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Çukurova University
Adana, Turkey

(3)Department of Electrical-Electronics Engineering
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Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter
for all speakers. In this paper, speaker models are clustered to obtain better imposter model represen-
tations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from
the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker
models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are
used as background models of their respective speakers. Experiments showed that the proposed method
consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10,
and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is
also compared with the i-vector approach. The three-cluster model achieved the best performance with
a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of
the results are also given.
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1. Introduction

Automatic speaker recognition is a process where
a machine is used to verify, or identify a person’s iden-
tity from his/her voice (Campbell, 1997). In the ver-
ification, decision is made by using two models: one
represents the claimed speaker, and the other rep-
resents the imposters. In the identification, models
of all enrolled speakers in a system are evaluated to
find the identity of an unknown speaker. A speaker
recognition system can be text-dependent, or text-
independent. In the text-dependent, the speaker is lim-
ited in phonetic sense (a fixed sentence, prompted dig-
its etc.) (Bimbot et al., 2004). In the text-independent
systems, a speaker can talk to the system with-
out a constraint. Text-independent recognition is the
more challenging one, since training and test speeches
for a speaker may have different phonetic contents
(Kinnunen, Li, 2010).

Gaussian Mixture Models (GMM) are extensively
used for modeling the feature distributions of speak-
ers in text-independent systems (Reynolds, Rose,
1995). They have become the fundamental tool, be-
cause of their ability to model arbitrary shapes with
a good accuracy (Reynolds, Rose, 1995;Reynolds,
1995; 1997). The Universal Background Model (UBM)
approach, introduced in (Reynolds et al., 2000), fur-
ther improved the popularity of the GMMs for speaker
recognition systems. The UBM consists of many Gaus-
sian components (usually 512 to 2048) to represent the
acoustic space of all available speakers. The GMM-
UBM framework provides the opportunity to adapt
speaker models from the UBM with a little adaptation
data, and almost halves the scoring duration by invok-
ing the connection between the UBM and the adapted
speaker models. Moreover, a UBM model is needed to
extract sufficient statistics for state-of-the-art speaker
recognition systems using Support Vector Machines
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(SVM) (Campbell et al., 2006), joint factor analy-
sis (Kenny et al., 2007; Kenny, 2005), and i-vectors
(Dehak et al., 2011; Richardson et al., 2015).
On the other hand, the identification process can

be very time consuming, especially for a system with
a large population. Therefore, many methods have
been proposed to achieve speed-ups. One of these
methods is the GMM hashing (Auckenthaler,
Mason, 2001; McClanahan, De Leon, 2012;
McClanahan, De Leon, 2015), where top scoring
mixtures for a feature vector can be predicted by
using a GMM that is smaller than the UBM. Another
method is hierarchically clustering the UBM mix-
tures (Xiang, Berger, 2003; Saeidi et al., 2010).
Some of the other methods are speaker clustering
at feature level (Xiong et al., 2006), and speaker
clustering at model level (Beigi et al., 1999; De
Leon, Apsingekar, 2007; Apsingekar, De Leon,
2009). However, there is a tradeoff between the iden-
tification rate and identification time, since not all the
mixtures are scored, or not all the speakers’ models
are considered. Speaker clustering method is also
used to compensate speaker-related effects in speech
recognition recently (Hossa, Makowski, 2016).
In this paper, it is suggested that the verification

systems may also benefit from the speaker model clus-
tering methods. The main idea of the model clustering
in the identification is to reduce the number of candi-
date speakers. Since only the claimed ID’s model, and
an imposter model is taken into account for verifica-
tion, the goal of this paper is to create more accurate
imposter models by clustering the speaker models. For
this purpose, first the speaker models are obtained by
adapting the means of a UBM. Then, speaker models
are represented as mean supervectors, and k-means al-
gorithm is applied to cluster them. The cluster centers
are used as the imposter model of the respective clus-
ters. The main advantage of this method is to acquire
better imposter models, and decreasing the false posi-
tive rates of speaker verification systems. Also, the pro-
posed algorithm shows comparable, or better, results
compared to the i-vector approach, without demand-
ing an excessive training procedure such as i-vectors.
This paper is organized as follows: In Sec. 2, the tra-
ditional GMM-UBM method is revised, and then the
proposed approach is introduced. The experimental re-
sults are given in Sec. 3, the results are discussed in
Sec. 4, and Sec. 5 concludes the paper.

