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Recent implementations of Sigma-Delta (Σ∆) converters have achieved low cost, low power consump-
tion, and high integration while maintaining resolution as high as in Nyquist-rate converters. However, its
usage implies demodulating the source signal delivered from Σ∆ modulation to Pulse-Code Modulation
(PCM) on a pre-processing stage. This work proposes an algorithm based on Discrete Cosine Transform
for impulsive signal detection to be applied directly on a modulated Σ∆ bitstream, targeting to reduce
computational cost in acoustic event detection applications such as gunshot recognition systems. From
pre-recorded impulsive sounds in Σ∆ format, it has been shown that the new method presents a simi-
lar error rate in comparison with traditional energy-based approaches in PCM, meanwhile, it reduces
significantly the number of operations per unit time.
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1. Introduction

Impulsive sound signals is a category of audio sig-
nals characterised by an abrupt rise in amplitude, im-
mediately followed by an under-damped motion or ex-
ponential decay, as shown in Fig. 1. Claps, glass break-
ing, hamming, and door slams are examples of every-
day impulsive sound sources. When an impulsive signal

Fig. 1. Impulsive sound signal waveform of 0.40 semi-
automatic pistol gunshot sampled at a 8 kHz rate.

reaches high power values, it may indicate abnormal
events in several environments and human tasks, such
as building collapses, gunfires, and explosions in fac-
tories. Systems to automatically detect these signals
may be useful for monitoring emergency situations.
Impulsive signal detection has been addressed by

several works based on a variety of approaches, in-
cluding power (or amplitude) analysis, Wavelet Trans-
form, correlation, and statistical methods (Chacón-
Rodŕıguez et al., 2011; Kauppinen, 2002). Tech-
niques that rely on power assessment have presented
lower computational cost at an acceptable performance
as compared to statistical approaches.
These power-based methods are typically imple-

mented by means of a power estimator followed by
an onset detector, setting thresholds to activate the
detector when limits for power and power slope are
reached simultaneously (Chacón-Rodŕıguez et al.,
2011; Dufaux, 2001). Better results were obtained
by implementing adaptive thresholds (Dufaux, 2001;
Sharkey et al., 1996; Showen, Dunham, 1999).
Onset may be found through derivatives, median fil-
ters, and other methods applied to the power signal
(Dufaux, 2001; Kauppinen, 2002).
In general, impulse detection systems that ad-

dress explosion and impact monitoring in large ar-
eas are composed of a central processing unit (CPU)
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– a powerful server-like machine – and an array of
acoustic sensors nodes, whose typical architecture con-
tains a microphone, a microcontroller unit (MCU), and
a transceiver (Wessels, Basten, 2016). When an im-
pulsive signal is detected in an acoustic sensor, the
audio is transmitted to the CPU where a pattern clas-
sifier is run. If an emergency is detected, signals from
different sensors are used to triangulate the source.
Despite the fact that CPU performs the most com-

putationally demanding tasks and runs important de-
cision algorithms, sensor nodes have bigger impact
on system performance and cost. Sensors are spread
throughout the monitored area such that there are in-
tersection regions to allow triangulation. The overall
system cost is then directly linked to the trade off be-
tween microphone quality, impulse detection efficiency,
nodes separation, and MCU cost.
Categories of converters and microphones that

present features compatible with those mentioned for
sensor nodes are Σ∆ ADCs and micro-electrome-
chanical systems (MEMS) microphones, respectively.
Both have been used in a broad range of applications
due to their low cost, high quality, and high integra-
tion. Currently, semiconductor companies have man-
ufactured MEMS microphone, pre-amplifier, and Σ∆
ADC in a single integrated circuit.

Σ∆ modulation, also known as Pulse-Density Mod-
ulation (PDM), represents analog amplitude levels as
a density of bits in a bitstream. Modulation process
can be modelled as an oversampled ADC (at MHz
range), single-bit quantiser and error feedback loop.
This feedback implements the noise shaping technique
that pushes the quantisation noise, generated by the
low resolution, to higher frequencies and leaves the
baseband almost intact. Therefore, conversion from
Σ∆ to PCM can be performed by means of a low pass
filter followed by a downsampler.
An efficient method to filter and decimate with low

computational cost, often used in Σ∆ demodulation, is
the Cascaded-Integrator Comb (CIC) filter. CIC deci-
mators are implemented only with adders, decreasing
the total number of operations substantially (Park,
1991). However, their passbands are not flat, requir-
ing an additional compensation FIR stage. Figure 2
illustrates a CIC decimator structure.

