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A phoneme segmentation method based on the analysis of discrete wavelet trans-
form spectra is described. The localization of phoneme boundaries is particularly
useful in speech recognition. It enables one to use more accurate acoustic mod-
els since the length of phonemes provide more information for parametrization.
Our method relies on the values of power envelopes and their first derivatives for
six frequency subbands. Specific scenarios that are typical for phoneme bound-
aries are searched for. Discrete times with such events are noted and graded using
a distribution-like event function, which represent the change of the energy distrib-
ution in the frequency domain. The exact definition of this method is described in
the paper. The final decision on localization of boundaries is taken by analysis of
the event function. Boundaries are, therefore, extracted using information from all
subbands. The method was developed on a small set of Polish hand segmented words
and tested on another large corpus containing 16 425 utterances. A recall and pre-
cision measure specifically designed to measure the quality of speech segmentation
was adapted by using fuzzy sets. From this, results with F-score equal to 72.49%
were obtained.
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1. Introduction

Speech signals typically need to be divided into small segments before starting
a recognition procedure. Analysis of these frames can determine the likelihood of
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a particular phoneme being present within the frame. Speech is non-stationary
in the sense that frequency components change continuously over time, but it is
generally assumed to be a stationary process within a single frame. Naturally,
this causes recognition difficulties if the frame contains the end of one phoneme
and the beginning of another. Segmentation methods currently used in speech
recognition do not consider where phonemes begin and end. Uniform segmen-
tation causes conflicting information to appear at the boundaries of phonemes.
For more accurate modeling, non-uniform phoneme segmentation can be useful
in speech recognition (Glass, 2003).

Phonetic segmentation can be also successfully used in automatic labeling
of time-aligned data (eg. subtitle cues generation) (Cardinal et al., 2005) and
information retrieval from temporal data. Automatic segmentation of speech cor-
pora can be used in unit-selection speech synthesis (Hunt and Black, 1996).

A phoneme segmentation method presented in this paper is more sophisticated
than that described in (Ziółko et al., 2006), as more scenarios are covered and
the results are evaluated in a better way. Results were obtained from a much
larger corpus. Our method is based on analyzing the envelopes and the rate-of-
change of the Discrete Wavelet Transform (DWT) subband power.

The outline of the paper is as follows. Section 2 describes several possible
approaches to phoneme segmentation. Section 3 presents some rudiments of the
DWT. In Sec. 4, the general idea of our segmentation approach is described.
Section 5 contains the exact algorithm and its explanation. Details of all scenarios
are presented in Sec. 6. The data used in the experiment are described in Sec. 7.
The evaluation method is explained in Sec. 8 along with the reasons for which it
was used. Finally, the results are commented in Sec. 9. The paper is summed up
with conclusions.

2. Phoneme segmentation

Constant-time segmentation, i.e. framing, for example into 23.2 ms blocks
(Young, 1996), is commonly used to divide the speech signal for processing.
This method benefits from the simplicity of implementation and easy comparison
of blocks, which are of the same length. However, it is perceptually unnatural
because the duration of phonemes varies significantly.

In fact, human phonetic categorization is also very poor for such short seg-
ments (Morgan et al., 2005). Moreover, boundary effects provide additional
distortions (which are partially reduced by applying the Hamming window), and
such short segments create many more boundaries than there are phonemes in
the speech. The boundary effects can cause errors in speech recognition. Ad-
ditional difficulties appear because of the mixing of two phonemes in a single
frame. A smaller number of boundaries means a smaller number of errors be-
cause of the aforementioned effects. Therefore, constant segmentation, though
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straightforward, risks losing valuable information about the phonemes because
of the merging of different sounds into a single block. Moreover, the complexity
of individual phonemes cannot be represented in short frames. The important
advantage of nonuniform segmentation rely on that the length of a phoneme can
also be used as an additional parameter in speech recognition, improving the
accuracy of the whole process. A comparison of constant framing and phoneme
segmentation is presented in Fig. 1.

