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The piezoelectric unimorphs are essential resonant components of many oscillating systems including
electroacoustic devices. The unimorph spectral properties are namely dependent on geometric dimensions,
applied materials and mounting. Preliminary dimensioning and optimization of unimorph shape are
usually carried out prior to comprehensive design work mostly based on finite element method. Simple
analytical model is a suitable tool for initial design phase. This paper presents a derivation of calculation
model describing natural vibrations of a circular unimorph with the piezoelectric layer diameter smaller
than the elastic layer diameter. The system of equations with closed-form solution is instrumental to
calculation of resonant frequencies and mode shapes for unimorphs with clamped, simply supported and
free circumference. The theoretical results are compared with vibration velocity measurement of clamped
unimorph sample in a wide frequency range. Analytical model derived in this paper is used to assess the
effect of the thickness tolerance on unimorph resonant frequencies.
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1. Introduction

Piezoelectric composite plates operating in bend-
ing mode are widely used in many applications as
electroacoustic transducers, actuating and sensing ele-
ments or energy harvesting components. The structure
of a piezoelectric composite plate is relatively simple
and has two basic designs. The unimorph element con-
sists of one piezoelectric layer and one elastic layer
(commonly metallic) bonded together. The bimorph
element is composed of two piezoelectric layers, alter-
natively with a central elastic layer, usually possess-
ing a symmetry about the middle plane. The applica-
tion of an electric field across the electrodes produces
lateral expansion of piezoelectric layer(s) resulting in
a bending deformation of the whole structure. Equally,
flexural excitation of a composite plate results in the
generation of electrical charge on the electrodes.

The design process of devices utilizing piezoelec-
tric plates involves dimensioning and performance op-
timization of the key elements. For dynamic applica-
tions with resonant structures the information about
the plate spectral properties (natural frequencies and

mode shapes) is also of importance. The initial design
and sensitivity analysis using finite element method
are influenced by mesh modification needs associated
with time costs. Therefore, suitable analytical models
with closed-form solution are essential and highly con-
ducive.

Theoretical analyses of piezoelectric composite
plates are mostly based on Kirchhoff’s laminated plate
theory. Previous analytical works were usually focused
mainly on static deflection solution under various types
of loading. A dynamic solution was studied seldom.
Derived expressions are valid from static regime to
the vicinity of fundamental resonance frequency. Sim-
ply supported unimorph with piezoelectric layer of
the same diameter as the elastic layer was studied in
(Adelman, Stavsky, 1980) for circular shape and in
(Li et al., 1999) for rectangular and circular shapes.
The analysis of a simply supported unimorph structure
composed of elastic, piezoelectric and bonding layer
with the diameter of the piezoelectric layer smaller
than that of the elastic layer was presented in (Li,
Chen, 2003). The model of a clamped multilayer uni-
morph where the diameter of the elastic layer is greater
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than that of the remaining layers was introduced in
(Deshpande, Saggere, 2007). Analogical analyses
considering various unimorph geometry and bound-
ary conditions at the edges were provided, e.g. in (Mo
et al., 2006; Dong et al., 2007) or (Mo et al., 2010).

Analytical model for the circular bimorph in the
form of layered shell of revolution was presented in
(Dobrucki, Pruchnicki, 1997). The equations were
solved numerically by means of finite element analysis
and verified experimentally for a bimorph clamped at
the center and free on the circumference. Prasad et al.
(2006) derived an analytical lumped-element model
for a clamped circular unimorph based on classical
laminated plate theory. Similar approach was used in
(Papila et al., 2008) for the static solution of clamped
actuators in a configuration of an inner piezoelectric
disc and an outer piezoelectric ring connected to an
elastic layer. Yang et al. (2006) used two-dimensional
equations of higher-order plate theory for a solution
of static deflection of simply supported unimorph with
the piezoelectric layer of the same radius as an elastic
layer.

