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The recently demonstrated ‘modal crossover network’ method for flat panel loudspeaker tuning employs
an array of force drivers to selectively excite one or more panel bending modes from a spectrum of panel
bending modes. A regularly spaced grid of drivers is a logical configuration for a two-dimensional driver
array, and although this can be effective for exciting multiple panel modes it will not necessarily exhibit
strong coupling to all of the modes within a given band of frequencies. In this paper a method is described
to find optimal force driver array layouts to enable control of all the panel bending modes within a given
frequency band. The optimization is carried out both for dynamic force actuators, treated as point
forces, and for piezoelectric patch actuators. The optimized array layouts achieve similar maximum mode
coupling efficiencies in comparison with regularly spaced driver arrays; however, in the optimized arrays
all of the modes within a specified frequency band may be independently addressed, which is important
for achieving a desired loudspeaker frequency response. Experiments on flat panel loudspeakers with
optimized force actuator array layouts show that each of the panel modes within a selected frequency
band may be addressed independently and that the inter-modal crosstalk is typically −30 dB or less with
non-ideal drivers.
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1. Introduction

Flat-panel loudspeakers that generate sound via
the excitation of bending mode vibrations of a plate
can be thin and lightweight in comparison with tradi-
tional loudspeaker designs, which gives them an advan-
tage in applications where form factor and weight are
critical design constraints. They can also be electrically
efficient by using compact, low power force actuators
to excite the sound-radiating panel bending vibrations.
Designs that employ one (or a small number) of actu-
ators positioned on a panel to couple to the greatest
number of panel bending modes have become known
as Distributed-Mode Loudspeakers (DMLs) (Bank,
Harris, 1998). It has proven difficult to achieve a flat
frequency response at low frequencies with DMLs due
to the presence of isolated low frequency panel bending
modes. There are also large differences in the half-space
radiation patterns of the various panel bending modes
so achieving a flat low frequency acoustic response with
spatial uniformity is especially difficult (Anderson,
Bocko, 2015). The Modal Crossover Network (MXN)
method was proposed as a way to overcome these prob-

lems (Anderson, Bocko, 2016a). In this approach
an array of force drivers can be employed to excite
a selected panel mode, and importantly, to not ex-
cite other panel modes. Typically, the lowest bending
mode of a panel is employed. For a rectangular panel
with simply supported edges this corresponds to the
mode with maximum displacement at the panel center
and decreasing to zero at the panel edges, the so-called
(1, 1)mode. In this case the panel behaves effectively as
a large pistonic loudspeaker within a given frequency
band.
Depending upon the dimensions and thickness

of a panel there may be thousands of panel bend-
ing modes within the audio frequency band (20 Hz –
20 kHz). It can be shown that the number of panel
modes that are controllable by a given force driver ar-
ray is only equal to the number of drivers in the array;
i.e., the number of modes that can be controlled inde-
pendently is equal to the number of degrees of freedom
of the array (Anderson, Bocko, 2016a). This has the
consequence that there will inevitably be higher-order
panel modes that will be excited inadvertently – a form
of aliasing (Fuller et al., 1996). The MXN method
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is designed to control all of the panel modes that
lie within a specified frequency band (typically low-
pass) with any aliased modes falling above the selected
frequency band. It is not necessary to resort to the
use of driver arrays and the MXN method to achieve
flat frequency response when the low frequency panel
bending modes are highly damped (Q < 1). How-
ever, when a panel exhibits isolated, lightly damped
modes (Q > 1), the MXN method enables a flatter
frequency response to be achieved throughout a low-
pass frequency band; the extent of the band being
determined by the distribution of panel modes and
the number of force actuators in the array. At higher
frequencies, where the number of overlapping panel
modes activated at any specific frequency increases
(Rabbiolo et al., 2004), the vibrational response of
a panel is roughly localized to the vicinity of a driver,
so each effectively serves as a high-frequency tweeter
(Anderson, Bocko, 2016b).
There has been previous research on the optimal