Fig. 1. Comparison of the frames produced by uniform segmentation and segmentation
that results on phoneme length.

Models based on processing information over long time ranges have already
been introduced. The RASTA (RelAtive SpecTrAl) methodology (Hermansky,
Morgan, 1994) is based on relative spectral analysis and the TRAPs (TempoRAl
Patterns) approach (Morgan et al., 2005) is based on multilayer perceptrons
with the temporal trajectory of logarithmic spectral energy as the input vector.
It allows one to generate class posterior probability estimates.

A number of approaches have been previously suggested (Stöber, Hess,
1998; Grayden, Scordilis, 1994; Weinstein et al., 1975; Zue, 1985; Tole-
dano et al., 2003) to find phoneme boundaries from the time-varying speech sig-
nal properties. These approaches utilize features derived from acoustic knowledge
of the phonemes. For example, the solution presented in (Grayden, Scordilis,
1994) analyzes a number of different subbands in the signal using its spectra.
Phoneme boundaries are extracted by comparing the percentage of signal power
in different subbands. The Toledano et al. (2003) approach is based on spectral
variation functions. Such methods need to be optimized for particular phoneme
data and cannot be performed in isolation from phoneme recognition itself. Neural
Networks (NNs) (Suh, Lee, 1996) have also been tested, but they require time-
consuming training.

Segmentation can be applied by the Segment Models (SMs) instead of the
Hidden Markov Models (HMMs) (Ostendorf et al., 1996; Russell, Jackson,
2005). The SM solution differs from HMM by searching paths through sequences
of segments of different lengths rather than frames. Such a solution means that
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segmentation and recognition are conducted at the same time and there is a set
of possible observation lengths. In a general SM, the segmentation is associated
with a likelihood and in fact describes the likelihood of a particular segmentation
of an utterance. The SM for a given label is also characterized by a family of
output densities, which gives information about observation sequences of different
lengths. These features of SM solution allow the location of boundaries only at
several fixed positions, which are dependent on framing (i.e. on an integer multiple
of the frame length).

The typical approach to phoneme segmentation for creating speech corpora
is to apply the dynamic programming (Rabiner, Juang, 1993; Holmes, 2001).
The dynamic programming is a tool that guarantees one to find the cumula-
tive distance along the optimum path without having to calculate the distance
along all possible paths. In speech segmentation, it is used for time alignment
of boundaries. The common practice is to provide a transcription done by pro-
fessional phoneticians for one of the speakers in the given corpus. Then, it is
possible to automatically create phoneme segmentation of the same utterances
for other speakers. This method is very accurate, but demands transcription and
hand segmentation to start with. For this reason, it is not very useful for any
other application than creating a corpus.

3. Analysis using the discrete wavelet transform

The human hearing system plays a role of a frequency-processing system in
the first step of sound analysis. While the details are still not fully understood,
it is clear that a frequency-based analysis of speech reveals important informa-
tion. This encourages us to use DWT as a method of speech analysis, since the
DWT may work more similarly to the human hearing system than other methods
(Wang, Narayanan, 2005; Daubechies, 1992).

Details of the wavelet transform are beyond the scope of this paper, but a brief
overview of the method is presented. The wavelet transform provides a time-
frequency analysis. The original speech signal s(n) and its wavelet spectrum are
of 16 bits accuracy. To obtain DWT (Daubechies, 1992), the coefficients of the
approximation of signal s(n) as series

sm+1(n) =
∑

i

cm+1,i φm+1,i(n) (1)

which is the approximation of signal s(n), are computed, where φm+1,i is the i-th
wavelet function at the (m+1)-th resolution level. Thanks of the orthogonality
of wavelet functions approximation

cm+1,i =
∑

n∈Di

s(n)φm+1,i(n) (2)
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is used, where Di are supports of φm+1,i. The coefficients of the lower level are
calculated by applying the well-known (Daubechies, 1992; Rioul, Vetterli,
1991) formulae