2. Conventional and proposed methods

In this section, first the conventional approach for
modeling the speaker feature distributions is given ac-
cording to (Reynolds et al., 2000), since the proposed
model clustering algorithm is based on the GMM-UBM
method. Then, the proposed approach for clustering
the speaker models is given. Also, differences between

the proposed method and some of the other model
clustering approaches for speaker recognition are men-
tioned.

2.1. GMM-UBM speaker modeling

A GMM is defined by its mixture parameters,
which consists of mixture weights, mean vectors, and
covariance matrices. An M-mixture model can be writ-
ten as

λ = {pi, µi,Σi} , i = 1, . . . ,M, (1)

where λ is the GMM model, i is the mixture index,
pi is the weight, µi is the mean vector, and Σi is the
covariance matrix (usually diagonal) of mixture i, re-
spectively. The weights in a GMM model must sum
to one. These parameters are learnt from the training
data by using the expectation maximization algorithm.
A UBM is intended to represent the acoustic space

of all available speakers, so it is speaker-independent.
In some situations, a speaker’s data may not be suf-
ficient for training his/her own GMM. The speaker’s
model can be adapted from a well-trained UBM, by
using the available speaker-dependent data. Sufficient
statistics, obtained from the speaker-dependent train-
ing data, are used to update the UBM parameters for
mixture i, hence an adapted model is created. All mix-
ture parameters (weights, means, and variances) can
be adapted, but adapting only the means is found to
be more effective (Reynolds et al., 2000). Therefore,
the main approach in the speaker recognition literature
is to adapt only the means, and use the same weights
and variances of the UBM components in the speaker
model. In the verification phase, a feature vector from
an unknown speaker is scored with the UBM model
first. Then, indexes of top scoring N mixtures (where
N is much smaller than the number of all mixtures)
are extracted for the given feature vector, and speaker
model’s score is calculated with only these N mixtures,
instead of scoring all mixtures. In the decision stage,
if the difference between these scores exceeds a thresh-
old, the unknown speaker is verified as whom he/she
claims to be, otherwise, as an imposter. This process
is illustrated in Fig. 1.

Fig. 1. Scoring algorithms of the conventional GMM-UBM
(solid line), and the proposed cluster based method (dashed

line).
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2.2. Clustering speaker models

In the proposed method, a UBM is trained, and
speaker models are adapted (means only) by following
the conventional procedure. After models for all en-
rolled speakers are obtained, their means are divided
(element-wise) by their respective standard deviations
to achieve normalization (Eq. (2))

µ̃i,s =
µi,s

σi
, (2)

where i is the mixture index, s is the speaker index,
µ̃i,s is the normalized mean vector of the i-th mixture
for speaker s, and σi is the standard deviation vector
of the i-th mixture.
The normalized means for each mixture are con-

catenated to construct a mean supervector per speaker.
Then, these supervectors are clustered by using the
traditional k-means algorithm with the Euclidean dis-
tance as the similarity measure (Eq. (3))

Js,c =

S∑

s=1

‖µ̃s − vc‖2, (3)

where c is the cluster index, vc is the vector represent-
ing the center of cluster c, µ̃s is the mean supervector
of speaker s, S is the total number of speakers, and
Js,c represents the distance of speaker s to cluster c.
Each speaker is assigned to the cluster which gives the
minimum Js,c value. Then, the cluster centers are re-
calculated by using Eq. (4)

vc =

(
1

Nc

) Nc∑

s=1

µ̃s,c, (4)

where Nc is the number of speakers assigned to the
cluster c, and µ̃s,c is the mean supervector of speakers
assigned to the same cluster.
Final values of cluster centers (vc supervectors)

are decomposed into mixture mean vectors, and multi-
plied (element-wise) by the standard deviation vector
of their respective components (Eq. (5)). Hence, the
imposter models for each cluster are created. Note that
the mixture weights, and variances are the same as the
speaker models. This process is illustrated in Fig. 2

µi,c = vi,cσi, (5)

where vi,c is the i-th mixture’s mean vector of cluster
c, and µi,c is the final (denormalized) values for the
i-th mixture’s mean vector of cluster c. With this ap-
proach, speakers sharing the similar acoustic space are
assumed to be gathered in the same group by cluster-
ing their models, and this space will be the imposter
model for the speakers in that group, as indicated by
the dashed lines in Fig. 1.

