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The study is devoted to standing acoustic waves in one-dimensional planar resonator which containing
an ideal gas. A gas is affected by the constant mass force. Two types of physically justified boundary
conditions are considered: zero velocity or zero excess pressure at both boundaries. The variety of nodal
and antinodal points is determined. The conclusion is that the nodes of pressure and antinodes of velocity
do not longer coincide, as well as antinodes of pressure and nodes of velocity. The entropy mode may
contribute to the total field in a resonator. It is no longer isobaric, in contrast to the case when the external
force is absent. Examples of perturbations inherent to the entropy mode in the volume of a resonator are
discussed.
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1. Introduction

External forces which are applied to a fluid cause
its density, temperature, and pressure to be some func-
tions on spatial coordinates, and probably, on time.
They may accelerate fluid ensuring the bulk flows of
it. This essentially complicates the definition of spe-
cific perturbations (acoustic and other ones) of in-
finitely small magnitude which may exist in a fluid.
Types of the wave motion are usually determined
by dispersion relations. The dispersion relations, in
turn, follow from the system of conservation equa-
tions in a fluid with account for external forces and
sources of energy. Even in the simplest case of a pla-
nar one-dimensional flow affected by an external sta-
tionary force, the dispersion relations may be exactly
introduced over all wave-length range of perturba-
tions in some special cases only. This is conditioned
by choice of new variables which provide constant co-
efficients by their partial derivatives in all conserva-
tion equations. The gravity force with constant ac-
celeration is one of these cases. It makes the back-
ground pressure and density of an isothermal ideal
fluid depend exponentially on the vertical coordinate
(Eckart, 1960; Pedloski, 2006). Another example

is a non-inertial or inertial constant mass force. In
one dimension, there exist three types of motion: two
acoustic modes and the entropy, non-wave mode cor-
respondent to zero frequency. The entropy mode is
stationary if the thermal conduction of a fluid is ig-
nored, otherwise, its evolution in time is described
by the diffusity equation (Brekhovskikh, Godin,
1990; Chu, Kovasznay, 1958; Rudenko, Soluyan,
1977). In the flows going out one dimension, the buoy-
ancy waves appear (Eckart, 1960; Brekhovskikh,
Godin, 1990; Jones, 2001). They are of importance
in the Earth meteorology (Eckart, 1960; Pedloski,
2006; Brekhovskikh, Godin, 1990) and the plane-
tary atmosphere dynamics applications.
Some recent analytical methods in evaluations of

energetic contributions of different modes are fairly
successful. This concerns also flows where disper-
sion relations cannot be introduced (Leble, 1990).
These methods usually start from establishment of
the relationships between perturbations inherent to
every mode (so-called polarisation relations) (Leble,
Perelomova, 2013; Perelomova, 2006). The proper
conditions which correspond to the basic physical foun-
dations should be applied at the boundaries of a vol-
ume. The boundary conditions cannot be arbitrary,
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they must follow from the conservation of the total
energy in the whole volume of a resonator. In addi-
tion to travelling waves, the entropy mode may par-
ticipate in the total field in a volume of a resonator.
In view of that, the knowledge of travelling waves and
non-wave motions, establishment of polarisation rela-
tions and boundary conditions should be necessary is-
sues in description of standing waves also in fluids af-
fected by external forces. Linear standing waves (that
is, waves with perturbations of infinitely small magni-
tude) in the most simple case of one-dimensional res-
onator filled with a uniform ideal fluid in the absence of
the external forces are well-studied. The entropy mode
in this case represents constant isobaric increase or de-
crease in temperature in the whole volume, which in
turn affects the sound speed and, by means of that,
spacial spectrum of standing waves.