cm,k =
∑

i

hi−2k cm+1,i, (3)

dm,k =
∑

i

gi−2k cm+1,i, (4)

where h and g are the constant coefficients, which depend on the scale func-
tion φ and wavelet ψ (e.g. functions presented in Fig. 2). The speech spectrum
is decomposed by using digital filtering and downsampling procedures defined
by Eqs. (3) and (4). It means that given the wavelet coefficients cm+1,i of the
(m+1)-th resolution level, Eqs. (3) and (4) are applied to compute the coeffi-
cients of the mth resolution level. The elements of the DWT for a particular level
may be collected into a vector, for example dm = (dm,1, dm,2, . . .)T. The coeffi-
cients of other resolution levels are calculated recursively by applying formulae
(3) and (4). The multiresolution analysis gives a hierarchical and fast scheme for
the computation of the wavelet coefficients for a given speech signal s. In this
way, the values

DWT(s) = {dM ,dM−1, . . . ,d1, c1} (5)

Fig. 2. The discrete Meyer wavelet ψ(n) and its scale function φ(n).
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of the DWT for M+1 levels are obtained. Each signal

sm+1(n) = sm(n) + sd
m(n) for all n ∈ Z (6)

on the resolution level m+1 is split into approximation (coarse signal)

sm(n) =
∑

k

cm,kφm,k(n) (7)

on the lower m resolution level and high frequency details

sd
m(n) =

∑

k

dm,kψm,k(n), (8)

where φm,k(n) = 2m/2φ(2mn∆t−k) and ψm,k(n) = 2m/2ψ(2mn∆t−k) and ∆t is
sampling density. The frequency density ∆f depends on the support of wavelet
φ(t) defined in the continuous domain. For the case when wavelet support

supp φ(t) = {t : φ(t) 6= 0} (9)

is compact (let us denote its width by 2T ), we obtain ∆f = 0.5/T . In practice
the support can be always limited to the segment [−T, T ], where

T = max {t ∈ R : |φ (t)| ≥ h} . (10)

The threshold h should depend on the extreme value of the scale function, e.g
h = max

t
|φ (t)| /1000. In that way, the support of scale function was bounded to

obtain the reasonable compromise: fast computations in real time and relatively
small errors.

The number of samples should be the smallest integer value N which satisfies
inequality (N−1) ∆t ≥ 2T , that is N ≥ 1 + 32000T because the sampling fre-
quency fs = 1/∆t = 16000 [Hz]. The sampling density in the frequency domain
∆f = 0.5/T and (N−1)∆f ≥ 16000 [Hz] because the whole frequency band is
spread from −8000 to 8000 [Hz].

The wavelet transform can be viewed as a tree. The root of the tree consists
of the coefficients of wavelet series (1) of the original speech signal. The first
level of the tree is the result of one step of (4). Subsequent levels in the tree are
constructed by recursively applying (3) and (4) to split the spectrum into the
low (approximation cm,n) and high (detail dm,n) parts. Experiments undertaken
by us show that the speech signal decomposition into M = 6 levels is sufficient
(see Fig. 3) to cover the frequency band of a human voice (see Table 1). The
energy of the speech signal above 8 kHz and below 125 Hz is very low and can
be neglected. There is a wide variety of possible basis functions from which a
DWT can be derived. To determine the optimal choice of wavelet, we analyzed
six different wavelet functions: Meyer (Fig. 2), Haar, Daubechies wavelets of
three different orders and symlets. Our results, described in Sec. 9, show that the
discrete Meyer wavelet gives the best results.
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Fig. 3. Subband amplitude DWT spectra of the Polish word ‘osiem’ (Eng. eight).
The number of samples depends on a resolution level.

Table 1. Bandwidths of the DWT levels and widths of their envelopes.

