsm (14)

on(x
S\ S

where S, denotes the element containing the source
point z, S\ S, denotes the boundary S except S,.. For
different types of the element, we can obtain different
expressions of singular parts in Egs. (13) and (14), and
the singular parts can be rewritten as:

/G(w, y)q(y) dS(y)
Sz

_ / [G(€)T(€) — Co(€)Jo(€)] () de

Sz

4 / Gol(€)Jo(€)a(€) &, (15)

Sz

[ 2ot ast)

x

= [ €7 - Bi©n(e)] p€) e

S

+ / FL(E)Jo(©)p(€) de, (16)

Se
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where ¢ denotes the local coordinate in every element,
J denotes the Jacobian, and

n
=1
n
=1

Go(¢) = lim G(x,y) = —% In (kro),

ik
Fe) = Iy |0 syt 07
1 k2
= W’r’% — E ln (kTQ),
Jo() = lim J(©),
TQ = (5 - b)2J7
T(2) = (5 - b)2J07

where b denotes the local coordinate of the source
point z. Eventually, the singular parts in Egs. (15)
and (16) can be rewritten as follows,

[ Ga©©a©)ds =3 Bua

> - (18)
[ e ac=3 v

Sz

where n denotes the number of interpolation nodes in-
side the boundary element.

By substituting Eq. (17) into Eq. (18
tain the following formulation:

), we can ob-

Bi:__ln JO /¢1d§
—%/@lnlé‘—bld&
21
D; = —@m (Jok) /@dg (19)

“"/@1n|s—b|d§

1
1 bi
oo | e ae
1

Then, we can obtain the exact expressions of
Eq. (19) by the Cauchy principal value and the Hada-

mard finite part integral method for different bound-
ary element discretisation. For the constant element,
n=1,

¢1 = 17
L
Jo(§) = J(§) = bR (20)
_ K€L
T(é) - 2 )
where L is the length of each element. Thus,
B —-L [m (’“_L> - 1],
2 2
(21)
Dy = —kQ—L 1 kL + 5 5 _ 1
E KLz
For the discontinuous linear element, n = 2,
1 £
w1 (1-5)
1
¢2 = 5 (1 + é)a
¢ (22)
L
_|€-b|L
T(é) - 2 9

where a (0 < a < 1) decides the position of interpola-
tion nodes, b denotes the local coordinate of the source
point z. If b = a, then

L kL L
n

Bi=—In—— —
YT 2 8ma
L kL L
B _%1 2 8ma ¥
In(1+a)—In(l —a)
D =
! 2amL
(23)
k2L kL k2L
- - —11,
At 2 8«
In(1+a) —In(1 —a) 2
Dy = —
2amwL L(1—a?)
KL kL kL
Ty T
and
14+a l1—a
1, = / rlnzxdx — / rinzdx,
0 0
1—a 14+a
I, = /hm:da:—l— /hm:dx (24)
0 0

14+a l1—a

! /xlnxdx—/xlnxdx
2a

0 0
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And if b = —a, then By and By, D1 and Dy will swap
values, respectively.
For discontinuous quadratic element, n = 3,

§€ (€
- £(5-)

2
¢2 =1~ 5_25
ERENAS
¢3 = % <a + 1),
JHE) = (A€ + A)® + (Asg + Ag)?,
J3(€) = (Arb+ Az)? + (Asb+ Ay)?,
(25)
Ay = xd — 223 + xf,

2
Az = 23 — 223 + 23,
1
A4 - 5(173 - x%)a
T2 - (g_b)Q‘]Qa
T% = (g_b)QJOQa

where z¥(k = 1,2) denotes the coordinates of the node
xi(i = 1, 2,3) in each element.