2. Conservation equations and dispersion

relations

The equations governing inviscid and non-
conducting fluid manifest conservation of momentum,
energy, and mass. They determine dynamics of all pos-
sible types of motion which may take place in a fluid.
We start from the linearised conservation equations in
terms of excess pressure and density, p′ and ρ′ (the
stationary background quantities p, ρ are functions of
coordinates):

∂V

∂t
= −∇p′

ρ
+ g

ρ′

ρ
,

∂p′

∂t
= −V · (∇p)− γp (∇ ·V) ,

∂ρ′

∂t
= −V · (∇ρ)− ρ (∇ ·V) ,

(1)

where V is the fluid’s velocity, γ = Cp/Cv designates
the specific heats ratio, and Cp, Cv are heat capacities
under constant pressure and volume, respectively. The
mass force is designated by the constant vector g =
(0, 0, −g). It may represent gravitational acceleration
or other constant mass force. It may also represent
a non-inertial force in the reference frame in which
fluid is motionless in equilibrium. A flow of an ideal
gas is considered, whose internal energy e in terms of
the total pressure and density takes the form

e =
p

(γ − 1)ρ
. (2)

The background pressure and density are determined
by the zero order equality,

dp(z)
dz

= −gρ(z). (3)

The functions providing constant temperature T0 of
the background ensure constant internal energy as
well. They are well-established:

p(z) = p0 exp(−z/H) = ρ0gH exp(−z/H),

ρ(z) = ρ0 exp(−z/H),
(4)

where H is the scale of homogeneity of a gas
(Eckart, 1960; Pedloski, 2006; Brekhovskikh,
Godin, 1990):

H =
T0(Cp − Cv)

g
, (5)

and p0 = p(0), ρ0 = ρ(0).
In the further analysis, we will consider one-

dimensional fluid’s motion along the vertical axis with
one component of velocity, V . All perturbations are
functions of z and t. It is convenient to make use of
the quantity φ′ instead of perturbation in density,

φ′ = p′ − γ
p

ρ
ρ′. (6)

The reasons for this choice are listed at the end of the
current section. Equations (1), rearranged in the new
set of variables (Leble, Perelomova, 2013),

P = p′ · exp(z/2H),

Φ = φ′ · exp(z/2H), (7)

U = V · exp(−z/2H),

take the form

∂U

∂t
=

1

ρ0

(
γ − 2

2γH
− ∂

∂z

)
P +

Φ

γHρ0
,

∂P

∂t
= −γgHρ0

∂U

∂z
− gρ0

γ − 2

2
U, (8)

∂Φ

∂t
= − (γ − 1) ρ0gU.

The set of new variables established by Eqs. (7) pos-
sesses the important property. In contrast to initial
Eqs. (1), the system Eqs. (8) consists of equations
in partial derivatives with constant coefficients. That
means that it establishes dispersion relations in the
whole domain of the wavenumbers. In turn, dispersion
relations determine types of fluid motion which may
exist in the total flow. As usual, all variables (U , P
and Φ) are imposed to be the Fourier integrals of pla-
nar waves with specific amplitude, frequency ω, and
wavenumber k each:
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U =

∞∫

−∞

Ũ exp(iωt− ikz)dk,

P =

∞∫

−∞

P̃ exp(iωt− ikz)dk, (9)

Φ =

∞∫

−∞

Φ̃ exp(iωt− ikz)dk.

This yields the dispersion equation, that is, an alge-
braic equation which reflects the solvability of Eqs. (8)
in terms of amplitudes of individual planar waves Ũ ,
P̃ , and Φ̃. That imposes the main determinant of the
system being equal to zero. The roots of dispersion
equation represent the dispersion relations:

ω0 = 0, ω1 =
√
γgH

√
k2 +

1

4H2
,

ω2 = −
√
γgH

√
k2 +

1

4H2
.

(10)

Two last roots are acoustic and relate to perturbations
propagating in the positive and negative directions of
axis OZ, and the first one (indexed by zero) relates to
the stationary perturbations. It determines the non-
wave mode, called entropy or thermal mode of a fluid’s
motion. The dispersion relations determine links which
connect amplitudes of the planar waves for any type
of motion. For example, relations for P̃ and Φ̃ for both
acoustic modes take the form:

P̃1,2 =
1

γ − 1

(
γ − 2

2
− ikγH

)
Φ̃1,2. (11)

This establishes the links of P (z, t) and Φ(z, t) in both
acoustic branches in accordance to Eqs. (9) at any in-
stant and any coordinate,

P1,2 =
1

γ − 1

(
γ − 2

2
+ γH

∂

∂z

)
Φ1,2. (12)

The link for the perturbations in the stationary en-
tropy mode takes the form

Φ0 =

(
−γ − 2

2
+ γH

∂

∂z

)
P0. (13)