Level Band (kHz) No. of samples Window
d6 4–8 32 5
d5 2–4 16 5
d4 1–2 8 5
d3 0.5–1 4 3
d2 0.25–0.5 2 3
d1 0.125–0.25 1 3

4. Principles

Phonemes are characterized by frequency content, so we would expect changes
in the power of wavelet resolution levels between phonemes. Clearly, it would be
easier to analyze the absolute value of the rate-of-change of power and expect
it to be large at the beginning and at the end of phonemes. However, this does
not uniquely define start and end points for two reasons. Firstly, the power can
rise over a considerable length of time at the start of a phoneme, leading to an
ambiguous start time. Secondly, there may also be rapid changes in power in the
middle of a segment. A better method of detecting the boundary of phonemes
relies on power transitions between the DWT subbands.

The amount 2−M+m−1N of wavelet spectrum samples in the mth level (where
m = 1, . . . , M) depends on the length N of the speech signal in time domain,
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assuming N is a power of 2. Table 1 presents their number at each level according
to the lowest resolution level. The power waveform

pm(n) =
2m−1∑

j=1

d2
m,j+n2m−1 where n = 0, . . . , 2−MN−1, (11)

is computed in a such way that the equal number of power samples for each
m-level decomposition is obtained.

The DWT subband amplitude shows rapid variations (see Fig. 3) and despite
smoothing (11), the power waveforms still change rapidly. It makes the first-
order differences in the power inevitably noisy, so we calculate the envelopes
pen

m (n) for power fluctuations in each subband (Fig. 4) by choosing the highest
values of pm(n) in a window of given size ω (see Table 1). Next, a smoothed
differencing operator was used, the subband power pm is convolved with the
mask [1, 2,−2,−1] to obtain smoothed power rate-of-change rm(n).

To improve accuracy, a minimum threshold pmin was introduced for a subband
DWT power. This threshold was chosen experimentally as 0.0002 for the test
corpus. This prevents us from analyzing noise where the power of the speech
signal is very small (i.e. in the areas of ‘silence’), even though noise is very low in
the test corpus. Threshold pmin can be set based on the power of noise. The start
and end of a phoneme is usually marked by an initially small but rapidly rising
power level in one or more of the DWT levels. In other words, the derivative can
be expected to be approximately as large as the power. This is why phoneme
boundaries can be detected searching for n-points for which the inequality

p ≥ |β|rm(n)| − pen
m (n)| (12)

holds. Constant p is a value of threshold that accounts for the time scale and
sensitivity of the crossing points. We found that setting the threshold p = 0.1
gave the best results. A power and its derivative have different physical units.
This is why the rate-of-change function rm is multiplied by scaling factor β,
approximately equal to 1 [s], to subtract the power from the product β|rm(n)|.

5. Phoneme detection algorithm

Without any additional refinement, the method presented here may not be
able to detect the phoneme boundaries precisely. There are several reasons for
this. Firstly, the exact locations of the boundaries may vary slightly between
subbands. For some phonemes, only one frequency band may show significant
variations in power; for others, a few of them may do so. Sometimes, analy-
sis will detect slightly separate boundaries for different subbands. Secondly, de-
spite smoothing the derivative, there may be a number of transitions going up
and down, which represent the same boundary. This problem was approached
by holding indexes of situations, which are very likely to happen for phoneme
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Fig. 4. Segmentation of the Polish word ‘osiem’ (Eng. eight) based on DWT subbands.
Dotted lines are hand segmentation boundaries; dashed lines are automatic segmenta-
tion boundaries, thin lines are envelopes and bold lines are smoothed rate-of-change.

boundaries, using event function e(n). Such an approach enables one to con-
sider several scenarios and aspects of potential phoneme boundaries. It also al-
lows for improving the method easily by adding additional events to the exist-
ing list.