Fig. 2. CIC decimator structure for converting from Σ∆ to
PCM.

In this work, we propose an algorithm to detect
impulsive sound signals directly in Σ∆ format. It has

been shown that the proposed technique, which is
based on DCT, reduces computational cost without in-
creasing the error rate when compared to the reference
architecture described in Sec. 2. The final goal is to
enable sensor nodes to be implemented using MEMS
microphones with built-in Σ∆ converters, taking all
of their advantages as well as relaxing MCU require-
ments.

2. Reference architecture for impulse detection

in Σ∆ signals

Throughout this work, the system depicted in
Fig. 3 has been chosen as the reference architecture for
impulse detection in Σ∆ modulated signals. The mod-
ules presented in Fig. 3 are described in this section
and comprise three processing stages: a Σ∆ demod-
ulator, power estimator, and abrupt change detector.

Fig. 3. Reference architecture for this work.

The Σ∆ demodulator has been implemented using
the CIC filter structure shown in Fig. 2. The number of
integrators and comb pairs must be chosen according
to demodulator requirements and signal characteris-
tics, such as oversampling ratio, noise shape, output
bits, and phase linearity. Fourth order CIC filters are
suitable for most applications of Σ∆ demodulator.
Since impulsive sounds are generally aperiodic, sig-

nal power has been estimated with successive compu-
tation of time average of the energy within LP sample
windows, as given by:

Eavg[k] =
1

LP

LP−1∑

n=0

x2[kLP + n]. (1)

The abrupt change detector has been implemented
based on the Conditional Median Filter (CMF), in-
troduced by Kasparis et al. (1992). Firstly, in CMF,
a median filter is applied to the power estimate se-
quence delivered by the previous stage, as in the ex-
pression below:

MF[k] = median {Eavg[i] | i = k−LM−1, ..., k} . (2)

Then, a threshold is applied to the median filter
output, targeting to recover the power sequence but
removing impulsive noise by detecting abrupt transi-
tions, as follows:
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CMF[k]=





MF[k], if |MF[k]−Eavg[k − d]|
< Rth,

Eavg[k−d], otherwise,
(3)

where d is d = (Lm − 1)/2 and Rth is a threshold for
abrupt transitions. In case of adaptive threshold, this
result might be used to estimate long term background
noise power. For impulse detection, a binary version of
CMF has been implemented as follows:

BCMF[k]=

{
0, if |MF[k]−Eavg[k − d]| < Rth,

1, otherwise.
(4)

Therefore the reference architecture has been im-
plemented using (1), (2), and (4). In these equations,
LP and LM determine the maximum impulse width
detectable by the system, since the median filter only
removes impulses with duration shorter than LM/2.
Rth must be chosen according to the average power of
both impulses and background noise.
A simulation example for the reference architecture

presented in this section is shown in Fig. 4. The gener-
ated input signal has two impulsive events and a sinu-
soid fragment between them (Fig. 4a). Note in Fig. 4b
that although the impulses and the sinusoid have their
power represented by the power estimator, impulses
are removed from the median filter’s output. Due to
this, only two impulses are detected on the threshold
module described by (4).

a)

b)

Fig. 4. Application example of the reference architecture:
a) simulated input signal with two impulses and a sinusoid
in between; b) outputs of power estimator, median filter,

and CMF.

3. Proposed method

3.1. Feature extraction

As mentioned before, the fast rise in energy is a very
peculiar characteristic of impulsive signals. According

to Parseval theorem, this abrupt energy transition in
time domain must be reflected by an abrupt energy
transition in frequency domain, if Fourier transforms
are taken immediately before and after the impulse
onset.
In order to detect impulses in a Σ∆ signal, only

the energy in a narrow frequency range should be ob-
served due to its high frequency quantisation noise.
For example, most gunshots have their energy con-
centrated below 2 kHz, with peaks ranging from 500
to 600 Hz (Graves, 2012;Millet, Baligand, 2006).
This represents less than 1% of the spectrum in a Σ∆
signal sampled at 512 kHz, making frequency selection
a hard task to be performed in discrete time domain,
as discussed in Sec. 1. In frequency domain, a straight-
forward strategy would be to use a Discrete Fourier
Transform (DFT). Calculating a complete DFT for
a wideband signal, with interest in only a few terms,
is a very complex and wasteful operation.
Simpler and more efficient mathematical tools to