Only few papers were devoted to a problem of nat-
ural vibration and spectral properties. The bending-
mode resonant frequencies for simply supported circu-
lar and rectangular unimorphs with piezoelectric cov-
ering the entire elastic layer were introduced in (Li
et al., 1999). The approximate analytical method for
evaluating fundamental vibration mode parameters of
clamped unimorph with the diameter of the piezoelec-
tric layer smaller than that of the elastic layer are
treated in (Liu et al., 2003). Overtone vibration modes
were evaluated using FEM. The free vibration anal-
ysis of circular bimorph plate under various bound-
ary conditions was presented in (Wang et al., 2001),
where all bimorph layers are of the same diameter. Dy-
namic properties were mentioned only as additional
remarks to the static solutions without any detailed
analysis in the above mentioned publications. The cur-
rent manuscript fulfils this lack and presents a detailed
analytical solution of frequency and modal spectra of
the studied system.

This paper provides an analytical study of natural
vibration for circular unimorph with the piezoelectric
layer diameter smaller than the elastic layer diameter
(Fig. 1). The basic relations are derived using Kirch-
hoff’s theory for bending of thin plates (Leissa, 1969)
in polar coordinates. As the accuracy of computational
models is generally limited by non-linear properties of
piezoelectric ceramics and a high variability of its ma-
terial constants, both layers are supposed to be lin-
early isotropic for simplicity. Regarding the complete
axial symmetry of the structure and symmetric exci-
tation the vibrations are assumed to be also axially
symmetric with nodal circles but without nodal diam-
eters. In a polarized accurately shaped piezoceramic
disc only modes having symmetry with respect to the

Fig. 1. Circular piezoelectric unimorph cross section.

disc axis can be excited by application of an electric
field (Gazis, Mindlin, 1960). The final closed-form
solution comprises various boundary conditions on the
unimorph outer circumference (clamped, simply sup-
ported and free).

2. Computational model

The piezoelectric unimorph structure composed of
two axisymmetric circular plates is depicted in Fig. 1.
For a calculation we assume that both plates are
isotropic and bonding between plates is absolute. The
bonding layer thickness as well as thickness of metallic
electrodes is one order of magnitude smaller than the
thickness of piezoelectric and elastic elements and can
be neglected in the current model. The influence of the
bonding layer on the model parameters is shown in Ta-
ble 1. The structure is solved as two plates connected
on diameter dp, central solid of thickness h1 = hp+hm
and outer annular of thickness h2 = hm. The equiva-
lent computational model of piezoelectric unimorph is
shown in Fig. 2, where the solid plate is considered ho-
mogenous with equivalent parameters and the neutral
surface is common for both plates.

Table 1. Influence of bonding layer thickness on the val-
ues of equivalent Young’s modulus E1 and neutral plane

position c.

ha [µm] 0 2 4 6 8 10

E1 [GPa] 87.897 87.559 87.229 86.907 86.591 86.283

E1/E10 1 0.9962 0.9924 0.9887 0.9851 0.9816

c [µm] 129.7 131.1 132.6 134.0 135.5 136.9

Fig. 2. The equivalent computational model of piezoelectric
unimorph composed of central solid plate and outer annular

plate.
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2.1. Fundamental relations for thin plate vibration
in polar coordinates

The equation of motion for a transverse displace-
ment w in the z direction of a thin plate has a form
(Leissa, 1969)

ρ∗
∂2w

∂t2
+D∇4w = 0, (1)

where ∇4 = ∇2∇2 and

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
(2)

is the Laplacian operator expressed in polar coordi-
nates r, ϕ,

D =
Eh30

12(1− µ2)
(3)

is plate flexural rigidity, E is Young’s modulus, h0 –
plate thickness, µ – Poisson’s ratio, ρ∗ – plate mass per
unit area, and t is time.

We suppose the solution of natural vibrations in
the form of a harmonic wave

w(r, ϕ, t) = W (r, ϕ) sin(Ωt), (4)

where Ω is angular frequency. Substituting this for-
mula into equation of motion (1) we arrive at a simpler
relation for two variables r, ϕ only

−λ4W (r, ϕ) +∇4W (r, ϕ) = 0, (5)

where the frequency parameter is

λ4 =
Ω2ρ∗

D
=

12Ω2ρ∗(1− µ2)

Eh3o
=

12Ω2ρ(1− µ2)

Eh2o
, (6)

and ρ = ρ∗/h0 is density. Equation (5) can be split
into two parts

∇2V1 + λ2V1 = 0,

∇2V2 − λ2V2 = 0.
(7)