The choice of variable φ instead of perturbation in den-
sity ρ′ is reasoned by the following arguments. Firstly,
φ′ measures the deviation of the thermodynamic pro-
cess from the isentropic one. The variation in specific
entropy s of the fluid’s element in unit time along its
trajectory is determined by the equality

T
ds
dt

=
de
dt
− p

ρ2
dρ
dt

,

which in the case of infinitely-small magnitude flow of
an ideal gas in the absence of an external force (g = 0)
rearranges as

T0
∂s′

∂t
=

∂p′

∂t
− γp0

ρ0

∂ρ′

∂t

ρ0(γ − 1)
=

1

ρ0(γ − 1)

∂φ′

∂t
.

This provides equality φ′ = 0 for the isentropic pro-
cesses with zero local variation in entropy, s′ = 0. The
acoustic part of φ′ is proportional to the perturbation
in acoustic entropy, φ′

a = (γ−1)ρ0T0s
′
a. It is identically

zero in both isentropic acoustic branches. In the case
of non-zero mass force, in contrast to the case g = 0,
the non-zero Φa (Φa = Φ1+Φ2) may represent pertur-
bation of φa. It is connected with Pa (Pa = P1 + P2)
by means of Eq. (12). The simple link between acous-
tic perturbations Eq. (12) is local. That is the second
reason to choose variable φ instead of density ρ. The re-
lation between P and R (where R = ρ′ exp(z/2H)) has
been derived by the author in (Perelomova, 1998).
It is integro-differential with some kernel which reflects
dispersive properties of sound in a stratified medium.
In contrast to acoustic waves, the entropy mode pos-
seses stationary perturbation in entropy. In the flows
without external force, the entropy mode is isobaric
with any smooth perturbation of mass density, but if
g 6= 0, it is not, in accordance to the relation between
Φ0 and P0, Eq. (13).

3. Perturbations for different kinds

of boundary conditions

The total energy of a gas ε in a volume of a cylinder
of a cross-sectional area S which is bounded by planes
z = 0 and z = L, consists of kinetic, barotropic, and
thermal contributions (Leble, Perelomova, 2013):

ε=
S

2

L∫

0

dz
(
ρV 2 +

p′2

γp
+

φ′2

γ(γ−1)p

)

=
S

2

L∫

0

dz
(
ρ0U

2 +
P 2

γρ0gH
+

Φ2

γ(γ−1)ρ0gH

)
, (14)

where the height of cylinder L may tend to plus infin-
ity. It readily follows from Eqs. (1)–(7), that

dε
dt

= −S
L∫

0

∂

∂z
(p′V )dz

= −S
L∫

0

∂

∂z
(PU)dz = −S(PU)|L0 = 0. (15)

For ε to be constant, there is a certain freedom of estab-
lishing of boundary conditions at z = 0 and z = L, for
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example, at any instant U(z = 0) = U(z = L) = 0, or,
U(z = 0) = 0, P (z = L) = 0. The boundary conditions
of the second and third kinds (homogeneous) are also
admissible. The boundary conditions should reflect the
physical conditions of a flow. The total energy of a flow
keeps constant in a close volume of a resonator if there
are no internal losses or/and external inflow of energy.

3.1. Zero velocity at the boundaries

The wave equation which governs the perturbation
of velocity (it corresponds exclusively to the acous-
tic branches, since the part of the vertical velocity U
which specifies the entropy mode, is zero), takes the
form in accordance to the dispersion relations ω1,2(k)
(Eqs. (10)):

∂2U

∂t2
− γgH

(
∂2U

∂z2
− U

4H2

)
= 0. (16)

At the lower (z = 0) and upper (z = L) boundaries,
we set the conditions

U(z = 0) = U(z = L) = 0. (17)

Equation (16) may be solved by subdividing spatial
and temporal variables. Letting

U(z, t) = Z(z) ·Θ(t), (18)

one arrives at

1

Θ

d2Θ
dt2

= γgH

(
1

Z

d2Z
dz2

− 1

4H2

)

= −γgH
(
λ2 +

1

4H2

)
, (19)

where λ is some constant. Equation (19) in turn deter-
mines the spectrum

λn = nπ/L, n = 1, 2, . . . (20)

and the general solution which satisfies the boundary
conditions Eq. (17):