driver placement for multi-modal control of complex
structures, usually with the goal of actively damp-
ing structural vibrations caused by external forces
(Porter, Crossley, 1972; Demetriou, 2000). Our
work is focused on the case in which a structure is in-
tentionally driven by a broad-band audio signal and
the goal is to achieve even response of the structure
over the defined frequency band. Since the actuating
signal is completely known ahead of time, sensing and
feedback is not needed, which simplifies the implemen-
tation considerably. Sampling theory can be employed
to infer the driver array design required to address each
of a given set of panel modes, however, determining the
optimized driver locations for such an array is not in-
tuitive so an optimization technique based on energy
coupling between actuators and modes has been devel-
oped to determine optimal array layouts.
In the second section we present background ma-

terial on panel modes, modal coupling factors, and
mode coupling efficiency. In the third section we de-
scribe the algorithm used to determine the optimal lo-
cations of point force actuators for a given set of panel
modes and several examples of arrays generated using
the optimization technique are given. The fourth sec-
tion presents results using the same optimization tech-
nique for piezoelectric bending mode actuators and in
the final section experimental results from a prototype
loudspeaker built using an optimized array of dynamic
force actuators are reported.

2. Flat panel loudspeakers

Flat Panel Loudspeakers radiate acoustic energy by
exciting the bending-mode vibrations of a plate with
externally applied forces, usually either from voice-
coil actuators or piezoelectric bending elements. The
classical plate equation, given in Eq. (1) for a plate

with dimensions Lx by Ly, relates the applied pres-
sure distribution on the plate, p(x, y, t), to the spatially
distributed out-of-plane displacement of the panel,
u(x, y, t), where (x, y) represents any point on the
panel and t is time. The notation ü(x, y, t) represents
the second temporal derivative of u(x, y, t).

D∇4u(x, y, t) + ρhü(x, y, t) = p(x, y, t). (1)

In the above equation, D is the bending stiffness of the
panel, ρ is the density of the panel material, and h is
the panel thickness.
Solutions of Eq. (1) are simplified when the panel

displacement is represented as a sum of individual res-
onant modes (Fuller et al., 1996). The left side of
Eq. (1) can be broken into an infinite sum of resonant
modes with index r, each with time-dependent ampli-
tude ur(t), while the force on the right side can be
decomposed into a Fourier series for each mode shape
such that

∞∑

r=1

[
DΨ2

r ur(t) + ρhür(t) =
4fr(t)

LxLy

]
, (2)

where

Ψr =

(
mrπ

Lx

)2

+

(
nrπ

Ly

)2

(3)

and

p(x, y, t) =

∞∑

r=1

4fr(t)

LxLy
Hr(x, y) (4)

with (mr, nr) representing the indices of the r-th mode
in the x and y directions respectively and Hr(x, y) rep-
resenting the shape of the r-th mode, which will be
explained in more detail below.
The factors fr(t) represent the contribution of the

externally applied force on the r-th panel mode. For
N individual drivers at locations (xi, yi) this force is
given as

fr(t) =

N∑

i=1

αr(xi, yi)di(t), (5)

where di(t) is the force of the i-th actuator. The ef-
fective force of a given actuator on any selected mode
is given by the ‘coupling factor’, αr(x, y). If the force
is applied at a node of a given mode it will not excite
that mode regardless of the magnitude of the applied
force. Conversely, a force applied at an anti-node of
a given mode will drive the mode with maximum effi-
ciency. For a simply supported plate the mode shapes
are simple sinusoidal functions so the coupling factor
of a driver located at (xi, yi) to mode r is given as

αr(xi, yi) = Hr(xi, yi)

= sin

(
mrπ

Lx
xi

)
sin

(
nrπ

Ly
yi

)
. (6)
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Note that, in the case of forces localized as delta func-
tions, the α factors are equal to the spatial shape fun-
ction Hr(x, y) at the force location. In the case of more
spatially complex drivers, such as the piezoelectric ac-
tuators studied in Sec. 4, this will not be the case.
If multiple forces are acting on the plate, the net

force on each mode is defined as a sum of each driver
force, weighted by their respective coupling factors.
This can be represented as a matrix that relates modal
forces to driver forces, as shown in Eqs. (7)–(9). F is
an array of R modal forces, D is an array of N driver
forces, and G is the matrix of coupling factors relat-
ing the two. For simplicity, the terms here have not
been written as a function of time like they had been
in Eq. (5).