The general solution of Eqs. (7) is given by

Vi(r, ϕ)=(An cosnϕ+Bn sinnϕ)Vin(r), i=1, 2, (8)

where An, Bn are constant amplitudes. Number n is
connected with the number of nodal diameters and/or
with the deformation of umbrella mode correspond-
ing to n = 0. The azimuthal imperfection can trigger
n 6= 0 modes, but these are very small compared to the
zero mode in carefully made and mounted unimorphs.
We suppose that the flexural deformation of the uni-
morph is excited by axisymmetric radial vibration of
piezoelectric layer and the solution has nodal circles

only. Then n = 0 in Eq. (8), the term in parentheses
is constant and Eqs. (7) have a form (Leissa, 1969)(

∂2

∂r2
+

1

r

∂

∂r

)
V1 + λ2V1 = 0,

(
∂2

∂r2
+

1

r

∂

∂r

)
V2 − λ2V2 = 0,

(9)

with a final solution

V1 = AJ0(λr) +BY0(λr),

V2 = CI0(λr) +D∗K0(λr),
(10)

where J0, Y0 are Bessel’s functions of the first and
second kind and zero-th order, I0, K0 are modified
Bessel’s functions of the first and second kind and zero-
th order and A, B, C, D∗ are constant amplitudes.
Functions K0(λr) and Y0(λr) are infinite at the origin
r = 0 and therefore B = D∗ = 0 for a solid plate.

Plate mounting on a radius r = r0 must fulfill fol-
lowing boundary conditions:

• for a clamped plate displacement and slope vanish
at the boundary,

W (r0) = 0,
∂W (r0)

∂r
= 0, (11)1

• for a simply supported plate displacement and
bending moment vanish at the boundary,

W (r0) = 0,

M(r0) = D

(
∂2W

∂r2
+
µ

r0

∂W

∂r

)
r=r0

= 0,
(11)2

• for a free plate bending moment and shear force
vanish at the boundary,

M(r0) = D

(
∂2W

∂r2
+
µ

r0

∂W

∂r

)
r=r0

= 0,

Q(r0) = D
∂

∂r

(
∂2W

∂r2
+
µ

r0

∂W

∂r

)
r=r0

= 0.

(11)3

2.2. Homogenization of central solid plate

The central solid plate with a thickness h1 is com-
posed of an upper layer with parameters hp, Ep, ρp,
µp and a bottom layer with parameters hm, Em, ρm,
µm. The position of a neutral plane (plane without
horizontal strains) is supposed to be in a distance c
from the upper plate surface (Fig. 3). By the plate
homogenization we will assess equivalent parameters
of flexural rigidity D1, Young’s modulus E1 and den-
sity ρ1. For simplicity we assume that the Poisson’s
ratios of the piezoelectric and elastic layers have close
values (µp = 0.34 and µm = 0.341 in a case solved
in Sec. 3) and therefore, we define an average value
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Fig. 3. Central solid plate, position c of neutral plane.

µ = (µp + µm) /2, which holds for the whole unimorph
structure.

The position of the neutral plane and the plate
equivalent parameters can be found by integrating
the radial stress components σrm and σrp towards the
thickness direction (Adelman, Stavsky, 1980). We
obtain the tension force and bending moment resul-
tants of a symmetrical circular plate from

Nr =

c−hp∫
c−hp−hm

σrm dz +

c∫
c−hp

σrp dz

=

 Em
1−µ2

c−hp∫
c−hp−hm

z dz+
Ep

1−µ2

c∫
c−hp

z dz

∂2w
∂r2

, (12)

Mr =

c−hp∫
c−hp−hm

σrmz dz +

c∫
c−hp

σrpz dz

=

 Em
1−µ2

c−hp∫
c−hp−hm

z2 dz+
Ep

1−µ2

c∫
c−hp

z2 dz

∂2w
∂r2

, (13)

where radial curvature ∂2w
∂r2 is constant for axisymmet-

ric circular plate.
The tension force resultant Nr is zero in the case

of a pure bending. After modification of Eq. (12) we
can get a position of the neutral plane

c =
Em(1− µ2)(hphm + h2m/2) + Ep(1− µ2)h2p/2

Em(1− µ2)hm + Ep(1− µ2)hp

=
hphm + h2m/2 + Eeh

2
p/2

hm + Eehp
, (14)

where we use a notation

Ee =
Ep
Em

. (15)