represent the energy content of a signal are the Discrete
Cosine Transform (DCT) and Discrete Sine Transform
(DST) (Ahmed et al., 1974; Britanak et al., 2010;
Rao, Yip, 2014). Both transformations create a modi-
fied magnitude/frequency signal representation by cor-
relating it, over time, with cosine and sine functions,
respectively. DCT/DST has 16 different implementa-
tions, each one considering special boundary condi-
tions on the finite input signal to form a periodic and
symmetric sequence (Britanak et al., 2010).
The DCT of type II (DCT-II) is the most used

among DCTs and DSTs, mainly in audio and image ap-
plications due to its energy compaction property that
allows signals to be represented using fewer compo-
nents, if compared to DFT (Khayam, 2003). For an
N point sequence x[n], the direct form of DCT-II is
defined as (Oppenheim et al., 1989):

Xc2[k] = 2

N−1∑

n=0

x[n] cos

(
πk(2n+ 1)

2N

)
,

0 ≤ k ≤ N − 1.

(5)

The DCT-II transform produces coefficients that
are related to 2N -point DFT of a x2[m] sequence,
formed from zero padding x[n]. BeingX2[k] the DFT of
x2[m], Xc2[k] can be expressed as (Oppenheim et al.,
1989):

Xc2[k] = 2Re
{
X2[k]e

−jπk

2N

}
, k = 0, ..., N−1. (6)

This expression suggests that there is a close rela-
tionship between the DCT-II components and the sig-
nal spectrum. Squaring both sides of (6) and applying
trigonometric identities, we receive:
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(
Xc2[k]

)2
= 2 (Re{X2[k]})2

(
1 + cos

(
πk

N

))

+2 (Im {X2[k]})2
(
1− cos

(
πk

N

))

+4Re {X2[k]} Im {X2[k]} sin
(
πk

N

)
. (7)

Similarly to DFT, a low pass filter may be imple-
mented by computing only a few DCT components.
Due to the narrow baseband of Σ∆ signal and DCT
energy compaction property, very few components may
be computed for such a filter. This implies that πk ≪
N , then cos

(
πk
N

)
≃ 1 and sin

(
πk
N

)
≈ 0. Thus, (7) may

be reduced to:

(Re {X2[k]})2 ≈
(
Xc2[k]

)2

4
. (8)

Urban and countryside atmospheres are random
medium for sound waves, due to the non-uniform pres-
ence of buildings, trees, mountains, and some mov-
ing objects that change wave characteristics through
physical phenomena such as reflections, scattering,
and dispersion. According to Ishimaru (1978), these
kinds of media vary in time and space, making
sound amplitude and phase to fluctuate randomly. For
a fixed source/receptor configuration, atmospheric tur-
bulence may also cause signal variability between dif-
ferent emissions, as recently observed by Cheinet and
Broglin (2015).
In this scenario, if the phase is considered to have

approximately random uniform distribution through
frequency domain and for different time frames, we can
also consider that energy, for a given time window, is
evenly distributed between real and imaginary compo-
nents of DFT. Based on this assumption, energy may
be estimated as:

Ex2 ≈
1

2N

2N−1∑

k=0

2 (Re {X2[k]})2

≈ 1

2N

2N−1∑

k=0

2 (Im {X2[k]})2 . (9)

Since x2[m] and x[m] have the same energy and
their spectra are symmetric, the estimator may be
rewritten, arbitrary choosing the real term, as:

Ex ≈
2

N

N−1∑

k=0

(Re {X2[k]})2 . (10)

Replacing the result of (8) in (10), the DCT Energy
Estimate (DEE) is introduced:

DEE =
1

2N

kmax∑

k=kmin

(Xc2[k])2, (11)

where kmax is the maximum selected component and
kmin is the minimum selected component.
DEE can be used as an power estimate for a se-

lected range within a Σ∆ signal. This estimator works
over the following assumptions:

• πk ≪ N ;

• the baseband signal phase has an approximately
random uniform distribution throughout fre-
quency and time domains.

The first statement is generally true, once Σ∆
signal is modulated using a high oversampling ratio.
The second statement will be further analysed in Sub-
sec. 4.2.