There are three cases based on different values of b.
When b = 0, then

Jo
Bl = —2—(1DI€+1HJ0)/¢1 dg— % <_W),

_Jo Jo 2
BQ = (lnk'i‘lnjo)/(bg df o (90,2 2),
—1
Jo i 1
Bg: (lnk-l-ano /(]53(:15——(—@),
k2
Dy = Jo(l k+1n Jo) /¢1d§
(L) kQJO L (26)
2rJy \ a? 47 9a2 )’
k2J0
D2 = (1 k+1DJO d)gdf
(2, Cene
2mJy a? 47\ 9a? ’
k2
D3 = — 4']0(1 k+1n.Jo) /¢3d§

(1) B 1
2wy \ a? 47 9a2 )’

When b = a, then,

B, — _ﬁankﬂn,fo)/abl d¢
2

Jo (1
T or (2 z(h+l) = 2_I3>

BQ = —;]—O(lnk—i-ano)/ngdﬁ
v

Jo 1
Is— (L + I
27r< 3 a2(1+ 2)>,

B3 = —ﬁ(lnk—l-ano)/(bgd{
2

J 1
270T (2 5L+ I2) — —I3 + M +Y2)>

k2
Dy =

= (lnk +In Jo) /¢1d§

1 <i T i(1n(1 —a)—In(1+ a))) (27)

+27TJ0 a?  2a

k2J0 1 1
— (I Iy) — —1I

o L)

k2
Dy = —4—0 (Ink 4 In Jo) /¢2d§

1 <_3 + a(1n(1 +a) —In(1 - a>>>,

+ 27TJO a2
k:2 Jo
4

1
I I + I
L?, a2(1+ 2)],

k2
D3 = —4—0 (Ink 4 In Jo) /¢3d§

™

+ 2w Jy
k2 Jo
Am

L (%+2—i(ln(1—a)—ln(1+a))—%)

{2 5 (I + I2) — i13 + (Y1 + Yz)}

where
14+a

L = / z?lnzde,

0
1+4+a

/:Clnxd:v, Xy =
0
Iy = X1 — Xo,

1+a
Y, = /lnxdx, Y, =
0

a

I, = z?lnzde,

X = zlnxdz,

O\I oY~

(28)

—
|
S

Inxdx.

o
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And if b = —a, then the value of By and B3z, Dy and
D3 of case b = a will also change correspondingly.

2.2. FEM for structural domain

A harmonic load with the excitation frequency w is
assumed to be applied to the structure. The harmonic
structural vibrations are described by

(K + iwC — w?’M)u(w) = Au = f, (29)

where i = v/—1, K, C, and M are respectively the
stiffness matrix, damping matrix, and mass matrix for
structure, structure matrix A = K+iwC—w?M, u de-
notes the nodal displacement vector, and f is the nodal
force vector. Considering the nodal forces Cyep result-
ing from the acoustic pressure at the interaction sur-
faces, the excitation appears as:

f= fs + CsfPa (30)

where the coupling matrix Cgr directs fluid nodal pres-
sures to structural nodal forces, and it can be ex-
pressed as:

Cit = / NI nN;dS, (31)
Sint
where Sjn¢ denotes the interaction surface, Ng and N¢
are respectively the global shape functions of the struc-
ture and fluid domains, and n is the interaction surface
normal vector.
By substituting Eq. (30) into Eq. (29), the nodal
displacement vector can be written as:

u=A"f,+ A 'Cyp. (32)

The governing equations Egs. (29) and (12) are
linked via the continuity condition q = —iwpv across
the interaction surface. Normal velocity v can be ex-
pressed as follows:

v = iwS ' Cyu, (33)
where
S = / NfN¢dS and Cg=Cy.
Sint

By substituting Eq. (33) into Eq. (12), we can ob-
tain the following formulation:

Hp = w?pGS ' Cgu + p;. (34)

By combining Eq. (29) with Eq. (34), the governing
equations for the coupled system can be given by

-

Directly solving Eq. (35) demands considerable
computing time and storage requirement. The efficient

A _Csf
—w?pGS~!C,, H

method is substituting Eq. (29) into Eq. (34) to gene-
rate a reduced system equation, as follows:

Hp - GWCp = GWH, + p;, (36)

where W = w?pS~!Cg A1, The iterative solver GM-
RES and the FMM are applied to accelerating the cal-
culation of the solution to the coupled boundary ele-
ment system equation. Then we can obtain the nodal
displacement vector by Eq. (32).