V = exp(z/2H) · U

= exp(z/2H)·
∞∑

n=1

sin(λnz)

(
An sin

(
c t

√
λ2
n+

1

4H2

)

+Bn cos

(
c t

√
λ2
n +

1

4H2

))
, (21)

where

c =
√
γgH =

√
γ
p

ρ
=
√
γT0(Cp − Cv) (22)

designates the speed of infinitely-small magnitude sig-
nal in the uniform fluid, and An and Bn denote dimen-
sional constants, measured in units of velocity. From

the second and third equations in the set of Eqs. (8),
one may conclude that the acoustic excess quantities
p′a and φ′

a are distributed over the domain [0, L] as
follows

p′a = exp(−z/2H) · Pa = exp(−z/2H) · (P1+P2)

= exp(−z/2H) · ρ0c
∞∑

n=1

1√
λ2
n + 1

4H2

· (λn cos(λnz)− α sin(λnz))

·
(
An cos

(
c t

√
λ2
n +

1

4H2

)

− Bn sin

(
c t

√
λ2
n +

1

4H2

))
,

φ′
a = exp(−z/2H) · Φa = exp(−z/2H) · (Φ1+Φ2)

=
(γ − 1)ρ0g

c
exp(−z/2H) ·

∞∑

n=1

sin(λnz)√
λ2
n + 1

4H2

·
(
An cos

(
c t

√
λ2
n +

1

4H2

)

−Bn sin

(
c t

√
λ2
n +

1

4H2

))
,

(23)

where

α =

(
1

γ
− 1

2

)
1

H
(24)

is the positive constant. The total excess pressure is
in fact a sum of acoustic and entropy contributions,
p′ = p′a + p′0. The entropy part may be represented by
any smooth function of the vertical coordinate, z. It
refers to zero velocity (and therefore, does not disturb
zero boundary conditions), but to the non-zero density
perturbations in accordance to Eq. (13). The nodes of
acoustic pressure are determined by the equations

λn = α tan(λnz), n = 1, 2, . . . , (25)

where each of them yields n particular solutions

zk
L

=
arctan(nπ/(αL))

nπ
+

k

n
, k = 0, . . . , n−1. (26)

The nodes of acoustic pressure do not longer coincide
with the antinodes of velocity. These last ones are sit-
uated in points that are determined by the equations

λn = − 1

2H
tan(λnz), n = 1, 2, . . . , (27)

where

zk
L

= −arctan(2nπH/L)

nπ
+

k

n
, k = 1, . . . , n. (28)

The nodes of pressure are displaced towards the
smaller coordinates as compared to the case g = 0. The
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antinodes of velocity get shifted to the larger coordi-
nates. The distance between nodes in acoustic pressure
keeps constant. The nodes of φ′

a are located at the same
points as those in the profile of velocity. It is remark-
able that acoustic pressure no longer possesses antin-
odes at the ends of the resonator, z = 0 and z = L.
The vertical coordinates of nodes of velocity are deter-
mined by equalities

zk
L

=
k

n
, k = 0, . . . , n, (29)

and the antinodes of acoustic pressure are established
by the following set

λn

γH(λ2
n − α/2H)

= − tan(λnz), n = 1, 2, . . . (30)

This corresponds to the antinodal points

zk
L

= −
arctan

(
λn

γH(λ2
n−α/2H)

)

nπ
+

k

n
,

k = 1, . . . , n,

(31)

if λ2
n − α/2H > 0. These antinodes of pressure are

shifted towards the smaller coordinates as compared
to the case without external force for any n if L = H ,
but for a large enough L, if λ2

n − α/2H < 0, they get
shifted towards larger coordinates. This condition may
be satisfied for L about 10 times larger than H in the
model of the standard atmosphere.
The limit g → 0 and therefore H → ∞ may be

readily traced. Note that the product gH remains con-
stant and equals T0(Cp − Cv) (in accordance with
Eq. (5)), as well as the sound speed c (Eq. (22)).
There are n well-known nodes of acoustic pressure in
this limit which correspond to the initially uniform
medium:

zk
L

=
k + 1/2

n
, k = 0, . . . , n−1. (32)

Equations (21), (23) also take the well-known forms:

V = U =
∞∑

n=1

sin(λnz) (An sin (c tλn)

+Bn cos (c tλn)) ,

φ′
a = Φa = 0,

p′a = Pa = ρ0c

∞∑

n=1

cos(λnz) (An cos (c tλn)

− Bn sin (c tλn)) .