The bending moment of homogenous plate of a thick-
ness h1 = hp + hm is given by

Mr =
E1(hp + hm)3

12(1− µ2)

∂2w

∂r2
= D1

∂2w

∂r2
. (16)

Comparing Eq. (16) with (13) and substituting for
c from Eq. (14) we can get the equivalent Young’s mod-
ulus

E1 =Em
h4m+Ee(4h

3
phm+6h2ph

2
m+4hph

3
m)+E2

eh
4
p

(hm+Eehp)(hp+hm)3
(17)

and equivalent flexural rigidity

D1 =
E1(hp+hm)3

12(1−µ2)
=

Em
12(1−µ2)

·

(
h4m+Ee(4h

3
phm+6h2ph

2
m+4hph

3
m)+E2

eh
4
p

hm+Eehp

)
. (18)

To fulfill the condition of the original and equivalent
plate equal density per unit area we can get

ρ1 =
hpρp + hmρm
hp + hm

. (19)

Equations (14) and (17) have to be modified, if the
piezoelectric and elastic layers are connected by a very
thin layer (ha = 0–10 µm) of an adhesive with Young’s
modulus, e.g. Ea = 30 GPa. The influence of this layer
on the above mentioned values of the neutral plane
position c and on the equivalent Young’s modulus E1

of the unimorph APC 20-1075 with parameters defined
in Sec. 3 is evident from the Table 1.

2.3. Natural vibration of unimorph plate

The natural vibration is described by the equation
of motion (9) with a general solution W (r) = V1(r) +
V2(r), see Eq. (10). From the previous analysis we have
following relations for the central equivalent solid plate

D1 =
E1(hp + hm)3

12(1− µ2)
,

λ41 =
Ω2ρ1(hp + hm)

D1
,

W1(r) = A1J0(λ1r) + C1I0(λ1r),

∂W1(r)

∂r
= −λ1 [A1J1(λ1r)− C1I1(λ1r)] , (20)

M1(r) = D1A1λ
2
1

[
−J0(λ1r) +

1− µ
λ1r

J1(λ1r)

]

+D1C1λ
2
1

[
I0(λ1r)−

1− µ
λ1r

I1(λ1r)

]
,

Q1(r) = D1A1λ
3
1J1(λ1r) +D1C1λ

3
1I1(λ1r)
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and for the outer annular plate

D2 =
Emh

3
m

12(1− µ2)
,

λ42 =
Ω2ρ2hm
D2

,

ρ2 = ρm,

W2(r) = A2J0(λ2r) +B2Y0(λ2r)

+C2I0(λ2r) +D∗2K0(λ2r),

∂W2(r)

∂r
= −λ2 [A2J1(λ2r) +B2Y1(λ2r)

−C2I1(λ2r) +D∗2K1(λ2r)] , (21)

M2(r) = D2A2λ
2
2

[
−J0(λ2r) +

1− µ
λ2r

J1(λ2r)

]

+D2B2λ
2
2

[
−Y0(λ2r) +

1− µ
λ2r

Y1(λ2r)

]

+D2C2λ
2
2

[
I0(λ2r)−

1− µ
λ2r

I1(λ2r)

]

+D2D
∗
2λ

2
2

[
K0(λ2r) +

1− µ
λ2r

K1(λ2r)

]
,

Q2(r) = D2A2λ
3
2J1(λ2r) +D2B2λ

3
2Y1(λ2r)

+D2C2λ
3
2I1(λ2r)−D2D

∗
2λ

3
2K1(λ2r),

where J1, Y1 are Bessel’s functions of the first and
second kind and first order and I1, K1 are modified
Bessel’s functions of the first and second kind and first
order.

The solution of natural vibrations must fulfill fol-
lowing boundary conditions:

1) the condition of displacement, slope, bending mo-
ment and shear force continuity at the boundary
of central and outer plate for r = r1 = dp/2, i.e.