F =




f1
f2
...
fR


, D =




d1
d2
...
dN


, (7)

G =




α1(x1, y1) α1(x2, y2) · · · α1(xN , yN )

α2(x1, y1) α2(x2, y2) · · · α2(xN , yN )

...
...

...
...

αR(x1, y1) αR(x2, y2) · · · αR(xN , yN )



, (8)

F = GD. (9)

In a modal crossover network, the modal forces are
selected to produce the desired loudspeaker character-
istics. The details of the tuning methods are not within
the scope of this paper but a more in-depth discussion
of modal biasing can be found in the references. The
individual driver forces are then determined by means
of Eq. (10).

D =G−1F. (10)

Equation (10) requires that the coupling matrix G be
square and have linearly independent rows to be in-
vertible. Furthermore, we also assume that only the
first N modes will be the focus of attention so the G
matrix will be N ×N and the F matrix will be N × 1.
This also implies that by employing N actuators it is
possible to control N modes, or R = N . Equation (8)
then becomes,

G =




α1(x1, y1) α1(x2, y2) · · · α1(xN , yN)

α2(x1, y1) α2(x2, y2) · · · α2(xN , yN)

...
...

...
...

αN (x1, y1) αN (x2, y2) · · · αN (xN , yN)



(11)

and F in Eq. (7) becomes,

F =




f1
f2
...
fN


. (12)

Aside from the requirement of row independence, the
driver locations can be arbitrary. For a given set of
modes, there are many array locations that will result
in linearly independent rows for the G matrix. The
specific modes that have strong coupling to an arbi-
trary array layout will not necessarily fall within the
MXN bandwidth, which reduces the effectiveness of
the array.

2.1. Frequency-based control regions

The maximum excursion of each plate mode re-
sults when the plate is driven at the resonant frequency
of that mode. As stated earlier, an MXN uses a set of
drivers to independently address all of the modes ly-
ing below a given cutoff frequency. The resonant fre-
quency of each mode is determined by the physical
parameters of the plate. The simplest case for deter-
mining resonant frequencies happens for simply sup-
ported boundary conditions, and are given by

ω0r =

√
D

ρh
Ψr, (13)

where Ψr is determined by the order m, n of the r-th
mode as defined in Eq. (3). A more realistic formula
for panel resonances when constructed of more prac-
tical means is given by (Mitchell, Hazell, 1987)
and reflects fully clamped boundary conditions. This
formula is a modified version of Eq. (13) and gives res-
onances as

ω0r =

√
D

ρh
Ψ ′
r, (14)

where

Ψ ′
r =

(
(mr +∆mr)π

Lx

)2

+

(
(nr +∆nr)π

Ly

)2

(15)

and

∆mr =
1

( nrLx

mrLy
)2 + 2

, ∆nr =
1

(
mrLy

nrLx
)2 + 2

. (16)

Equation (14) represents an ellipse in (m,n) space. An
example of frequency contours is shown in Fig. 1 for
a 1 mm thick aluminum plate measuring 113 mm by
189 mm in the x and y directions respectively. An X
has been placed at the (m,n) locations for the eight
modes with the lowest resonant frequencies.
A regularly spaced, rectangular array of actuators

such as that used in (Anderson, Bocko, 2016a) ad-
dresses a set of modes defined by a rectangle in a graph
of the type given in Fig. 1. In the case of eight drivers,
or a 2× 4 array, the modes (1, 1) through (2, 4) would
be addressed. The scheme chosen in Fig. 1 does not
address mode (2, 4) at 2300 Hz but instead addresses
the (1, 5) mode because it has a slightly lower resonant
frequency (2265 Hz).
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Fig. 1. Frequency contours for an aluminum plate with Xs
marking the indices of the eight lowest frequency modes.