In this work, the wideband FMM approach is in-
troduced to accelerate the calculation of the matrix-
vector product in Eq. (36). Using conventional FMM
(the low-frequency form) at a high frequency is inef-
ficient because of a big truncation number, while em-
ploying diagonal FMM (the high-frequency form) at
a low frequency exhibits a numerical instability prob-
lem. A remedy to the aforementioned problems is wide-
band FMBEM by combining conventional and diago-
nal forms. The details of the wideband FMM approach
are presented in (CHEN et al., 2017).

3. Numerical examples
3.1. Element types

As compared with the constant element used in
the previous acoustic BEM analysis, the continuous
linear, quadratic, and discontinuous linear, quadratic
elements for the 2D acoustic problem are developed in
this study to achieve a higher accuracy.

For discontinuous elements, the interpolation nodes
are located inside the element and the expressions of
the shape functions depend on the position of the node
inside the element. In Fig. 2, ‘CBEmn’ denotes the
continuous boundary element with ‘m’ geometry nodes
and ‘n’ interpolation nodes, and ‘DBEmn’ denotes the
discontinuous boundary element with ‘m’ geometry
nodes and ‘n’ interpolation nodes. For discontinuous
boundary element, the value of a (0 < a < 1) men-
tioned before decides about the position of the inter-
polation nodes. For the finite element, ‘FE44’ denotes

¥—O0—X L & — 8 8
0 -1 1 -1 0 |
DBE21 CBE22 CBE33
—-1<a<l —1<a<l —-1<a<1
60— 0—X ¥—O0—%—06—X ¥—o—8—60—X
-a a -a 0 a -a 0 a
DBE22 DBE32 DBE33

x  geometrical node

O interpolation node

8 node finite element
(FE88)

4 node finite element
(FE44)

Fig. 2. Distribution of geometric nodes and interpolation
nodes in the element.
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the four-node isoparametric linear finite element, and
‘FE88’ denotes the eight-node isoparametric quadratic
finite element.

3.2. Scattering from an infinite rigid cylindrical shell

In this example, we consider the acoustic scatter-
ing of a plane incident wave with a unit amplitude on
arigid cylindrical shell with radius 7o = 1.0 m centered
at point (0,0), as shown in Fig. 3.

.. , 4 2ro \
incident wave , \
- 5 ' \
\
! 0
—_—> I | >
\ 1
> \ /
\ /
\ /
\ /
N\ 7

Fig. 3. Scattering from an innite cylindrical shell with ra-
dius 7.

The analytical solution of the acoustic pressure at
point (r,0) is given as

k’ro)
Z ent” (1
n=0 H

(kro) HW (kr) cos(nb), (37)

where € denotes the Neumann symbols, g9 = 1, &, = 2,
n > 0; J, denotes the n-th order Bessel function of the
first kind; ()’ denotes the differentiation with respect
to krg.

360 sample internal points between 6 = 0 and
0 = 27, evenly distributed on a circle of r = 2.0, are
chosen. All the following relative errors are calculated
based on the error function in (MARBURG, SCHNEI-
DER, 2003).

In Fig. 4, “Rigid-analy” denotes the analytical solu-
tion of rigid analysis, “CBEM” denotes the numerical
solution obtained by using the conventional BEM, and
“FMBEM” denotes the numerical solution obtained by
using the wideband fast multipole BEM. From this fig-
ure, it can be seen that the numerical solutions ob-
tained by CBEM and FMBEM are in agreement with
the analytical solution at the points on circle r = 2rg
with k£ = 1.

