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Application of wavelet decomposition is described to speed up the mixed speech signal separation with
the help of non-negative matrix factorisation (NMF). It is assumed that the basis vectors of training
data of individual speakers had been recorded. In this paper, the spectrogram magnitude of a mixed
signal has been factorised with the help of NMF with consideration of sparseness of speech signals.
The high frequency components of signal contain very small amount of signal energy. By rejecting the
high frequency components, the size of input signal is reduced, which reduces the computational time
of matrix factorisation. The signal of lower energy has been separated by using wavelet decomposition.
The present work is done for wideband microphone speech signal and standard audio signal from digital
video equipment. This shows an improvement in the separation capability using the proposed model as
compared with an existing one in terms of correlation between separated and original signals. Obtained
signal to distortion ratio (SDR) and signal to interference ratio (SIR) are also larger as compare of the
existing model. The proposed model also shows a reduction in computational time, which results in faster
operation.
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1. Introduction

The problem of mixed signal separation have been
attracting researchers for a long time. Non-negative
matrix factorisation (NMF) has emerged for the use
of source separation (Lee, Seung, 1999; Paatero,
Tapper, 1994). Initially used for mathematical com-
putation, NMF has now found its application in the
field of various source separations. NMF factorises
a two dimensional matrix into its components and their
weights. For speech signals, the spectrogram magni-
tude can be considered as primary two-dimensional
matrix. As speech signals are sparse in nature, sparse
NMF is applied for factorise it (Benetos et al., 2006;
Demir et al., 2013; Schmidt, Olsson, 2006).
Proper factorisation of matrix is a time consum-

ing process because it needs hundreds of iterations.
Numbers of computations in single iteration depend
upon the number of input samples. By ignoring the
data which consists of negligible signal energy, how-
ever, the number of samples for operation can be re-
duced. Although an audio signal has frequencies in

the range of 20–20 000 Hz, most of the information
of speech signal is contained in the lower frequencies.
In practice, higher frequencies are mostly affected by
real time random noise (generated by recording camera
and environment), therefore, by processing only lower
frequency samples, faster operation may be achieved
without any noticeable degradation in the quality of
separation.
Initially, sparse NMF was used to separate mixed

images. Hoyer (2004) reported successful implemen-
tation of NMF with sparse constraints for image sep-
aration. The use of NMF for speech application and
its advantages over Independent Component Analysis
(ICA) are reported in (Cho et al., 2003). Benetos
et al. (2006) used sparse NMF (SNMF) application
for classification of individual musical instrument from
a mixed sound.Demir et al. (2013) have shown the de-
mixing of music material made by jingle catalog and
speech using NMF.
Single channel speech separation using sparse NMF

was proposed by Schmidt and Olsson (2006). Re-
cently,Wang et al. (2014) have shown that the perfor-
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mance may be improved with suitable choice of basis
vectors. In the present work a SNMF is used along
with rejection of data which contains negligible energy
to separate two individual signals from a single channel
mixed signal with low processing time.
Correlation between mixed speech signal and orig-

inal signal, SDR, signal to artifacts ratio (SAR), and
SIR between separated signals are found in order to
compare the results of existing and proposed algo-
rithm. In present work it is found that the correlation
between separated and original signals and SDR and
SIR of separated signals is increased as desired. Here,
it is reported that the proposed model is performing
better to separate mixed signal than an existing algo-
rithm based on these parameters. The proposed model
is also showing faster operation, which makes it appli-
cable for real time application.
The paper is organised as follows. In Sec. 2, a brief

review of NMF has been given. In Sec. 3, sparse NMF
with the criterion of choosing of sparse parameter is
elaborated. Designing of model with the help of NMF
and frequency selection using wavelet transform is dis-
cussed in Sec. 4 followed by results and conclusion.