W1(r1) = W2(r1),
∂W1(r1)

∂r
=
∂W2(r1)

∂r
,

M1(r1) = M2(r1), Q1(r1) = Q2(r1),

(22)

2) the mounting conditions on the outer circumfer-
ence for r = r2 = dm/2 (see Eq. (11))

• for a clamped plate

W2(r2) = 0,
dW2(r2)

dr
= 0, (23)1

• for a simply supported plate

W2(r2) = 0, M2(r2) = 0, (23)2

• or for a free plate

M2(r2) = 0, Q2(r2) = 0. (23)3

Six boundary conditions Eqs. (22) and (23) con-
tain six unknown constants A1, C1, A2, B2, C2, D∗2 .
Frequency parameters λ1, λ2 are defined by the flex-
ural stiffnesses D1, D2, the material densities ρ1, ρ2
and also by unknown resonant frequency Ω common
for both plates. Set of linear Eqs. (22) and (23) can be
expressed in a matrix form

HX = 0, (24)

where H is a coefficient matrix

H =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

0 0 a53 a54 a55 a56

0 0 a63 a64 a65 a66


(25)

and X is a vector of unknown constants

X = [A1, C1, A2, B2, C2, D
∗
2 ]

T
. (26)

Elements in first four rows of the matrix H are related
to the boundary conditions on the plates connection
r = r1 and have a form

a11 = −J0(λ1r1), a12 = −I0(λ1r1),

a13 = J0(λ2r1), a14 = Y0(λ2r1),

a15 = I0(λ2r1), a16 = K0(λ2r1),

a21 = λ1J1(λ1r1), a22 = −λ1I1(λ1r1),

a23 = −λ2J1(λ2r1), a24 = −λ2Y1(λ2r1),

a25 = λ2I1(λ2r1), a26 = −λ2K1(λ2r1),

a31 = D1λ
2
1

[
J0(λ1r1)− 1− µ

λ1r1
J1(λ1r1)

]
,

a32 = D1λ
2
1

[
−I0(λ1r1) +

1− µ
λ1r1

I1(λ1r1)

]
, (27)

a33 = D2λ
2
2

[
−J0(λ2r1) +

1− µ
λ2r1

J1(λ2r1)

]
,

a34 = D2λ
2
2

[
−Y0(λ2r1) +

1− µ
λ2r1

Y1(λ2r1)

]
,

a35 = D2λ
2
2

[
I0(λ2r1)− 1− µ

λ2r1
I1(λ2r1)

]
,

a36 = D2λ
2
2

[
K0(λ2r1) +

1− µ
λ2r1

K1(λ2r1)

]
,

a41 = −D1λ
3
1J1(λ1r1), a42 = −D1λ

3
1I1(λ1r1),

a43 = D2λ
3
2J1(λ2r1), a44 = D2λ

3
2Y1(λ2r1),

a45 = D2λ
3
2I1(λ2r1), a46 = −D2λ

3
2K1(λ2r1).
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Last two rows are related to boundary conditions on
the outer circumference r = r2 and have a form

• for the clamped plate

a53 = J0(λ2r2), a54 = Y0(λ2r2),

a55 = I0(λ2r2), a56 = K0(λ2r2),

a63 = −J1(λ2r2), a64 = −Y1(λ2r2),

a65 = I1(λ2r2), a66 = −K1(λ2r2),

(28)1

• for the simply supported plate

a53 = J0(λ2r2), a54 = Y0(λ2r2),

a55 = I0(λ2r2), a56 = K0(λ2r2),

a63 = D2λ
2
2

[
−J0(λ2r2) +

1− µ
λ2r2

J1(λ2r2)

]
,

a64 = D2λ
2
2

[
−Y0(λ2r2) +

1− µ
λ2r2

Y1(λ2r2)

]
,

a65 = D2λ
2
2

[
I0(λ2r2)− 1− µ

λ2r2
I1(λ2r2)

]
,

a66 = D2λ
2
2

[
K0(λ2r2) +

1− µ
λ2r2

K1(λ2r2)

]
,

(28)2

• or for the free plate

a53 = D2λ
3
2J1(λ2r2),

a54 = D2λ
3
2Y1(λ2r2),

a55 = D2λ
3
2I1(λ2r2),

a56 = −D2λ
3
2K1(λ2r2),

a63 = D2λ
2
2

[
−J0(λ2r2) +

1− µ
λ2r2

J1(λ2r2)

]
,

a64 = D2λ
2
2

[
−Y0(λ2r2) +

1− µ
λ2r2

Y1(λ2r2)

]
,

a65 = D2λ
2
2

[
I0(λ2r2)− 1− µ

λ2r2
I1(λ2r2)

]
,

a66 = D2λ
2
2

[
K0(λ2r2) +

1− µ
λ2r2

K1(λ2r2)

]
.