2.2. Driver coupling efficiency

To determine how drivers should be placed on
a panel, the term ‘coupling efficiency’ (CE) has been
developed to represent the ratio of aggregate driver
force to a modal force. For example, the individual
driver forces necessary to induce a 1 N force on the
first mode may be determined from Eq. (10). If the
drivers do not couple well to this mode, the required
driver forces will be very high, and the CE will be very
small. In essence, the only way to achieve a CE value
of 1 for a particular mode is to place drivers at only
anti-nodes of that mode. In an MXN, however, the ac-
tuators are required to simultaneously drive multiple
modes, each with its own set of nodes and anti-nodes.
This suggests that placing drivers on the anti-nodes of
a particular mode, though inducing a perfect coupling
efficiency for that mode, may not be an ideal layout for
an MXN, as this particular layout may result in weak
coupling to other modes in the MXN bandwidth.
The matrix G−1 in Eq. (10) gives the individ-

ual driver force amplitudes necessary to generate each
modal force, with terms βrl, where r refers to the mode
index and l refers to the driver index. The β terms rep-
resent the ratio of Fin

Fout
for a given mode at the location

of each driver; a large β value indicates an inefficient
force actuator position for driving a given mode.

G−1 =




β11 β21 · · · βN1

β12 β22 · · · βN2

...
...
. . .

...

β1N β2N · · · βNN



. (17)

The aggregate force ratio Fin−total

Fout−total
of the r-th mode

relative to the driver array, Ωr, is given by the sum of

the β terms in the r-th column of Eq. (17). The CE
will be defined as the inverse of this term, as given in
Eqs. (18) and (19), and has a range between 0 and 1.

[
Ω1 Ω2 · · · ΩN

]
=
[
1 1 · · · 1

]
G−1, (18)

CEr =
1

Ωr
. (19)

3. Point force driver locations

For a given MXN cutoff frequency, the layout of the
actuator array should meet the following criteria. First,
the drivers should have a low β value for all modes
that lie below the MXN cutoff frequency. Second, each
actuator should experience roughly the same β value
with respect to each of the addressable modes. These
criteria are used to ensure that the array is able to
couple as evenly as possible to every mode shape in
the controlled frequency region and that every driver
does roughly the same amount of work in actuating
each mode. For a specific mode, some drivers in the
array will naturally see a lower driving point β value,
but averaged over the full range of addressable modes
the total β value seen by each driver should be about
the same. To achieve this, the term given in Eq. (20)
should be minimized, where βrl refers to the elements
of the matrix G−1. This optimization is carried out
by varying the locations (xd, yd) of the N drivers to
minimize ρ.

ρ =

N∑

r=1

N∑

l=1

β2
rl. (20)

Since the optimization routine does not directly opti-
mize the CE terms, coupling efficiency for the array
may not be at its maximum value for a given modal
set using this technique. However, for practical rea-
sons, making sure that individual driver elements de-
liver the same amount of energy over the entire spatial
bandwidth is given priority.

3.1. Point-force optimization results

Results in this section were obtained under the as-
sumption that the drivers are massless point-force ac-
tuators, resulting in a G matrix with α terms from
Eq. (6). The optimization routine was written in
MATLAB, using the optimization toolbox. Results are
shown in Fig. 2, including those for a regularly spaced,
rectangular array layout. Table 1 gives the coupling ef-
ficiency metric for each mode addressed by the array,
and shows that in each case the array couples to the
selected modes with roughly the same efficiency. A key
point to be inferred from this result is that the regu-
larly spaced rectangular array is not optimally coupled
to the N lowest frequency modes, and other, less reg-
ular, array layouts are optimal for various selections of
the addressable modes.
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Fig. 2. Rectangular driver array shown with optimized layouts for 5 selected modal sets. The top frame shows driver
locations (normalized) and the bottom frame shows which modes are addressed by the array.

Table 1. Coupling Efficiencies given by Eq. (19) for the addressed modes of each layout given in Fig. 2.
Blank spaces represent modes that are not addressable by the array.