2. Non-negative matrix factorisation

Consider two individual speech source generating
signals s1(t) and s2(t). A microphone is capturing sig-
nal which is a mixture of individual signals as:

s(t) = p ∗ s1(t) + q ∗ s2(t), (1)

where p and q are the scaling factor by which in-
dividual speech signals are affected, which depends
upon the distance of speakers from the microphone.
An NMF factorises the spectrogram magnitude (X)
of the mixed speech signal and has N column vectors
of length M . M depends on the frequency resolution
taken at the time of Short Time Fourier Transform
(STFT), whereas N depends upon the length of speech

Fig. 1. Non-negative matrix factorisation of a speech signal represented by three basis vectors.

signal. All elements of the matrix X are non-negative.
The NMF factorises X as follows:

X = [W ] [H ], (2)

where the basis matrixW is ofM×K order and weight
matrixH is of K×N . K is the number of basis vectors
for X. The size of K should be less or equal to min
(M , N).
To find out closest factorisation, a cost func-

tion between U and V (U is original spectrogram
magnitude matrix and V is reconstructed spectro-
gram magnitude matrix) is defined in terms of Eu-
clidean distance, i.e.,

∑
i,j

(Ui,j − Vi,j)
2, however, for

speech/audio applications Itakura-Satio or Kullback-
Leibler (K-L) divergence is often found to be more suit-
able (Nasersharif, Abdali, 2015; Févotte et al.,
2009; Lee, Seung, 2000). K-L divergence is defined as:

D(U‖V) =
∑

ij

(
Uij log

Uij

Vij
− Uij + Vij

)
. (3)

As U and V are not symmetric, so D(U‖V) is not
termed as Euclidean distance but it is also lower bound
by zero at U = V. For better approximation of fac-
torisation of signal X (Eq. (2)), D(X‖WH) should be
minimised (Zhu et al., 2013). Initially, random values
of M × K dimensions are assigned to W, and H is
calculated accordingly. This random initialisation af-
fects the quality of factorisation. Better initialisation
of basis vector may lead to better approximation. Di-
vergence may be minimised by updating either basis
vectorsW or their weight H, or both W and H. For
finding basis vectors of individual training signals, up-
date in both W and H is required. This will provide
most appropriate basis vectors. Consider spectrogram
magnitude of signals s1(t) and s2(t) as X1 and X2.
Then X1 and X2 may be given by:

X1 = [W1] [H1] , X2 = [W2][H2]. (4)
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By concatenating basis vectors of both the signals,
a weight matrix for the mixed signal is found as:

[W ] = [W1 W2]. (5)

According to the generated basis vector of the
mixed signal, the weight matrix will be calculated us-
ing SNMF. The source separation from extracted W
and H matrix is done by separating signal portions as
shown here:

X = [W1 W2]

[
H1

H2

]
= X1 +X2. (6)

Number of basis vectors K also affects the per-
formance of NMF. A small value of K will result in
greater error because limited number of basis vector
may not be able to represent the original signal. For
large value of K, the signal extraction does not im-
prove much, while the computational time increases
drastically. Wang, Sha (2014) reported the effect of
number of basis vectors used for defining any signal.

3. Sparse NMF

One major drawback of conventional NMF is its in-
ability to use the sparseness between different speech
signals. Actually conventional NMF is not bothered
about the sparseness of individual signals, which re-
duces the quality of separation. As speech signals are
having sparse characteristics, so it will have sparse rep-
resentation of data. By adding sparseness constraint
in to NMF, controllability over sparse representation
of output can be extended (Wang, Sha, 2014; Kim,
Park, 2008). Sparsity can be imposed on the weight
matrix with the help of sparse parameter. Here sparse
parameter is represented by γ.
The divergence formulation stated in Eq. (3) is

modified into (7) as:

min
W,H

D (X‖WH)=min
W,H


‖X−WH‖2F+γ

∑

i,j

Hi,j


,

W,H ≥ 0,

(7)

where ‖ . ‖F is denoting the Frobenius norm. The
sparse parameter affects the weight matrixH and basis
vectorW as described in Eqs. (8) and (9) respectively:

Hi,j ← Hi,j ∗
XT

i W j

[WH ]Ti Dj + γ
, (8)

Wj ← Wj ∗
∑

i Hi,j

[
Xi + ([WH ]

T
i W j)W j

]

∑
iHi,j

[
[WH ]i + (XT

i W j)W j

] . (9)

The sparse parameter γ is chosen as larger when
stronger sparsity exists but it leads to relatively poor

approximation, while smaller values of γ can be used
for better accuracy of approximation but the number
of iterations to reach the minima of cost function is
increased. Time taken for processing the signal can also
be managed by choosing a proper sparse parameter
(Hoyer, 2004; Kim, Park, 2008).