The performance of different element types pre-
sented in the last subsection is evaluated by comparing
the results using a similar number of geometric nodes.
Figure 5 shows the performance of different element
types with different mesh discretisation. It can be seen
that the continuous element CBE22 performs most in-
efficiently, and the discontinuous element DBE33 per-
forms most efficiently. And for the element with the

Rigid-analy
® CBEM
* FMBEM

0.8

0.4+

0.0

04+

0.0

0.4

0.8+

1.2+

— Rigid-analy
® C(CBEM
* FMBEM

-1.5F 270

1.5t
180

Fig. 4. Sound pressure at points on circle r = 2.0 with k = 1
of the rigid analysis: a) real part, b) imaginary part.

Relative error
S

7L | —=— DBE2I
—e— CBE22
10°F | —— DBE22
—w— DBE32
—<— CBE33
—»— DBE33

1000

Nodal number

Fig. 5. Relative error in terms of nodal number for different
types of elements at 5000 Hz.

same shape approximation as CBE33 and DBE33, the
relative error varies similarly with the change of the
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nodal number. In addition, the discontinuous elements
perform better than the continuous elements, such as
DBE22 and CBE22, DBE33 and CBE33.

Figure 6 shows the relative error in terms of the
position of node for the linear element DBE22 at sev-
eral frequencies. It can be seen that the optimal value
for the nodal position has a small shift along with fre-
quency, but the optimal value is always around 0.58,
which is close to the zeros of the Legendre polynomial
0.5773.

g .
5 107
o
2
=
o)
o
10°F
—=&— 1000 Hz
—e— 2000 Hz
—4— 3000 Hz
—wv— 4000 Hz
%9 0.2 0.4 0.6 0.8 1.0

Nodal position

Fig. 6. Relative error in terms of the nodal position
for DBE22 element.

Figure 7 shows the relative error in terms of the
position of node for the quadratic element DBE33 at
several frequencies. It can be seen that the optimal
value for the nodal position has nearly no shift along
with frequency and the optimal value is around 0.77,
which is also close to the zeros of the Legendre poly-
nomial 0.7746. In sum, it is the optimal value of the
nodal position for DBE22 and DBE33 approach to the
zeros of the Legendre polynomial. Besides, it can also
be seen that a higher relative error happens for a higher
frequency case.

Relative error

—=&— 1000 Hz
10 | —®—2000 Hz
—4&— 3000 Hz
—¥—4000 Hz

0.0 0.2 0.4 0.6 0.8 1.0

Nodal position

Fig. 7. Relative error in terms of the nodal position
for DBE33 element.

As the problem size increases, it is necessary
to develop preconditioning to the solution using an
iterative solver (GMRES) for lower iteration numbers.
In this work, the block diagonal preconditioner (Wu
et al., 2011) based on the FMM tree structure is ap-
plied. Figure 8 shows the iteration number for original
and preconditioned cases in terms of frequency. It can
be seen that the preconditioned iteration number is
lower than the original case, and the preconditioning
time in each iteration is negligible as compared with
the time of the matrix-vector product. Through
numerical tests, the iterative solution of the system
of linear equation based on the GMRES method is
determined to be the most time-consuming part of
simulating models of practical problems by using the
proposed algorithm. For complex practical problems,
because the needed iteration time too high, the
computational efficiency of the proposed algorithm
will decrease fast. So, it is very important to improve
the computational efficiency for practical problems by
developing a suitable precondition method.

80

—&— Original

70 —— Preconditioned

v o
S S
T T
L 1

Iteration Number

N
S
T

L

30 q

20

L . . . . . L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency [Hz]

Fig. 8. Number of iteration relative to frequency.