3.2. Impulse detector architecture

The proposal herein is to replace both the Σ∆ de-
modulator and discrete power estimator of the refer-
ence architecture (Fig. 3) by DEE presented in (11).
Figure 5 illustrates the proposed architecture for im-
pulsive signal detection in Σ∆ signals.

Fig. 5. Proposed impulsive signal detector architecture.

This replacement relies on the fact that DEE pro-
duces energy signals whose shapes are similar to those
of the conventional method. If waveforms are pre-
served, impulses’ characteristics in the energy signals
are also preserved, allowing CMF (described in Sec. 2)
to detect impulsive activities with a performance close
to that obtained by the reference architecture. The
main characteristics that must be preserved in the sig-
nal delivered by DEE are rise time, duration, and SNR.
The time frame length used in the demodulated

signal must be also used when estimating energy with
DEE in Σ∆ domain. That means the number of sam-
ples analysed should increase by the oversampling ratio
to keep the same frame duration.
Note that the proposed architecture does not con-

vert Σ∆ into PCM in any step of processing. Once
detected an impulse, the audio signal may be trans-
mitted to the CPU for further processing.

3.3. Computational budget decrease

To evaluate the advantage of the proposed detec-
tor against the reference architecture, the DEE mod-
ule in Fig. 5 is compared to a CIC decimator, as de-
picted in Fig. 2, in conjunction with the discrete power
estimator of (1).
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A CIC decimator of LCIC stages, as in Fig. 2,
has LCIC additions before decimation and LCIC addi-
tions after it. For a Lcomp th-order compensation filter,
there are also (Lcomp + 1) multiplications and Lcomp

additions after decimation. Therefore, for a oversam-
pling ratio of M , it has LCIC +

LCIC+Lcomp

M additions
and Lcomp+1

M multiplications per unit time (sampling
period at Nyquist rate). The power estimator over

Lp PCM samples requires
(

1
M + 1

LpM

)
multiplications

and
(

1
M − 1

LpM

)
additions per unit time.

Each DCT component in DEE expression requires
(kmax − kmin) multiplication and (kmax − kmin) ad-
ditions per unit time. Thus, DEE requires (kmax −
kmin)(1 + 1

LpM
) + 1

LpM
multiplications and (kmax −

kmin)(1 +
1

LpM
)− 1

LpM
additions per unit time.

Multiplication on 1-bit streams can be replaced by
conditional statements when computing DCT compo-
nents. This way, multiplications per unit time reduce
to kmax−kmin

LpM
+ 1

LpM
in the proposed one.

Figure 6 shows the number of operations as a func-
tion of the oversampling ratio for both reference archi-
tecture and proposed method. CIC and DEE param-
eters were assumed to be LCIC = 8, Lcomp = 8 and

a)

b)

Fig. 6. Number of operations as a function of oversam-
pling ratio M , assuming LCIC = 8, Lcomp = 8 and
(kmax − kmin) = 3 for M = 32. As M increases, theses
parameters have been increased in the same proportion.

A constant Lp of 32 was used.

(kmax − kmin) = 3 for M = 32. These parameters were
increased at the same ratio as M in order to preserve
the spectral characteristics for the two systems. The
baseband processing frame, Lp, was fixed to 32. Note
that the proposed method needs power operations in
the considered range of M and the difference in the
number of summations increases with M .
For instance, if M = 64, LCIC = 16, and Lcomp =

16 the power estimator using the CIC decimator re-
quires 0.26 multiplications and 16.50 additions per unit
time. For the same case, an energy estimator imple-
mented using DEE, as in (11), with kmin = 1 and
kmax = 6, requires 0.01 multiplications and 6 addi-
tions per unit time. We can observe for this case that
DEE requires 63.6% lower additions when compared to
the reference architecture. Multiplications have a mi-
nor impact in both implementations.

4. Experimental results

4.1. Data collection

The dataset used in this work has 42 audio files
containing a total of 407 gunshots, recorded in an
outdoor shooting club. The recording was performed
using a MEMS omni-directional digital microphone,
MP45DT02, mounted on STM32F4 Discovery board
that embeds an ARM based microcontroller, all three
from ST Microelectronics.
The microphone was set to deliver 512 kHz PDM

bit streams which were stored in a raw format for fur-
ther processing. Besides the raw bit streams, a PCM
version of these recordings was also generated by fil-
tering it to 4 kHz and decimating it with a 64 down-
sampling rate.
The firearms used for building this dataset were

0.38 revolvers and 0.40 pistols. Although the shooters
were fixed in their positions, the sounds were collected
from several distances and angles to provide, from
one sample to another, diversity in propagation envi-
ronment and Signal-to-Noise Ratio (SNR). The latter
ranges from 36 to 54 dB.