Mode Indices
Coupling Efficiency

Regular Layout Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

(1,1) 0.7131 0.7584 0.7159 0.6829 0.6742 0.6906

(2,1) 0.8607 0.8764 0.7994 0.7339 0.7148 0.7054

(3,1) 0.7131 0.7859 0.7516 0.9999 0.7669

(4,1) 0.7264 0.6856

(5,1) 0.7077

(1,2) 0.7260 0.7721 0.6812 0.7339 0.8754 0.6979

(2,2) 0.8763 0.8750 0.7805 0.8462 0.7202

(3,2) 0.7260 0.8096

(1,3) 0.7516 0.6842
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4. Piezoelectric actuator arrays

The optimal placement of piezoelectric actuators
and sensors for controlling rigid structures has been
studied extensively. The majority of the optimization
methods were developed for the purpose of active
noise control. Examples of these active control opti-
mization routines, namely linear quadratic Gaussian
(LQG) and linear quadratic regulator (LQR) control
can be found in work by Fahroo and Wang (1997)
and Devasia et al. (1993) for beams, and Hwang
et al. (1997) for all-clamped plates. Early studies by
Clark et al. (1993) showed that actuators centered
on nodal lines of simply-supported plate modes are
very poor exciters of these modes, and conversely, ac-
tuators located in the antinodal regions are very good
exciters of the modes. This work provided experimen-
tal validation for the static model of a piezo-driven
plate developed by Dimitriadis et al. (1991). Wang
et al. (1994) and Li et al. (2001) investigated the op-
timal placement of rectangular piezoelectric actuators
to control acoustic radiation from rectangular plates.
The present method is related to work by Jia (1990) on
Independent Modal Space Control (IMSC) of beams,
which determined optimal actuator sizes and locations
to give vibrational control over a given set of beam
modes.

4.1. Background on piezo-driven plates

The analysis of Sec. 3 may be modified to treat the
case of plate modal control via piezoelectric bending
actuators. In addition to determining how the location
of an actuator will couple to a given mode, the analysis
also indicates how the size of the actuator relative to
the spatial wavelength of a mode affects the coupling
efficiency. Piezoelectric bending mode actuators polar-
ized in the x, y plane expand or contract an amount
proportional to their d31 and d32 expansion coefficients
when a voltage is applied across the z dimension of the
actuator. Assuming a perfect bond between the panel
surface and the actuator, the expansion/contraction of
the actuator off the neutral axis of the panel induces
a series of bending moments at the actuator bound-
aries which cause the panel to bend. The frequency
response of this displacement w(x, y, ω) for a plate ex-
cited by a single, rectangular actuator was found by
Dimitriadis et al. (1991) and is given by

w(x, y, ω) =

∞∑

r=1

4DKfεΓr
ρLxLyh(ω2 − ω2

0r
)

· [(cos kmr
x1 − cos kmr

x2)

· (cos knr
x1 − cos knr

x2)]Hr(x, y). (21)

Here, ε is the unconstrained piezolectric strain of the
actuator, Kf is the actuator-plate material-geometric

strain constant, kmr
and knr

are wavenumbers of the
r-th mode given by

kmr
=
mrπ

Lx
, (22)

knr
=
nrπ

Ly
, (23)

and ω0r is defined for each mode as in Eq. (13). Γr is
a modal stiffness constant defined as

Γr =
k2mr

+ k2nr

kmr
knr

. (24)

This term reflects the increasing stiffness of the plate
when mr 6= nr. Lx, Ly, x1, x2, y1, and y2 are the
plate and actuator dimensions shown in Fig. 3. This
model assumes that the actuator dimensions (ℓx, ℓy)
are much greater than the plate thickness (h) and that
the actuator thickness is much smaller than the plate
thickness. For simplicity, the actuator is assumed to
induce identical strains in the x and y directions within
the plane of the plate.

Fig. 3. Dimensions of a single piezo/plate system
with induced bending moments.