4. Frequency selection based speech separation

After analysing approximately 240 speech signals of
2 to 3 seconds from 30 different speakers (both males
and females) with the sampling frequency of 16 kHz
and 48 kHz (wideband microphone speech signal and
standard audio signal from digital video equipment),
it has been found that more than 95% of signal energy
is contained in the lower 50% frequency band of signal.
For reference a speech signal of English digit ‘one’ ‘two’
‘three’ ‘four’ sampled at 16 kHz and 48 kHz and their
wavelet decompositions are shown in Fig. 2.

a)

b)

c)

Fig. 2. Speech signals plot for digits ‘one’ ‘two’ ‘three’
‘four’ sampled at 16 and 48 kHz, respectively: a) input sig-
nals, b) signals containing low frequencies from 0–4 kHz
and 0–12 kHz, c) signals containing high frequencies from

4–8 kHz and 12–24 kHz, respectively.

Figure 2a shows the original signals sampled at
16 kHz and 48 kHz in 1st and 2nd row. Signal of lower
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Fig. 3. Proposed model for speech separation.

Fig. 4. High frequency signal separation model.

half frequencies denoted by ‘A’ and signal of higher
half frequencies ‘D’ is shown in Fig. 2b and Fig. 2c,
respectively.
The proposed speech separation model is a casca-

ded structure. The first stage of the model is a system
based on wavelet decomposition. Second stage sepa-
rates the speech signal using SNMF. The frequency
components containing higher amount of signal energy
are sent for further processing, whereas the remaining
signal components are kept for the reconstruction of
signal at output as shown in Fig. 3.
To reduce the size of signal for separation, sig-

nals are filtered by wavelet decomposition consisting
of a low pass and a high pass filters followed by down
sampler. A signal coming from lower 50% of frequency
band is sent for factorisation. A high frequency sig-
nal is considered as noise and replaced by zero of the
same length. Spectrograms of low frequency signals are
obtained by short time Fourier transforms (STFT).
Sparse NMFs (SNMFs) factorize the spectrogrammag-
nitude matrix X into X1 and X2. After factorisation,
speech signals are obtained from X1 and X2 by inverse
STFT (ISTFT). Separated speech signals s1 and s2 are
reconstructed by inverse wavelets.
In this paper, high frequency signal separation is

also tried in place of zero replacement for high fre-

quency speech signals as shown in Fig. 4. The sepa-
rated high frequency signals are recombined with low
frequency separated signals using IDWT.

5. Evaluation parameters

5.1. Correlation value

The correlation value of mixed and separated sig-
nals with individual signals (1st and 2nd signals)
has been calculated by using the following expression
(Walpole et al., 2011):

r =
n
∑

xy −
∑

x
∑

y√[
n (
∑

x2)− (
∑

x)
2
] [

n (
∑

y2)− (
∑

y)
2
] , (10)

where r is the sample correlation coefficient, n is the
sample size, x is the value of the 1st variable, y is
the value of the 2nd variable.

5.2. Global performance measures
of source separation

The common distortion measures SDR, SIR, SAR
are described in Eqs. (11)–(13), see (Vincent et al.,
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2006) by using (Févotte et al., 2005). The parameters
are defined as:

SDR ∆
= 10 log10

‖st‖2

‖einterf + eartif‖2
, (11)

SIR ∆
= 10 log10

‖st‖2

‖einterf‖2
, (12)

SAR ∆
= 10 log10

‖st + einterf‖2

‖eartif‖2
, (13)

where ŝi = st + einterf + eartif is the estimated/recon-

structed signal, st
∆
= 〈ŝi, si〉si is the targeted source,

einterf
∆
= 〈ŝi, si′〉si′ is the interference error, eartif ∆

=
ŝi − (st + 〈ŝi, si′〉si′) is the artifacts error, si′ are the

input signals other than si, 〈a, b〉 :=
T−1∑
t=0

a(t)b(t) is the

inner product between two signals a and b of the same
length and b is a complex conjugate of b.