4.2. Phase randomness and DEE analysis

An evenly distributed energy between real and
imaginary through DFT components is a mandatory
characteristic for the validity of (11). If that happens,
the shape of the energy distribution is preserved even if
only a real or imaginary component is used to compute
its value.
This hypothesis has been evaluated assessing the

similarity between the energy of X2[k] with and with-
out the imaginary component, using cross-correlation.
Since the sound recordings are modulated in Σ∆, only
the first 8 terms of a 2048-point DFT have been used,
corresponding to 4 kHz in X2[k] spectrum.
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For the 42 audio files analysed, the cross-correlation
average is 0.998 out of 1 and standard deviation
of 0.0021. Thus, it is proper to say that the real portion
of the income audio signal may be used to estimate its
energy evolution.
In accordance with the result above, DEE has

shown energy estimations similar to those obtained by
the conventional process of (1), as observed in the plots
of Fig. 7. This similarity indicates that an algorithm
to detect impulses, like CMF, may have suitable per-
formance when using DEE, since rise time, duration,
and SNR of the energy pulses have remained nearly
the same.

a)

b)

Fig. 7. Results for an audio fragment extracted from the
dataset: a) power evolution calculated as in (1) from PCM
signal; b) energy estimated with DEE from Σ∆ bitstream,

for kmin = 1 and kmax = 6.

Note that although there are differences in energy
peaks between the two wave shapes, the impulsive sig-
nature is preserved, allowing this signal to be used for
detecting explosions. Additionally, a difference in scale
was expected, since (1) is a measure of power, while
(11) is an estimation of energy.

4.3. Detection results

The proposed detector and the reference architec-
ture were run over the dataset to detect impulsive
activities. The power-based detector implemented as-
sesses the signal using (1), while the proposed one uses
the DEE. CMFs have been used in both detectors to
highlight abrupt changes in energy.
Energy (or power) has been estimated on time win-

dows of 4 ms, which corresponds to 32 samples for the
power based detector and 2048 for the proposed one.
The median filter length has been set to 11 in the two
implementations. For both detectors, thresholds for en-
ergy/power and impulse measurer have been adjusted
to decrease the False Positive and False Negative Rates

as much as possible for the audio sample with the low-
est SNR.
As expected, the number of DCT components

utilised in DEE has significant influence on the error
rate. Figure 8 shows false positive and false negative
errors as function of kmax, reaching the minimum false
negative error for kmax = 6. If too few components are
used, the spectrum is misrepresented, increasing the
error. On the other hand, too many components may
add Σ∆ quantisation noise, affecting the detection.

Fig. 8. False negative and false positive errors as a function
of kmax (kmin = 1).

Table 1 lists the results obtained by the two ap-
proaches. It can be seen that the proposed architec-
ture has shown an acceptable performance (even bet-
ter) as compared to the power-based implementation
using fewer operation per cycle.

Table 1. Detection results for reference and proposed im-
pulse detectors (kmin = 1 and kmax = 6).

Reference
architecture

Proposed
method

Additions/Cycle 16.5 6

Detected 394 (96.8%) 398 (97.8%)

False Negative 13 (3.2%) 9 (2.2%)

False Positive 17 3

5. Conclusions

In this work, a method to detect impulsive sounds
directly in Σ∆ signals is presented. Experimental re-
sults performed on 42 recordings containing 407 gun-
shots have demonstrated that, in comparison with
the traditional approach, a DCT-based energy estima-
tor has presented an acceptable accuracy and lower
computational cost. The proposed estimator has the
only drawback of requiring to store tens of kilobytes
for coefficients, which is reasonable for memory re-
sources available in the today’s microcontrollers tech-
nology. Evaluated with the same dataset, the proposed
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impulse detector has shown a slightly better perfor-
mance than the reference architecture, performing sig-
nificantly fewer operations per unit time. Although, in
this work, experimental results have been obtained for
gunshot sounds, the proposed algorithm may be appli-
cable to other impulsive events as long as they have
similar waveforms and the parameters are adjusted to
their characteristics.
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