Fig. 2. Block diagram of the proposed method.

Similar clustering methods are proposed in (Ap-
singekar, De Leon, 2009; De Leon, Apsinge-
kar, 2007) for speaker identification, where the Eu-
clidean distances are calculated with weighted mean
vectors, and covariance normalized weighted mean vec-
tors. However, since the speaker models in our system
share the same weights (copied from the UBM), the
distance is calculated solely between the model mean
vectors.

2.3. Comparison with cohort modeling approach

The proposed algorithm is a combination of the
UBM, and cohort methods, from a point of view. The
cohort model represents the acoustic space around
a target speaker by combining the closest speakers
to the target. A cohort model for each individual
speaker is constructed, which is a drawback in the
means of storage, and fair scoring (a speaker’s co-
hort model may not accurately define the acoustic
space around him/her). Although the UBM method
is reported to perform better than the cohort ap-
proach in (Reynolds, 1997), and extensively used for
the reasons mentioned before, cohort imposter mod-
els are still investigated by researchers (Zhu et al.,
2011; McLaren et al., 2010). Combining the UBM,
and the cohort is considered before in the score space
by employing SVM to find an optimum decision value
(Brew, Cunningham, 2009; 2010). However, con-
ventional GMM-UBM scoring process is preferred in
this paper, since it is hypothesized that by increasing
the performance of the traditional method, it is also
possible to achieve a higher performance with more
complex methods that are based on the traditional
UBM (such as SVM machines with mean supervectors,
i-vectors, etc.).
Comparing to the conventional UBM method, the

imposter models now represent not all the acoustic
space, but the acoustic space defined by the speakers
in the cluster. A cohort-like representation is achieved
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by this modeling approach. Furthermore, there is no
need to construct an imposter model for each speaker,
since an imposter model is shared between the speakers
in a group. Therefore, the computational and memory
loads are also reduced in the proposed method.

3. Experiments and results

The NIST SRE 1998 database (available at:
www.nist.gov/speech/tests/spk/1998/current plan.htm,
access date: 05.10.2016) was used to evaluate the per-
formance of the proposed method. The database
contains 250 male speakers and 250 female speakers.
In (Doddington et al., 2000), it is reported that
the difference in the system performance for the
male, and the female speakers is fairly small (Fig. 9,
DET curves named Fem (All), and Male (All) shows
the performances of female, and male speakers,
respectively). Also, the NIST evaluations do not
include cross-gender tests (Doddington et al., 2000).
However, one can create a gender-independent system
by separately training male, and female models, then
combining them (Reynolds et al., 2000). Therefore,
only the male speakers were used in the experiments.
In the database, one-session, two-session, and two-
session-full training conditions are available, as well.
In the experiments, the two-session-full condition
was preferred, where there were five training files,
each consisted 1 minute of speech taken from phone
conversations.
Two handset types are available in this database:

electret and carbon-button. So, a same-handset con-
dition means that the training and test segments for
a speaker are both collected by using the electret, or
both carbon-button. A different-handset condition in-
dicates that the training segments for a speaker are
collected via the electret type, and test segments for
the same speaker are collected with the carbon-button
type, or vice-versa. Therefore, the performance of the
proposed method under channel mismatch conditions,
which is one of the main sources for performance degra-
dation, was also tested.
For the tests, speech segments with 3, 10, and 30

seconds durations were used. For each of these test
durations, there were 1308 speech files collected from
the same-handset type, and 1192 speech files collected
from a different-handset type. For each test file, there
was one trial for the target speaker, and nine trials
for the non-target speakers. The total number of trials
in each test data duration was 13080 for the same-
handset, and 11920 for the different-handset condi-
tions.
The main metric used for the performance com-

parison is the Equal Error Rate (EER), which is
widespreadly used in the speaker recognition litera-
ture. EER value defines a threshold where the false
acceptance rate and the false rejection rate of a sys-

tem is equal. Also, a detection cost function (DCF) is
defined as given in Eq. (6)