(33)

The nodes of acoustic pressure are located at the
points determined by equations cos(λnz) = 0, that
is, by Eq. (32), and they coincide with the antin-
odes of velocity. Figure 1 shows distribution of veloc-
ity and acoustic pressure in a resonator for the follow-
ing data: g = 9.806 m/s2, γ = 1.4, p0 = 101 325 Pa,

a)

b)

Fig. 1. Velocity (thin lines) and acoustic pressure (bold
lines) in a resonator of length L which equals H , Bn = 0
(An 6= 0): a) n = 1, t = 30 , b) n = 3, t = 60 s. The
dotted lines relate to the case without external force (g = 0,
in accordance to Eqs. (33)). Velocity equals zero at the

boundaries of a resonator.

ρ0 = 1.225 kg/m3. That corresponds to H = 8435 m.
We equate Bn zero.
Some stationary perturbations of pressure and φ

which specify stationary entropy mode, are plotted in
Fig. 2. They are evaluated in accordance to Eq. (13)
and may contribute to the total field in the volume
of a resonator on a par with acoustic disturbances.
In Fig. 2,

P0 = exp(0.5)
z

L
(a),

P0 = exp(z/2L)
z

L
(b),

P0 = cos(π · z/L) (c),

P0 = exp(−z/2L) z
L
(d),

(34)

Φ0 is determined by Eq. (13), and p′0, φ
′
0 relate to P0

and Φ0 by means of Eqs. (7). P0 may include a factor
which is measured in units of pressure. Figures 2 and 4
show the dimensional perturbations divided by their
maximum values over the domain [0, L].
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a) b)

c) d)

Fig. 2. Exemplary profiles of stationary perturbations in pressure and φ. The bold lines denote perturbation in pressure.
K is the absolute value of maximum perturbation of pressure, p′0, over the domain z ∈ [0, L]. P0 at all figures is determined

by Eq. (34), and Φ0 is evaluated in accordance to Eq. (13).

It may be concluded that the entropy disturbances
with

p′0 =

(
p0∆T

HT0
z + C

)
exp(−z/H),

φ′
0 =

p0∆T

HT0
(z(1− γ) +H) exp(−z/H)

+ C(1 − γ) exp(−z/H),

(35)

where C is any constant, yield the constant excess tem-
perature,∆T , over the whole interval. C = 0 is the case
of Fig. 2d.

3.2. Zero pressure disturbances at the boundaries

The equation which governs perturbation of acous-
tic pressure takes the form similar to Eq. (16):

∂2Pa

∂t2
− γgH

(
∂2Pa

∂z2
− Pa

4H2

)
= 0. (36)

At the upper and lower boundaries, we set the condi-
tions

Pa(z = 0) = Pa(z = L) = 0. (37)

Repeating the evaluations described in the previous
subsection, we finally arrive at solution which satisfies
the boundary conditions (37):

p′a = exp(−z/2H) · Pa

= exp(−z/2H) ·
∞∑

n=1

sin(λnz)

·
(
Cn sin

(
c

√
λ2
n +

1

4H2
t

)

+ Dn cos

(
c

√
λ2
n +

1

4H2
t

))
, (38)

where Cn and Dn are constants measured in units of
pressure. The velocity field may be established from
the second equation from Eqs. (8), and Φa from the
third equation from this set:



A. Perelomova – Standing Waves in One-Dimensional Resonator Containing. . . 269

V =exp(z/2H)· Uz=
exp(z/2H)

ρ0c

∞∑

n=1

√
λ2
n+

1
4H2

λ2
n+α2

· (λn cos(λnz) + α sin(λnz))

·
(
Cn cos

(
c

√
λ2
n +

1

4H2
t

)

− Dn sin

(
c

√
λ2
n +

1

4H2
t

))
,

φ′
a=exp(−z/2H) · Φa=−

(γ−1)g exp(−z/2H)

c2

·
∞∑

n=1

1

λ2
n + α2

(λn cos(λnz) + α sin(λnz))

·
(
Cn sin

(
c

√
λ2
n +

1

4H2
t

)

+Dn cos

(
c

√
λ2
n +

1

4H2
t

))
.