(28)3

It is convenient to substitute the two frequency pa-
rameters λ1, λ2 with one value by introducing a ratio
α = λ1/λ2, where

α4 =
λ41
λ42

=
D2ρ1h1
D1ρ2h2

. (29)

A nontrivial solution of Eq. (24) exists if the determi-
nant of the matrix H is equal zero, which yields the
frequency parameter λ2 = λ1/α. Substituting these
values into Eq. (21) for λ42 we can get angular resonant
frequencies Ω of the unimorph.

The mode shapes for a given value of frequency Ω
can be calculated using Eqs. (20) and (21) for W1(r)
and W2(r). The amplitude ratio

A1 : C1 : A2 : B2 : C2 : D∗2

= H1 : −H2 : H3 : −H4 : H5 : −H6 (30)

could be obtained from the ratio of subdeterminants
Hk, which arise from the matrix H, e.g. by omitting
the first row and the k-th column.

3. Calculation results and comparison
with measurement

The computational method was applied to a spec-
tral analysis of APC 20-1075 unimorph sample com-
posed of APC 855 piezoceramic and brass layers with
following material parameters: Ep = 59 GPa, µp =
0.34, ρp = 7 600 kg m−3 and Em = 110 GPa, µm =
0.341 and ρm = 8 500 kg m−3. The unimorph dimen-
sions (see Fig. 1) were ∅dm = 48 mm, ∅dp = 25 mm,
hm = 0.15 mm and hp = 0.12 mm. For calculation
an average value of the Poisson’s ratio µ = 0.3405
was used. Theoretical resonant frequencies and corre-
sponding shapes of three lowest modes were calculated
by the solution of Eq. (24) for boundary conditions of
clamped, simply supported and free unimorph circum-
ference. The calculated mode shapes are depicted in
Figs. 4–6.

Fig. 4. Three lowest mode shapes for the clamped circum-
ference.

Fig. 5. Three lowest mode shapes for the simply supported
circumference.
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Fig. 6. Three lowest mode shapes for the free circumference.

The resonant frequencies of the unimorph sample
were found experimentally by means of the vibration
velocity measurement. The sample was clamped by
screws between two plastic flanges and mounted in
a large wooden plate. This mounting type corresponds
to a rigid clamping at the circumference dm. The vi-
bration velocity of the unimorph center was measured
at a distance of 0.9 m above the unimorph plane in the
unimorph axis by a vibration analyzer Polytec PDV-
100. The sample was excited by a swept harmonic sig-
nal with amplitude 1 V in the frequency range from
200 Hz to 5 kHz. The recorded signals were processed
in a frequency domain using a measurement system
Brüel & Kjaer PULSE. The experimental setup is de-
picted in Fig. 7. To suppress the noise influence in the
measured data all measurements were repeated many
times and the frequency spectra were averaged. The
resulting velocity frequency spectrum shown in Fig. 8
is processed in the form of a frequency response func-
tion, i.e. as a normalized velocity spectrum divided by
a spectrum of excitation voltage. The resonant fre-
quencies corresponding to vibration velocity maxima
are clearly evident.

Fig. 7. Measurement system used for experimental estima-
tion of unimorph resonant frequencies.

Fig. 8. Frequency spectrum of unimorph center vibration
velocity.

The comparison of the calculated resonant frequen-
cies with the measured values is presented in Table 2.
The mounting at unimorph circumference has a finite
stiffness and measured values should be observed be-
tween the theoretical frequencies for the clamped and
simply supported boundary conditions. Despite the
simplifications applied in the calculation model the
measured values are close to the theoretical ones for
the clamped boundary and agreement of the measured
and calculated frequencies is convenient for practical
purposes.