Here, we consider the acoustic scattering of the
same incident wave in Fig. 3 but with 4 rigid cylin-
drical shells of r = 0.2 m, as shown in Fig. 9.

y
incident wave 0.5m
[
[
i lx
0.5m

Fig. 9. Geometry of four infinite cylindrical shells
with the frame and indicate wave.
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360 sample internal points between 6 = 0 and
0 = 360, evenly distributed on a circle of r = 2.0, are
chosen. Figure 10 shows the sound pressure at sample
points with the wave number k£ = 4.0. From this figure,
it can be seen that the numerical solutions obtained by
FMBEM and CBEM are in good agreement.

CBEM
e FMBEM

-1.5F 270

180

Fig. 10. Sound pressure at points on circle r = 2 with k =4
of the rigid analysis: a) real part, b) imaginary part.

Figure 11 shows the sound pressure contour for
scattering field for 4 cylindrical shells problems with
the wave number k = 4.0.

Figure 12 shows the sound pressure contour for
scattering of field for 400 rigid cylindrical shells prob-
lems with the wave number k£ = 4.0. FMBEM is ap-
plied to compute the acoustic scattering by multiple
cylindrical shells with a plane incident wave with unit
amplitude travelling along the positive x axis as shown
in Fig. 12. The scattering model contains 400 random
located cylinders in a square (1 x 1). Each cylinder is
discretised with 1000 elements, and the number of all

Fig. 11. Sound pressure contour plot for scattering
of 4 rigid cylinders.

Fig. 12. Sound pressure contour plot for scattering
of 400 rigid cylinders.

elements is 400000. In addition, the near field outside
the square is meshed with 3312 triangular elements.

3.8. Scattering from an infinite elastic
cylindrical shell

To illustrate the method presented before, the
acoustic scattering of a plane incident wave with a unit
amplitude on an elastic cylindrical shell in water is
modelled, as shown in Fig. 3. The material data and
the geometrical data are listed in Table 1.

Table 1. Material and geometrical data for a elastic
cylindrical shell.

Density (water) ps | 1000 | [kg/m?]
Speed of sound (water) c | 1524 [m/s]
Density (steel) ps | 7800 | [kg/m?]
Young’s modulus (steel) | E | 200 [GPa]
Poisson’s ratio (steel) v | 0.26 -
Radius of cylinder ) 1 [m]
Thickness of wall t | 0.05 [m]
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An analytical series solution exists for this problem,
and the sound pressure at point (r,6) is given as

S Hi k)
p(r.0) = —anz PRGN
n=0 Hy (kTo)

2pc
(Zo+ 2 )wler HY (ko)

. [J{l(k:ro)— ] cos(nf), (38)

where the structure modal impedances Z,, and radia-
tion impedances z,, are given by

L 02 _ (97(11))2} [92 _ (97(12))2}

_ _z'pscp h
In = o r 22 —n2 > (39)

ipcH,, (k
_pc ( TO) (40)

T T (ko)

where ¢, = [E/(1 — v?)ps]'/?, 2 = wro/c,, and the
eigen frequencies are

1
(W2 = 5[14—712 + 32n?

U+ n2 4 FPah)2 = 4570, (41)

1
(2P = 3 [1 +n? 4 B0t

/(07 + FPnt)? — 45705, (42)

where 32 = h?/(12r?).

In Fig. 13, “Ela-analy” denotes the analytical so-
lution of the elastic analysis, and “FEM/BEM” de-
notes the numerical solution obtained by using cou-
pling FEM and BEM. From this figure, it can be seen
that the numerical solution obtained by the coupling
FEM/BEM is in good agreement with the analytical
solution at the points on circle r = 2r¢ with £ = 1.
And by comparing with Fig. 4, the acoustic pressures
of the elastic analysis at the points on circle r = 2r¢
differ from those of the rigid analysis.