5.3. Computational time

The implementation of the proposed method was
carried out on MATLAB 2011a working on 64 bit Win-
dows 7 operating system running on a 1.9 GHz Intel i7
processor with 4 GB RAM. The computation for sep-
aration time of mixed speech data is done. Time con-
sumed to find the basis vectors from training signal is
not considered because it is assumed that these vectors
will be recorded already and then any source separa-
tion technique will be applied.

6. Simulations and results

To evaluate the performance of the proposed ap-
proach, simulations have been performed on speech sig-
nals from TIMIT database which contains wideband
microphone speech signals sampled at 16 kHz. Fur-
ther the speech signals of digital video equipment sam-

Table 1. Performance of the existing model and proposed model for separation of mixed signal for 16 kHz sampled signal.

Gender Separation time [s] Corr 1st mix Corr 2nd mix Corr 1st x1 Corr 2nd x2 SDR [dB] SIR [dB] SAR [dB]

Existing Model (without using Wavelet Decomposition)

MM 0.89416 0.65814 0.72128 0.71074 0.766438 1.912557 3.654271 9.003129

FF 0.95930 0.69155 0.70432 0.76841 0.783969 2.867325 5.249127 8.435939

MF 0.92917 0.62508 0.75723 0.82236 0.870187 5.266586 8.906659 8.672519

Proposed Model (using Wavelet Decomposition)

MM 0.47996 0.65814 0.72128 0.72100 0.784089 2.464281 5.316304 7.535073

FF 0.49931 0.69155 0.70432 0.76401 0.768281 2.9944 6.211138 7.537197

MF 0.48005 0.62508 0.75723 0.83347 0.866885 5.792528 10.80475 8.193429

Signal Separation of Both Lower and Higher Frequency Components

MM 1.28554 0.65814 0.72128 0.70301 0.75841 1.890813 5.233115 7.620994

FF 0.90763 0.69156 0.70433 0.76826 0.78443 3.058805 5.978104 7.848247

MF 0.86949 0.62509 0.75723 0.83382 0.87869 5.79779 10.46752 8.383128

pled at 48 kHz are taken for simulation from Aligarh
Muslim University Audio Data Library (AMUADLib)
(Upadhyaya et al., 2013). AMUADLib contains 2
common and 8 different sentences by 100 speakers
of both genders. 400 and 2368 combinations of male-
female, 180 and 1856 combinations of female-female
and 180 and 4228 combinations of male-male speakers
of 16 kHz and 48 kHz sampled sentences are taken for
analysis of models, respectively. The average length of
individual speech signals taken for the experiment is
2.1 seconds from TIMIT data and 2.55 seconds from
AMUADLib. As each sentence has a different length
so zero padding is applied for addition of both signals.
From AMUADLib, Hindi and English digits data

(‘Ek’ ‘Do’ ‘Teen’ ‘Char’ ‘Paanch’ ‘Chai’ ‘Saat’ ‘Aath’
‘Now’ ‘Dus’ and ‘one’ ‘two’ ‘three’ ‘four’ ‘five’ ‘six’
‘seven’ ‘eight’ ‘nine’ ‘ten’) have been taken for training
purpose from each speaker. From TIMIT database
eight sentences have been taken for training purpose
from each speaker. The average length of a training
signal is about 8.8 seconds. 512 point Fast Fourier
Transform with 50% overlap was used to find STFT
with window size of 10 milliseconds. Based on these
training signals, basis vectors are found using SNMF
as described in Sec. 3. Here the number of basis
vector taken is K = 100. The sparseness parameter
is fixed for our simulation purpose, i.e., 0.5, which
is enough to separate sparse signals with a moderate
computational time.
A speech signal mixture of male-male (MM), male-

female (MF) and female-female (FF) has been sepa-
rated with and without using the frequency based se-
lection (Wavelet Decomposition). Table 1 can be used
for comparing the overall performance of the existing
model with the proposed model for 16 kHz. Table 1
also contains the results for the model in which the
high frequency signals are separated and the individ-
ual signals reconstructed using IDWT with separated
low frequency signals.
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Separation time is the time required to separate
mixed signals using the given algorithm in seconds.
Corr 1st mix and Corr 2nd mix are the correlation co-
efficients of the first speaker’s signal with mixed speech
signal and second speaker’s signal with mixed speech
signal, respectively. After the separation of signals at
the output end, Corr 1st x1 and Corr 2nd x2 are cal-
culated to show the correlation coefficients of the first
speaker’s input signal with the first separated signal
and the second speaker’s input signal with the second
separated signal, respectively. All results are the aver-
age of 5 random initialisations.
The following histogram shows the average correla-

tion improvement in percentage using the existing and
proposed algorithms (Fig. 5).