DCF = CFAPFP |NPN + CFRPFN |TPT , (6)

where PFP |N is the false positive rate (FPR), PFN |T

is the false negative rate (FNR), the cost of the false
acceptance is CFA = 10, the cost of the false rejection
is CFR = 1, the a priori probability of target tests
is PT = 0.1, and the a priori probability of nontarget
tests is PN = 0.9. The minimum of the DCF is also cal-
culated as another performance metric. The detection
error tradeoff (DET) curves are given for the baseline
systems, and the best performing clusters of the pro-
posed method. Note that the other clusters’ curves are
not shown to avoid confusing illustrations, since the
curves highly interfere with each other.
The HTK Toolkit (Young et al., 2000) was used to

extract Mel-Frequency Cepstral Coefficients (MFCCs)
from the training, and test data. A Hamming window
with a 25 ms length, and a 10 ms shift was employed.
26 triangular bandpass filters were used in the filter
bank. First twelve of the MFCCs, excluding the ze-
roth coefficient, were selected, and the normalized log-
energy was appended. The Cepstral mean subtraction
was applied to reduce the convolutive channel effects.
Adding the delta features, the final 26 features were ob-
tained. The other processes (Training a UBM model,
adapting speaker models, model clustering, and scor-
ing) were implemented using the C++ programming
language.
A UBM with 1024 Gaussian components was

trained by pooling the available training data. Then,
the speaker models were adapted with the speaker-
dependent training data, with a relevance factor of 16.
Top scoring 5 mixtures were selected in the UBM for
each test feature vector. Resulted EER (minDCF) val-
ues for this baseline GMM-UBM method are given in
the third row of Table 1. The EER (minDCF) value
increased as the duration of test data decreased, as
expected. In addition, the channel mismatch dramati-
cally decreased the performance.
2, 3, 4, and 5 clusters were considered to check the

validity of the proposed method. The speaker models
adapted from the baseline UBM were used. Their re-
sults are given in the last four rows of Table 1. The best
improvements were obtained by three-cluster except
the 3-seconds cases. 10.14%, and 10.64% relative EER
reductions were achieved for the 10-seconds, and 30-
seconds durations under same-handset condition, re-
spectively. For the different-handset tests, 8.67% and
13.02% relative EER reductions were achieved for
the 10-seconds, and 30-seconds durations, respectively.
The last column of Table 1 shows the average EER
(minDCF) reductions for each cluster, compared to
the baseline UBM method. The highest performance
improvement was achieved by three-cluster case, as
shown in Table 1. Also, it should be noted that the
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Table 1. EER values obtained for conventional and proposed methods. minDCF values are given in parenthesis.

Duration
Same-handset condition Different-handset condition

Average Reduction3-s 10-s 30-s 3-s 10-s 30-s

UBM 11.2385
(0.2054)

5.2752
(0.0989)

3.5933
(0.0621)

25.5872
(0.4766)

20.3020
(0.3827)

16.1074
(0.3041)

2-Cluster 10.2446

(0.1904)
4.893
(0.0902)

3.211
(0.06)

25.4195
(0.4804)

19.9664
(0.3782)

16.1074
(0.3045)

4.84%
(3.29%)

3-Cluster 10.5505
(0.1903 )

4.7401

(0.0885 )
3.211

(0.057 )
24.1611
(0.4443 )

18.5403

(0.3494 )
14.0101

(0.2627 )
9.03%

(9.03% )

4-Cluster 10.3976
(0.1928)

4.9694
(0.09)

3.2875
(0.0615)

24.0772
(0.4465)

18.7919
(0.3498)

14.1779
(0.2676)

7.85%
(7.17%)

5-Cluster 11.0092
(0.2001)

4.9694
(0.0925)

3.3639
(0.0611)

23.9933

(0.4522)
19.1275
(0.3576)

14.1779
(0.2678)

6.37%
(5.71%)

three-clusters always yielded the best minDCF perfor-
mance. The results proved that the imposter models
created by clustering the speaker models were more
suitable than the UBM model. Figures 3 and 4 shows
the DET curves for the same-handset, and different-
handset conditions, respectively.