Table 2. Comparison of theoretical and measured resonant
frequencies [Hz] for various boundary conditions on uni-

morph outer circumference.

Mode
number

Model
clamped

Model
simply

supported

Model
free

Measurement

1 508 270 571 464

944

2 2177 1660 2108 2205

3276

3 5088 4142 5002 4520

Additional modes occur in the measured frequency
spectrum in Fig. 8 (i.e. frequencies 944 and 3 276 Hz
in Table 2) having lower amplitude response than the
“pure” modes. This is apparently an effect of small
asymmetry in the unimorph structure resulting from
imperfect mounting, misalignment of the piezoceramic
and metal layers etc., which causes the excitation of
non-axisymmetric vibration modes having also nodal
lines in addition to nodal diameters. The solution for
these modes can be included in the calculation model
by introducing n > 0 in Eq. (8).

4. Influence of thickness tolerance
on the resonant frequency

As follows from Eq. (6), the resonant frequency Ω is
proportional to the thickness of the unimorph layers.
Low-cost commercially available piezoelectric uni-
morphs are produced with a thickness tolerance of
tens of percent of the nominal value. Such a variation
has a significant influence on the resonant frequency.
The analytical model derived in this paper was used
to investigate the effect of the thickness tolerance
on the APC 20-1075 unimorph resonant frequencies.
This analysis was necessary in a design process of an
acoustic device comprising this unimorph as a main
component.

The aim of the analysis was an estimation of the
resonant frequency change in case the layer thickness
varies between 90% and 110% of its nominal value. The
calculation was performed separately for the piezoelec-
tric layer hp and the elastic layer hm. The nominal geo-
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metrical and material parameters used for the analysis
are defined in Sec. 3. The dependence of the resonant
frequency on the layer thickness was obtained by suc-
cessive solution of Eq. (24), where the hp or hm values
were varied with a step of 0.1% of its nominal value.
The resulting resonant frequencies are also expressed
as percentual changes of their nominal values.

Dependence of the frequency relative change on the
layer thickness is shown in Fig. 9 for unimorph clamped
at the circumference. These results were obtained by
varying only one layer thickness, while the other layer
thickness being constant. In studied dimension range
the resonant frequency is virtually linearly dependent.
This dependency is higher for the elastic layer changes.
While the frequency relative change is about 2.1% for
the 2nd mode at the piezoelectric layer limit +10%,
the change is up to 8.9% for the 1st mode at the same
elastic layer limit. The frequency dependence on both
thickness variations is depicted in Fig. 10 for the 1st

Fig. 9. Dependence of the relative change of frequency
on the relative change of piezoelectric (top) and elastic
layer thickness (bottom), clamped circumference, black –

1st mode, blue – 2nd mode, red – 3rd mode.

Fig. 10. Dependence of the relative change of frequency on
the relative change of layer components thickness (clamped

circumference, 1st mode).

mode. The change in total thickness hp+hm of 10% is
the cause of the frequency relative change of approxi-
mately 9.9%.

5. Conclusion

The analytical model based on the Kirchhoff’s lam-
inated plate theory was developed to describe the nat-
ural vibrations of piezoelectric unimorph with differ-
ent diameters of the piezoelectric and elastic layers.
The derived system of equations allows the calculation
of the resonant frequencies and the mode shapes for
clamped, simply supported and free boundary condi-
tions on the unimorph outer circumference. The the-
oretical resonant frequencies were compared with the
vibration velocity measurement of the clamped uni-
morph sample. The calculated frequencies agree well
with the experimental values and the computational
model is applicable for initial design and optimization
purposes with respect to the non-linear properties of
piezoelectric ceramics and a high variability of its ma-
terial constants.

The additional vibration modes which are not de-
scribed by the calculation model were identified exper-
imentally in the frequency spectrum. They have appar-
ently non-axisymmetric shape and arise from small ge-
ometrical and material properties unbalance in the uni-
morph structure. These modes can be easily included
in the model by introducing a solution function having
nodal lines and nodal diameters.

Acknowledgment

This work was supported by the Czech Ministry
of Education, project LO1213. The authors would like
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