Fig. 5. Correlation improvement in percentage of individ-
ual speech signals with mixed signal and separated signals

using the existing and proposed models.

For all cases, 13.76% and 14.27% average improve-
ment is found in correlation between the original and
separated signals using the existing and proposed mod-
els, respectively. Correlation improvement by high fre-
quency signal separation model is 13.97%, which is bet-
ter than the existing algorithm but not better than the
proposed model.
Figure 6 shows the improvement in SDR and SIR

using the proposed model in comparison with the exist-
ing algorithm. The results matched to our expectations
in terms of SDR and SIR. However, the proposed algo-
rithm leads to some artifacts result in lower SAR. The
higher SIR and lower SAR are due to the lower pro-
jection of the reconstructed signal to the other signals
than the original individual required signal 〈ŝi, si′〉.
A lower projection leads to a low interference but
higher artifacts error.
SDR of the same gender after separation is 2.38 dB

and 5.27 dB for the opposite gender using the exist-
ing model, where the proposed model shows 2.72 dB
SDR for the same gender and 5.79 dB for the opposite
gender. SIR is also improved from 4.43 dB to 5.76 dB
for the same gender and 8.90 dB to 10.80 dB for the
opposite gender. But SAR is reduced from 8.72 dB to
7.53 dB for the same gender and 8.67 dB to 8.19 dB
for the opposite gender. For high frequency separa-
tion models, SDR for the same and opposite genders

a)

b)

c)

Fig. 6. Comparative performance evaluation of the existing
and proposed models using: a) signal to distortion ratio,
b) signal to interference ratio, c) signal to artifacts ratio.

is 2.40 dB and 5.80 dB, respectively. SIR for the same
and opposite genders is 5.50 dB and 10.46 dB, respec-
tively. And SAR for the same and opposite genders is
7.70 dB and 8.38 dB, respectively.
As the basis vectors of training signals considered

in the data set, the time taken for extraction of the
basis vector is not considered in the calculation. How-
ever, all the above results may change slightly in every
experiment, as these are highly dependent upon the
initialisation of the basis vector taken by the system.
As mentioned earlier, the test signals have the av-

erage time duration of 2.55 seconds. It takes for the
existing model about 0.92 seconds to separate two sig-
nals using the given system configuration, whereas it
takes around 0.49 seconds for the proposed model and
around 0.91 seconds for the high frequency signal sep-
aration model, as shown in Fig 7. The proposed model
reduces the time requirement to separate signals by
approximately 46.73%.
All results show that the high frequency signal sep-

aration model is better than the existing model but the
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Fig. 7. Computational time to separate signals from the
mixed signal using the existing and proposed models.

results are not so remarkable with negligible improve-
ment in the computational burden. So, further simula-
tions for the mixed speech signal sampled at 48 kHz are
performed on the existing and proposed models only.
Table 2 can be used for comparing the overall perfor-
mance of the existing model with the proposed one for
48 kHz.
Figure 8 shows the average correlation improve-

ment in percentage using the existing and proposed
algorithms for speech signals sampled at 48 kHz.

Fig. 8. Correlation improvement in percentage of individual
speech signals with mix signal and separated signals using

the existing and proposed models.

For all cases, 8.96% and 10.23% average improve-
ment is found in correlation between the original and
separated signals using the existing and proposed mod-

Table 2. Performance of existing model and proposed model for separation of mixed signal for 48 kHz sampled signal.