Fig. 3. DET curves of the baseline GMM-UBM, and the
best performing clusters for the same-handset condition,

and for each data duration.

Table 2. EER values for speaker models adapted from their respective cluster imposter models.

Duration
Same-handset condition Different-handset condition

Average Reduction3-s 10-s 30-s 3-s 10-s 30-s

2-Cluster 10.3976
(0.1901)

4.8930
(0.089)

3.1346

(0.0581)
25.3356
(0.4773)

20.1342
(0.3799)

16.1074
(0.3036)

4.88%
(4.11%)

3-Cluster 10.2446

(0.1882 )
4.8930
(0.084 )

3.211
(0.0568 )

24.245

(0.4567 )
19.4631
(0.3635 )

15.2685
(0.2855)

6.88%
(7.88% )

4-Cluster 10.3211
(0.1901)

4.8930
(0.0869)

3.1346

(0.0578)
24.4128
(0.459)

19.7148
(0.3681)

15.1007
(0.2834)

6.98%

(6.80%)

5-Cluster 10.6269
(0.1953)

4.8930
(0.0869)

3.2875
(0.0584)

24.8322
(0.4648)

19.2953

(0.3659)
14.9329

(0.2824 )
6.06%
(6.17%)

Fig. 4. DET curves of the baseline GMM-UBM, and the
best performing clusters for the different-handset condition,

and for each data duration.

Re-adapting the speaker models from the cluster
imposture models were also examined. This method
can be considered as the subsets of the baseline GMM-
UBM method. The results for this approach is given
in Table 2. As in the previous case, three-cluster gave
the best overall performance improvement in terms
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of minDCF. Improvements over the baseline can be
still observed, but this method is less effective than
the traditionally adapted speaker models under mis-
matched channel condition.
Recently, i-vector approach (Dehak et al., 2011)

has become the state of the art method for speaker
recognition. In this method, a total variability ma-
trix is trained with the aid of a UBM model. Then,
by using this matrix, an utterance can be represented
with a fixed low dimensional vector (i-vector). This
representation also gives the opportunity to use var-
ious algorithms for reducing the channel effects such
as linear discriminant analysis (LDA), nuisance at-
tribute projection, and within class covariance normal-
ization, etc. (Dehak et al., 2011). To compare the pro-
posed method with the i-vector technique, the baseline
UBM and the pooled training data were used to train
the total variability matrix in twenty iterations, then
100 dimensional i-vectors were extracted from each
utterance. LDA was used to reduce the channel mis-
match effects, and probabilistic LDA was employed for
scoring the i-vectors. MSR Identity Toolbox (Sadjadi
et al., 2013) was used in the i-vector extraction, and
scoring processes. As the i-vector approach includes
the LDA for channel mismatch compensation, in or-
der to make a fair comparison, handset normalization
(Reynolds, 1997) was added to the proposed method.
Handset normalization is a score normalization tech-
nique to reduce the channel mismatch effects, and ap-
plying this method to the clusters may be beneficial.
In Table 3, test results with handset normalization

are given for the proposed method. The relative im-
provements compared to the i-vector with the LDA
approach are given in the last column of the table.
The results showed that the prosed method achieved
a superior performance than the i-vector approach
in 3-seconds same-handset condition tests. A relative
improvement of 20.8% was achieved by using two-
clusters. The proposed method consistently gave bet-
ter performances, yielding average reductions higher
than 10% in terms of EER, as seen in the last column.
For the 30-seconds same-handset condition tests, mod-

Table 3. EER values for i-vector approach and the proposed method with handset normalization.