The bending moments shown in Eq. (21) can be
simplified and represented as an equivalent point force
acting at location (a, b), the center of the piezoelectric
actuator as shown in Fig. 4, where

ℓx = |x2 − x1|, (25)

ℓy = |y2 − y1|. (26)

Fig. 4. Equivalent point force of bending moment
system.
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The magnitude of the point force can be written as

F =

∞∑

r=1

Fr =

∞∑

r=1

4DKfεΓrαr

(
ℓx
2
,
ℓy
2

)
(27)

which implies that w(x, y, ω) for the piezoelectric patch
shown in Fig. 4 can be written as

w(x, y, ω) =

∞∑

r=1

4Frαr(a, b)Hr(x, y)

ρLxLyh(ω2 − ω2
0r
)
. (28)

This will serve as the framework for determining opti-
mal piezoelectric array layouts.

4.2. Piezoelectric driver locations

Clark et al. (1991) demonstrated that the re-
sponse of a structure excited by multiple piezoelectric
actuators can be modeled as a linear combination of
single actuator responses. This means that the method
for point force driver optimization presented in Sec. 3
can be extended for piezoelectric actuators without sig-
nificant modification.
It is important to note that the magnitude of the

force induced by a piezoelectric actuator on a given
mode will depend upon the relative dimensions of
the actuator and the wavelength of the mode. Small
actuators for example, are less effective at driving
low-frequency modes with spatial wavelengths much
greater than the actuator dimensions. Conversely,
when the curvature of the actuator matches the curva-
ture of the mode, the mode can be effectively excited
with a relatively small input voltage. The matrix G
presented in Eq. (8) must be modified to account for
the modally varying point force in Eq. (27). The result
is the matrix K, where

K =




γ1(x1, y1) γ1(x2, y2) · · · γ1(xN , yN )

γ2(x1, y1) γ2(x2, y2) · · · γ2(xN , yN )

...
...

. . .
...

γN (x1, y1) γN (x2, y2) · · · γN (xN , yN )




(29)

with the elements γr(xi, yi) given by

γr(xi, yi) = Γrαr

(
ℓxi

2
,
ℓyi
2

)
αr(xi, yi). (30)

For simplicity, the factors D, Kf and ε from Eq. (27)
have been factored out of Eq. (30), as these are not
functions of either the mode being driven or the actu-
ator location and will not affect the optimized driver
position as long as we assume that all actuators are

made of the same piezoelectric material. If the ar-
ray employs a combination of piezoelectric materials
the appropriate material factors must be added to
the rows of K in Eq. (30). The actuator locations
can then be inferred using the method described in
Sec. 3.

4.3. Simulated examples

The following section presents several examples of
piezoelectric patch array configurations for exciting
different sets of modes. To simplify the analysis, the
actuators are assumed to be square, and the dimen-
sions of each patch are presented as normalized frac-
tions of the panel dimensions. For the sake of brevity,
this analysis is only concerned with actuators that are
all the same size. It should be noted however, that the
voltage efficiency of the driving array can be signifi-
cantly improved for specific modes or combinations of
modes by tailoring the actuator sizes to couple effec-
tively to the specified modes within the given set. The
array layouts for two different sized actuators are pre-
sented in Figs. 5 and 6, which address the same sets of
modes considered in Fig. 2.
The layout determined for an array of identically

sized piezoelectric actuators is similar to that found
for an array of point force actuators; however, the cen-
ter positions of the piezoelectric actuators are shifted
slightly from the corresponding positions of point force
actuators toward the center of the panel. This shift is
due to inclusion of the (1, 1) mode which is more effec-
tively driven by a given piezoelectric actuator when it
is closer to the center of the panel where the bending
curvature of the (1, 1) mode is greatest. The solutions
to the optimization problem also assume that no two
actuators can overlap, although this constraint could
be relaxed.
One might expect the change in actuator location

to become more significant as the actuator dimensions
are decreased relative to the dimensions of the panel.
Although some further shifts in the optimal driver lo-
cations are observed, the magnitude of the shifts are
relatively small and the general layout of the driver
array remains consistent. Since the layouts are similar
for arrays with different actuator sizes, the coupling ef-
ficiencies of the arrays will remain similar as well. The
effect of changing the actuator size is reflected in the
voltage efficiency (VE) for a given array, where differ-
ent size actuators require different input voltages to
produce the same force on a given mode. VE is de-
fined as

VEr = CEr ∗ Γrαr
(
ℓxi

2
,
ℓyi
2

)
(31)

to account for the actuator size relative to the r-th
mode. The CE and V E values for each mode set are
shown in Tables 2 and 3.
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Fig. 5. The rectangular actuator array and the optimized layouts for five other selected modal sets are shown. Actuator
dimensions are assumed to be (1/10)-th of the panel dimensions. The upper frames show the driver locations (normalized)

and the lower frames indicate the modes that are addressed by the array.