(39)

The nodes of velocity are determined by the equations

λn = −α tan(λnz), n = 1, 2, . . . ,

zk
L

= −arctan(nπ/(αL))

nπ
+

k

n
, k = 1, . . . , n,

(40)

and the antinodes of acoustic pressure by the equations

λn =
1

2H
tan(λnz), n = 1, 2, . . . ,

zk
L

=
arctan(2nπH/L)

nπ
+

k

n
, k = 0, . . . , n−1.

(41)

In turn, the following set represents antinodes of ve-
locity:

λn

γH(λ2
n − α/2H)

= tan(λnz), n = 1, 2, . . . ,

zk
L

=
arctan

(
λn

γH(λ2
n−α/2H)

)

nπ
+

k

n
,

k = 0, . . . , n−1,

(42)

if λ2
n − α/2H > 0. In the limit g → 0, Eqs. (38), (39)

may be rearranged into expressions

p′a = Pa =
∞∑

n=1

sin(λnz) (Cn sin (c tλn)

+Dn cos (c tλn)) ,

φ′
a = Φa = 0, (43)

V = U =
1

ρ0c

∞∑

n=1

cos(λnz) (Cn cos (c tλn)

−Dn sin (c tλn)) ,

with the nodes of acoustic pressure correspondent to
antinodes of velocity and vice versa. Figure 3 shows
distribution of acoustic pressure and velocity in the
sound wave at n = 1, t = 30 s (the case a), and n = 3,
t = 60 s (the case b). It represents curves which cor-
responding to the cases with external force and with-
out it.

a)

b)

Fig. 3. Velocity (thin lines) and acoustic pressure (bold
lines) in a resonator of length L which equals H , Dn = 0,
Cn 6= 0: a) n = 1, t = 30 s, b) n = 3, t = 60 s. The bold
lines denote perturbations in pressure. Acoustic pressure
equals zero at the boundaries of a resonator. The dotted
lines relate to the case without external force (g = 0, in

accordance to Eqs. (43)).

The exemplary perturbations in the entropy mode
with zero pressure at the boundaries z = 0 and z = L
are plotted in Fig. 4, where

P0 = sin(π · z/L) (a),

P0 = sin(2π · z/L) (b),
(44)

Φ0 is determined by Eq. (13), and p′0, φ
′
0 relate to P0

and Φ0 by the relations Eq. (7). P0 may include a factor
which is measured in units of pressure. They may be
added to acoustic perturbation with zero pressure at
the boundaries forming a new field in the volume of
a resonator.
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a)

b)

Fig. 4. Exemplary profiles of stationary perturbations of
pressure and φ in the stationary mode. The bold lines
denote perturbation in pressure. K is the absolute value
of maximum perturbation of pressure over the domain
z ∈ [0, L]. P0 is determined by Eq. (44), and Φ0 is cal-

culated in accordance to Eq. (13).

4. Concluding remarks

Any perturbations in a resonator which satisfy
physically justified boundary conditions follow from
the relations linking variables U , P , and Φ in sound
and entropy modes which may exist in a closed vol-
ume of a gas affected by the constant mass force. Ac-
tually, every mode which represents a root of the dis-
persion equation, possesses individual relations of spe-
cific thermodynamic perturbations. The exact links of
excess pressure, mass density, and velocity in travel-
ling waves in unbounded volumes of a gas are integro-
differential, they have been derived exactly with regard
to one-dimensional flow in (Leble, Perelomova,
2013; Perelomova, 1998). The approximate relations
in the case of short perturbations (as compared to H)
have been derived by the author in (Perelomova,
2009). We consider a resonator bounded by planes
z = 0 and z = L. Without restrictions, the lower
boundary may be situated at any other plane.
As far as the author knows, the standing waves in