Duration
Same-handset condition Different-handset condition

Average Reduction3-s 10-s 30-s 3-s 10-s 30-s

i-vector 10.7034
(0.1957)

4.893
(0.0868)

3.211
(0.053 )

24.3289
(0.458)

18.1208
(0.343)

14.7651
(0.2729)

2-Cluster 8.4098

(0.1544 )
4.3578
(0.0817)

2.9817
(0.0562)

22.0638
(0.4039 )

16.443
(0.3083)

13.5906
(0.2564)

11%
(8.15%)

3-Cluster 8.7920
(0.1672)

4.1284

(0.0765 )
2.9052

(0.0547)
21.896
(0.4138)

16.1074

(0.305)
13.255
(0.2463)

12.4%

(8.95% )

4-Cluster 8.8685
(0.1654)

4.2813
(0.0794)

2.9817
(0.0541)

21.9799
(0.4128)

16.1913
(0.3046)

13.0872
(0.2454)

11.4%
(8.45%)

5-Cluster 8.945
(0.1665)

4.2049
(0.0781)

3.211
(0.0561)

21.7282

(0.4086)
16.1074

(0.3013 )
12.7517

(0.2411 )
10.98%
(8.94%)

est improvements can be seen in EER values. Hence,
the results indicated that comparable or better per-
formances can be achieved by the proposed clustering
method, without the excessive training procedure that
the i-vector approach demands. It is also important
to emphasize that, without the handset normalization,
the proposed method still shows comparable results
with the i-vector approach, which can be examined by
comparing the results from Table 1, or Table 2, with
the results of the i-vector in Table 3. Figures 5 and 6
show the DET curves for the same-handset, and the
different-handset conditions, respectively.
The statistical significance of the results is also ex-

amined with the McNemar’s test, which is also used in
speech recognition area (Pallet et al., 1990;Gillick,
Sox, 1989). Consider two classifiers (named A, and B)
are tested with a test data, and the following variables
are counted.

N00: number of examples misclassified by both A,
and B,

N01: number of examples misclassified by A, but
not B,

N10: number of examples misclassified by B, but
not A,

N11: number of examples misclassified by neither A,
nor B.

The null hypothesis expects that the two algo-
rithms have the same error rate (N01 = N10). Con-
tinuity corrected McNemar test is given in Eq. (7).

X2 =
(|N01−N10| − 1)2

N01 +N10
. (7)

Under the null hypothesis, X2 has a chi-square
distribution with 1 degree of freedom. The value of test
at 5% significance level for 1 degree of freedom is 3.84.
Hence, if the test is greater than this value, the null hy-
pothesis is rejected, which indicates the two classifiers
have different performances. In Table 4, the proposed
method is compared with the i-vector, based on the
EER values given in Table 3. The results indicate that



G. Dişken et al. – Speaker Model Clustering to Construct Background Models for Speaker Verification 133

Fig. 5. DET curves of the baseline i-vector, and the best
performing clusters for the same-handset condition, and for

each data duration.

Fig. 6. DET curves of the baseline i-vector, and the best
performing clusters for the different-handset condition, and

for each data duration.

Table 4. X2 values obtained by using the proposed classi-
fiers and the i-vector classifier.

Duration

Same-handset
condition

Different-handset
condition

3-s 10-s 30-s 3-s 10-s 30-s

2-Cluster 54.98 7.42 1.5 24.44 17.73 9.07

3-Cluster 36.16 14.6 2.18 26.78 25.74 16.2

4-Cluster 34.41 10 1.12 25.41 23.9 20.33

5-Cluster 31.33 11.84 0.0017 30.82 25.58 28.83

there are significant performance differences between
methods, except the 30-second case. The highest dif-

ferences are found in the 3-second tests, which strongly
supports that the proposed method is more suitable for
short duration utterances.

4. Discussion

The experiments proved that the proposed clus-
tering method showed improvements over the conven-
tional GMM-UBM, and the i-vector methods. This
should be due to a better estimation of the imposter
models, as expected from the proposed algorithm. The
DET curves supports this idea, since for a given FNR,
the proposed methods produce lower FPRs, especially
in the short utterance tests (3-seconds, 10-seconds),
and the different-handset condition. This property
makes the proposed method much more suitable for
practical applications. As an example, consider a sys-
tem which verifies the speakers over phone calls.
A speaker enrolled in the system may use different
phones at different times, which results in a handset
mismatch. Also, the speakers probably want to be veri-
fied with a few words, or phrases, so a short verification
time is favorable.
The statistical significance test results given in Ta-