Table 2. Coupling efficiency (CE) and voltage efficiency (VE ) given by Eqs. (19) and (31) for the addressed
modes of each layout given in Fig. 5. Blank spaces represent modes that are not addressable by the array.

Mode Indices
Regular Layout Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

CE VE CE VE CE VE CE VE CE VE CE VE

(1,1) 0.713 0.035 0.851 0.041 0.775 0.038 0.719 0.035 0.707 0.035 0.740 0.036

(2,1) 0.861 0.104 0.705 0.086 0.844 0.103 0.749 0.090 0.829 0.099 0.774 0.092

(3,1) 0.713 0.169 0.689 0.166 0.608 0.142 0.802 0.194 0.694 0.167

(4,1) 0.602 0.239 0.641 0.250

(5,1) 0.465 0.262

(1,2) 0.726 0.088 0.705 0.086 0.641 0.077 0.749 0.090 0.820 0.100 0.630 0.076

(2,2) 0.876 0.167 0.705 0.135 0.753 0.144 0.697 0.133 0.626 0.119

(3,2) 0.726 0.221 0.656 0.202

(1,3) 0.608 0.142 0.639 0.156
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Fig. 6. The rectangular actuator array and the optimized layouts for five other selected modal sets are shown. Actuator
dimensions are assumed to be (1/6)-th of the panel dimensions. The upper frames show the driver locations (normalized)

and the lower frames indicate the modes that are addressed by the array.

Table 3. Coupling efficiency (CE) and voltage efficiency (VE ) measurements given by Eqs. (19) and (31) for the addressed
modes of each layout given in Fig. 6. Blank spaces represent modes that are not addressable by the array.

Mode Indices
Regular Layout Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

CE VE CE VE CE VE CE VE CE VE CE VE

(1,1) 0.713 0.096 0.849 0.114 0.773 0.103 0.718 0.096 0.707 0.095 0.738 0.099

(2,1) 0.861 0.279 0.709 0.231 0.843 0.273 0.750 0.248 0.826 0.266 0.772 0.249

(3,1) 0.713 0.435 0.691 0.419 0.617 0.379 0.816 0.507 0.697 0.424

(4,1) 0.622 0.595 0.644 0.610

(5,1) 0.485 0.638

(1,2) 0.726 0.235 0.709 0.231 0.644 0.210 0.750 0.238 0.806 0.254 0.635 0.204

(2,2) 0.876 0.438 0.712 0.364 0.753 0.380 0.759 0.374 0.633 0.322

(3,2) 0.726 0.556 0.664 0.507

(1,3) 0.617 0.372 0.614 0.371
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5. Experiments

To evaluate the ability of an optimized array to
address the specified modes, a panel using an array
of eight dynamic force actuators was constructed, us-
ing point-force layout 5 from Subsec. 3.1. The plate is
a 1 mm thick aluminum panel with dimensions 113 mm
by 189 mm, matching the analysis from Subsec. 2.1. It
is epoxy bonded at its edges to an acrylic frame. A pic-
ture of the prototype is shown in Fig. 7.
In the experiments, we sought to validate that the

array was able to independently address the eight panel
modes with the lowest resonant frequencies that match
the analysis in Fig. 1. The key feature that we sought
to demonstrate is that it is possible to drive each ad-
dressable mode independently without exciting any of
the other addressable modes.
The drivers used were Dayton Audio DAEX9CT-4

0.5W moving-coil actuators, each powered by an inde-
pendent Texas Instruments TPA3110D2 class-D am-
plifier channel. It is worth noting that a large array
of drivers with non-negligible mass and their own res-
onant frequencies will have a noticeable effect on the
resonant properties of the panel. When the drivers were
placed on the plate, they showed an actuator reso-

Fig. 7. Prototype loudspeaker with 8 drivers and amplifier board. The driver positions
are indexed on the right-side diagram.