Gender Separation time [s] Corr 1st mix Corr 2nd mix Corr 1st x1 Corr 2nd x2 SDR [dB] SIR [dB] SAR [dB]

Existing Model (without using Wavelet Decomposition)

MM 3.24725 0.70144 0.68516 0.75158 0.73708 1.68318 2.88217 10.0829

FF 3.26976 0.70009 0.70061 0.75468 0.75515 1.11444 2.41860 8.73423

MF 3.47564 0.70729 0.68841 0.79254 0.76728 2.44976 4.09292 9.39623

Proposed Model (using Wavelet Decomposition)

MM 1.61918 0.70144 0.68516 0.75821 0.73992 2.11094 3.90159 8.73423

FF 1.63695 0.70009 0.70061 0.75364 0.75872 1.23419 3.06655 7.80943

MF 1.74793 0.70729 0.68841 0.81369 0.77920 3.10664 5.52209 8.25576

els, respectively. It can be said that the proposed algo-
rithm performs 1.23% better than the existing one.
Figure 9 shows the improvement in SDR and SIR

using the proposed model in comparison with the ex-
isting algorithm.

a)

b)

c)

Fig. 9. Comparative performance evaluation of the existing
and proposed models using: a) signal to distortion ratio,
b) signal to interference ratio, c) signal to artifacts ratio.
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SDR of the same gender after separation is 1.4 dB
and for the opposite gender it is 2.44 dB using the ex-
isting model, where the proposed model shows 1.67 dB
SDR for the same gender and 3.10 dB for the opposite
gender. SIR is also improved from 2.65 dB to 3.48 dB
for the same gender and 4.09 dB to 5.52 dB for the
opposite gender. But SAR is reduced from 9.4 dB to
8.26 dB.
As mentioned earlier, the test signals have the av-

erage time duration of 2.55 seconds. It takes about
3.33 seconds for the existing model to separate two
signals using the given system configuration, whereas
it takes around 1.67 seconds for the proposed model,
as shown in Fig. 10. The proposed model reduces the
time requirement to separate signals by approximately
49.89%. This result may lead to real time speech sep-
aration using small packets of mixed speech signal.

Fig. 10. Computational time to separate signals from the
mixed signal using the existing and proposed models.

Performance of the algorithm also depends upon
the intensity (loudness) of the speech signal and differ-
ence in formant frequencies of speakers. If the inten-
sity of speech signals by two speakers is very different
then there may be a problem of masking, which re-
sults in poor separation of speech signals. Moreover, if
formant frequencies of the speech signals are different
then the quality of speech signals separation will be
better.
As the energy content of speech signal is more in

1st and 2nd formant frequencies (Reetz, Jongman,
2011), the relationship between the difference of 1st
and 2nd formant frequency (fd1 and fd2) of two indi-
vidual speech signals and the average improvement in
terms of correlation of individual signals from the ex-
periment is reported in Fig. 11, where fd1 and fd2 are
calculated as:

fd1 = 1st formant frequency of one speech signal

− 1st formant frequency of other speech signal,

fd2 = 2nd formant frequency of one speech signal

− 2nd formant frequency of other speech signal.

This shows that the average improvement in corre-
lation between separated and original signals increases

a)

b)

Fig. 11. Difference of (a) 1st and (b) 2nd formant
frequencies of individual signals v/s correlation

improvement after separation.

with the increment in difference of 1st and 2nd for-
mant frequencies of both individual original signals,
respectively.

7. Conclusion

Noise generated by microphone at the time of
recording contains high frequencies components. By re-
moving them using the wavelet decomposition, separa-
tion of mixed speech signal is done with improvement
in performance over the existing algorithm in terms of
correlation, SDR, and SIR. This also results in a lower
execution time of the algorithm. The effect of formant
frequencies over separation capability of the proposed
model is also shown. It is also reported that for better
separation of the mixed signal, the intensity of speak-
ers should be nearby equal and the formant frequencies
should have enough difference.
However, a lot of improvisation can be carried

out to improve the performance and speed of separa-
tion. Better initialisation leads to earlier optimization,
which reduces the number of iterations to optimise the
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cost function and better separation. The selection of
the proper sparse parameter according to speech sig-
nals which are mixed together is the issue to solve.
It may also play an important role in proper and fast
finding of the weight matrix.
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