ble 4 implies that the results found in the experiments
are not by coincidence. The only similarity occurred in
the 30-seconds same-handset condition tests. The rea-
son behind this situation is that better i-vector repre-
sentations are acquired as the utterance duration in-
creases, hence the classifier performance also increases.
The duration mismatch in i-vectors is another research
problem, which is out of the scope of this paper.
The three-cluster showed the best performance in

general (based on average reductions given in Table 1,
and Table 3). On the other hand, performances of the
clusters are close to each other. It is a kind of expected
situation, because only the speaker model means are
considered for classification. As discussed before, if
there is no speaker data related to a mixture, the
speaker’s model use the mean of the respective mixture
of the UBM. This similarity effects the cluster perfor-
mance. Another option to be tested in the future is
to adapt both means, variances, and weights to obtain
speaker models, and including them in the clustering
algorithm. Also, it should be noted that the cluster-
ing for the proposed method is made by the k-means al-
gorithm. A different clustering method may yield more
accurate imposter models, therefore, increase the per-
formance, and the statistical significance of the system.

5. Conclusion

In this work, speaker models are clustered to im-
prove the speaker verification performance. Conven-
tional methods use a UBM model, and speaker models
are derived by adapting the mixture means according
to available speaker-dependent data. In the proposed
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algorithm, the adapted speaker models are clustered
by using the k-means algorithm with the Euclidean
distance criteria to create cluster dependent imposter
models. It is shown that the imposter models con-
structed by this approach produced superior results
than the traditional GMM-UBM method consistently,
for different test data durations, and under channel
match, or mismatch conditions.
The i-vector approach, which has become the state-

of-the-art method for speaker verification, is also con-
sidered in the experiments. LDA was applied to i-
vectors for compensating channel mismatch effects. To
make a fair comparison, a handset score normaliza-
tion was applied to the proposed clustering method to
reduce mismatch degradations. On average, the three-
cluster yielded a 12.14% relative EER reduction, which
is the best. The DET curves showed that the pro-
posed method produces lower FPRs, especially in the
different-handset condition, and short test utterance
durations.
The experiments indicated that the proposed

method showed better verification performances than
the conventional UBM and i-vector approaches. Fu-
ture research directions are exploring the effects of dif-
ferent distance measures, different clustering methods,
and extract sufficient statistics for each cluster from
their respective imposter models (instead of the UBM
model) for i-vectors.
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G. Dişken et al. – Speaker Model Clustering to Construct Background Models for Speaker Verification 135

Verification, European Conference on Speech Commu-
nication and Technology, Greece.

23. Reynolds D.A., Quatieri T.F., Dunn R.B. (2000),
Speaker Verification Using Adapted Gaussian Mixture
Models, Digital Signal Processing, 10, 19–41.

24. Reynolds D.A., Rose R.C. (1995), Robust text-
independent speaker identification using Gaussian mix-
ture speaker models, IEEE Trans. Speech Audio Pro-
cess., 3 72–83.

25. Richardson F., Reynolds D., Dehak N. (2015),
Deep Neural Network Approaches to Speaker and Lan-
guage Recognition, IEEE Signal Processing Letters, 22,
1671–1675.

26. Sadjadi S.O., Slaney M., Heck L. (2013), MSR
Identity Toolbox v1.0: A MATLAB Toolbox for Speaker
Recognition Research, Speech and Language Processing
Technical Committee Newsletter, IEEE, 1–4.

27. Saeidi R., Kinnunen T., Mohammadi H.R.S., Rod-
man R., Franti P. (2010), Joint frame and Gaus-
sian selection for text independent speaker verification,
IEEE International Conference on Acoustics, Speech
and Signal Processing, 4530–4533, USA.

28. Xiang B., Berger T. (2003), Efficient text-
independent speaker verification with structural gaus-
sian mixture models and neural network, IEEE Trans.
Speech Audio Process., 11, 447–456.

29. Xiong Z., Zheng T.F., Song Z., Soong F., Wu W.
(2006), A tree-based kernel selection approach to ef-
ficient Gaussian mixture model–universal background
model based speaker identification, Speech Communi-
cation, 48, 1273–1282.

30. Zhu D., Ma B., Li H. (2011), Speaker Verification
With Feature-Space MAPLR Parameters, IEEE Trans.
Audio. Speech. Lang. Processing, 19, 505–515.