Table 4. Driver scaling amplitudes for actuating individual modes using the experimental setup of Fig. 7.

Mode Under Drive
Driver Scaling Amplitudes

Driver #1 #2 #3 #4 #5 #6 #7 #8

(1,1) 0.0827 0.2329 0.2495 0.1591 0.1591 0.2495 0.2329 0.0827

(1,2) 0.1613 0.2376 −0.0766 −0.2308 0.2308 0.0766 −0.2376 −0.1613

(1,3) 0.2351 −0.0191 −0.2101 0.1876 0.1876 −0.2101 −0.0191 0.2351

(1,4) 0.2533 −0.2577 0.1423 −0.0717 0.0717 −0.1423 0.2577 −0.2533

(1,5) 0.2253 −0.2454 0.1760 −0.0778 −0.0778 0.1760 −0.2454 0.2253

(2,1) 0.0925 0.1727 0.2633 0.1853 −0.1853 −0.2633 −0.1727 −0.0925

(2,2) 0.1637 0.1797 −0.0688 −0.2842 −0.2842 −0.0688 0.1797 0.1637

(2,3) 0.1770 0.0089 −0.2137 0.2195 −0.2195 0.2137 −0.0089 −0.1770

nance near 180 Hz, giving each plate mode a second
resonance near this frequency.
Each mode was driven independently of the other

modes by setting the respective mode force amplitude
to unity and the remaining mode forces to 0 in Eq. (10).
Driver force amplitudes are given by the D array,
which are simply proportional to the voltage across
each moving-coil driver. The driver scaling amplitudes
are given in Table 4. Voltage scaling was performed
using MAX MSP software. The vibrational character-
istics of the panel up to 4 kHz were determined using
a Polytec PSV-500 scanning laser vibrometer. The re-
sults are shown in Fig. 8.
In each frame of Fig. 8, the velocity clearly shows

a peak near the resonant frequency of the mode be-
ing addressed. There also are spectral features in each
figure below 200 Hz, which arise from the resonant
behavior of the driver elements themselves. In the
frequency scan when the (1, 4) mode is addressed,
spillover to the (2, 5) mode appears, and in the scan
for the (2, 3) mode, spillover to the (1, 6) mode ap-
pears. Interestingly, the (1, 5) mode scan has spillover
to the (2, 4) mode, which has only a slightly higher
resonant frequency, distorting the appearance of the
(1, 5) mode.
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Fig. 8. (8 frames) Scans of each mode, driven independently by the array. In each scan it can be seen that in the frequency
range of interest, no vibrational modes are apparent other than the driven mode. Vibrometer scan images of the mode
shape at its resonant frequency are given for each case, as well as easily identifiable ‘spillover’ (out of band) modes.

6. Conclusion

A method was described for finding the optimal
force actuator locations for controlling a selected set
of bending modes of a flat panel. In the applications
of specific interest in this paper (flat panel loudspeak-
ers) it is important to be able to exert independent
control over each of the modes in a low-pass frequency
band. The geometry of the modes in such a set may
vary greatly, which implies that the layout of the actu-

ator array that would be most effective at driving each
mode is unique, since a mode is driven most effectively
by actuators near a mode’s antinodes. An optimization
method was employed to determine the actuator loca-
tions that are able to drive every mode in a selected set
as equally as possible and to spread the work evenly
among the force actuators in the array. Simulations
show that either point-force actuators or piezoelectric
bending actuators have global optima that give large
coupling efficiency between the actuators and modes.
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Experimental results on an aluminum panel show that
all modes lying below a given cutoff frequency can be
addressed independently by the optimally determined
actuator array. Although the methods described here
were developed for the control of plates for flat-panel
loudspeakers, these techniques should also prove useful
to many other problems of structural vibration control.
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