a fluid which is affected by a mass force, are a new sub-

ject of investigations. The case of constant mass force
is the most simple and makes it possible to use elemen-
tary methods of mathematical physics in a theoretical
analysis of perturbations in a volume of a resonator.
This study is devoted to an ideal inviscid gas. It may be
readily generalised in the case of a fluid different from
an ideal gas, including liquid, replacing γ by c2ρ0/p0.
In particular, γ > 2 corresponds to negative α in ac-
cordance to Eq. (24). The nonlinearity and attenua-
tion in conservation equations were not taken into ac-
count. Nonlinear resonators containing homogeneous
fluid with Newtonian attenuation have been consid-
ered by Kaner and co-authors in (Kaner et al., 1977)
by means of the multi-scale method. It has been es-
tablished that under some conditions (periodic pertur-
bations, zero on average acoustic pressure, weak non-
linearity), the acoustic waves which travel in opposite
directions do not interact in a volume of resonator and
may be considered independently. The important pro-
perty of standing acoustic waves in a fluid with attenu-
ation is that the nodes of acoustic pressure and velocity
are no longer constantly situated but alter their coor-
dinate with time. This is conditioned by the dispersion
relation of linear flow with attenuation which does not
permit a solution in the separated temporal and spa-
cial coordinates. The correspondent one-dimensional
equation (the linear analogue of the Burgers equation)
takes the form (Hamilton, Blackstock, 1997):

(
∂2p′a
∂t2

− c2
∂2p′a
∂x2

)
− δ

c2
∂3p′a
∂t3

= 0,

where δ denotes the diffusity of sound. As for the con-
sidered in this study fluid, affected by an external force,
the form of dispersion relations for acoustic branches,
Eq. (10), and relative linear equations Eqs. (16), (36)
allow to search a solution in the separated variables.
In view of that, nodes and antinodes of perturbations
are situated permanently, although differently than in
the case of the homogeneous background pressure and
mass density. Non-linear waves in the stratified media
which propagate in the waveguides and some special
methods to describe the relative field may be found in
the textbook (Leble, 1990).
Two kinds of boundary conditions are considered:

with zero velocity at the upper and lower boundaries
(Subsec. 3.1) and with zero perturbations in pressure
there (Subsec. 3.2). As for the first case, no stationary
smooth pressure field which corresponds to the entropy
mode, disturbs the boundary conditions and may con-
tribute to the standing acoustic wave. As for the sec-
ond case, the entropy mode should yield zero pressure
perturbation at the boundaries of a resonator. The en-
tropy mode may change the sound speed by means
of variations in temperature inherent to this mode.
Stationary perturbations which correspond to increase
in the temperature, ∆T , make the local sound speed in
gases to enlarge. The nonlinear losses in a thermo-
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viscous medium lead to acoustic heating, that is, to
the entropy mode which slowly varies in time. Hence,
the spacial spectrum of travelling waves slowly varies
in time as well. The nonlinear heating is noticeable for
large acoustic perturbations, for processes which occur
for a long time, and in the closed volumes of highly vis-
cous fluids.
The positions of nodes and antinodes of acoustic

pressure and velocity in both types of boundary con-
ditions are evaluated. The nodes of pressure do not co-
incide with antinodes of velocity, and vice versa. They
differ from nodes and antinodes in a resonator contain-
ing a gas which is not affected by an external force.
This conclusion also concerns the ends of a resonator.
The distance between nodes and antinodes of any per-
turbation in a standing wave keeps constant. The the-
ory may have a practical application. It may be useful
to conclude about an external force remotely basing
on the observation of perturbations or to govern nodes
and antinodes in medical applications accurately.
As for the frequencies of the standing waves, they

are determined by Eqs. (10) and wavenumbers which
are inherent to the resonator. The smallest wave num-
ber k corresponds n = 1 and equals π/L. There is the
cut-off frequency, that is, minimal frequency of stand-
ing waves

ωmin = c

√
π2

L2
+

1

4H2
.

In the case of c = 340 m/s and H = L = 8435 m,
ωmin = 0.13 Hz, that belongs to the infrasound re-
gion. One may readily evaluate minimal n which corre-
sponds to the audio frequency, that is, exceeds 20 Hz.
It equals 158. In general, the theory gives noticeably
different results (referring to the case of the uniform
fluid) if the characteristic wave numbers of perturba-
tions are comparable to or are lower than the inverse
scale of stratification, H−1. That in turn depends on g
and T0.
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