Figure 14 shows a frequency comparison between
the acoustic pressure values based on the rigid scatter-
ing and the elastic scattering, and the difference be-
tween the rigid and elastic solutions increases along
with frequency. It means that the fluid has a big im-
pact on the vibrating and scattering acoustic field of
the underwater thin shell structure. From the two fig-
ures, it can also be seen that the numerical results
obtained by the coupling FEM/BEM agree very well
with the analytical solutions.

Figure 15 shows the relative error for FE44/DBE22
and FE88/DBE33 schemes at 500 Hz. From the figure
it can be seen that FE88/DBE33 performs better than
FE44/DBE22. It means that the higher shape function
with the same linear shape approximation have nearly
no improvement in accuracy, but using the quadratic

a)
0
0.8 Ela-analy
® FEM/BEM
0.4 ¥ FEM/FMBEM
0.0+
-0.4
-0.8
1.2+
270 90
1.2+
-0.8
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0.4
0.8
180
b)
0
04r Ela-analy
® FEM/BEM
00l * FEM/FMBEM
-0.4
-0.8
1.2+
270 90
1.2+
-0.8 -
-0.4 +
0.0
04L

180

Fig. 13. Sound pressure at points on circle r = 2ry with
k = 1 of the elastic analysis: a) real part, b) imaginary
part.

shape approximation has an advantage over the linear
one in accuracy. Thus, it is recommended to choose the
quadratic shape function to obtain a higher accuracy.

Here, we also consider the elastic case of multi-
ple domains, as shown in Fig. 9. Figure 16 shows the
sound pressure at sample points with the wave number
k = 4.0. From this figure it also can be seen that the
numerical solutions obtained by FMBEM and CBEM
are in good agreement with the elastic analysis, and
the elastic solution differs from the rigid solution in
Fig. 10. And Fig. 17 shows the sound pressure con-
tour for scattering field of 4 cylindrical shells problem
with the wave number k = 4.0, which is also quite dif-
ferent from Fig. 11 for the rigid analysis. When the
fluid-structure interaction is taken into account, the
scattering acoustic field consists of two parts. One is
the pure scattering acoustic field from the rigid struc-
ture, another is the radiation acoustic field from the vi-
brating structure which is forced by the incident wave.
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Fig. 14. Sound pressures at point (2ro,0) with different
frequencies.
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Fig. 15. Relative error in terms of the nodal number for
different types of elements at 500 Hz.

When the structure is thin, the radiation acoustic field
cannot be neglected. So, the scattering field in Fig. 17
is different from Fig. 11.

FEM/BEM
e FEM/FMBEM

FEM/BEM
® FEM/FMBEM

180

Fig. 16. Sound pressures at points on circle r = 2
with & = 4 of the elastic analysis.

N¥q
(o) i |

Fig. 17. Scattering from 4 infinite cylindrical shells
with radius ro.

4. Conclusion

A coupling algorithm based on FEM and FMBEM
is presented for the simulation of fluid-structure inter-
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action. In order to improve the accuracy, the singular
integrals in boundary integral equations are evaluated
by the Cauchy principal value and the Hadamard fi-
nite part integral method. Non-singular expressions of
boundary integral equations for different boundary el-
ement types are also presented in this work. The FMM
is used to accelerate the calculation of the matrix-
vector products in the boundary element analysis. The
proposed algorithm makes it possible to predict the ef-
fects of arbitrarily shaped vibrating structures on the
sound field numerically. An example with the analyti-
cal solution is presented to demonstrate the correctness
and validity of the proposed algorithm, and different
coupled element schemes are compared. It can be seen
that the discontinuous elements perform better than
the continuous ones, and the optimal nodal value for
discontinuous boundary elements is close to the zeros
of the Legendre polynomial in the rigid analysis. On
the other hand, the fluid has a big impact on the vi-
brating and scattering acoustic field of the underwater
thin shell structure, and the coupled element with the
quadratic shape approximation can improve the com-
putational accuracy efficiently.

Future work includes applying the proposed algo-
rithm to 3D practical engineering problems.
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