The suggested events are presented in Table 2 and explained in detail later.
Surprisingly, pre-emphasis filtering was found to deteriorate quality, thus it was
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not used in the final version of the algorithm. The algorithm steps are listed
below:

1. Normalize a speech signal by dividing it by its maximum value in an ana-
lyzed fragment of speech.

2. Decompose a signal into six levels of the DWT.
3. Calculate the sum (11) of power samples in all frequency subbands to

obtain the power representations pm(n) of the mth subband.
4. Calculate the envelopes pen

m (Fig. 4) for power fluctuations in each subband
by choosing the highest values of pm in a window of a given size ω according
to Table 1.

5. Calculate the rate-of-change function (Fig. 4) rm(n) by filtering pm(n) with
[1, 2, −2, −1] mask.

6. Create an event function e(n) = 0 for all n. In the next step, the function
value will be increased to record events for which rm(n) and pen

m (n) look
like a phoneme boundary for a given n.

7. Analyze rm(n) and pen
m (n) for each DWT subband to find the discrete time

n for which the event conditions described in Table 2 hold. Add the value
of the event importance (Table 2) to the event function e(n) (Fig. 5) for
a given discrete time n according to Table 2. If several events occur for a
single discrete time, then summarize the event importances of all of them.
Repeat the step for all discrete times n. In this way, we have a boundary
distribution-like function

e(n) =
{

0 no condition fullfiled for n,∑
i wi otherwise,

(13)

where wi are importance weights (see Table 2) for events that occurred for
n in all subbands.

8. Find a discrete time n starting from n = 1 which the event function is
higher than a decision threshold τ . A value of τ = 4 was chosen experi-
mentally.

9. Find all the discrete times ti for which



e(ti) > τ − 1,

ti > n,

ti − ti+1 < α,

(14)

where n is the last index analyzed in the previous step and α is associated
with minimal phoneme length (α = 4 gives approximately 20 [ms]). Orga-
nize all the discrete times ti in separate groups of those fulfilling the above
conditions.

10. Calculate the weighted mean discrete time

b =
∑

i tiwi∑
i wi

(15)
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for every set of the discrete times ti grouped in the previous step. Pa-
rameter b is the hypothesis of the detected phoneme boundary. Discrete
timing of DWT level d1 is used in the algorithm for all other subbands by
summing samples.

11. Repeat the previous three steps for next discrete time values n until the
largest n with non-zero value of event function e(n) is obtained.

Table 2. Types of events associated with phoneme boundary. Mathematical conditions are
based on power envelope pen

m (n), rate-of-change information rm(n), a threshold p of the distance
between rm(n) and pen

m (n) and a threshold pmin of minimal pen
m (n) and β = 1. Event values in

the last four columns are for different DWT levels (d1, d2, from d3 to d5 and for d6 level).

Description Mathematical condition Importance wi

Quasi-crossing point

|β|rm(n)| − pen
m (n)| < p AND

1 3 4 1(|β|rm(n + 1)| − pen
m (n + 1)| > p OR

|β|rm(n− 1)| − pen
m (n− 1)| > p)

AND pen
m (n) > pmin

Crossing point
first case

β|rm(n)| > pen
m (n) + p AND

β|rm(n + 1)| < pen
m (n + 1)− p AND 1 3 4 1

pen
m (n) > 5 pmin

Crossing point
second case

(opposite one)

β|rm(n)| < pen
m (n)− p AND

β|rm(n + 1)| > pen
m (n + 1) + p AND 1 3 4 1

pen
m (n) > 5 pmin

Rate-of-change higher
than power envelope

β|rm(n)| > pen
m (n) AND

1 2 2 1
pen

m (n) > 2 pmin

Table 2 describes the events that can be expected to occur in the power of
DWT subbands. Some of them are more crucial than others. In our previously
published work (Ziółko et al., 2006), only the first of them was used. Addition-
ally, different weights were given to events with respect to a subband in which

Fig. 5. The event function vs. time (in [ms]) of the word presented in Fig. 4. High event
scores mean that a phoneme boundary is more likely.
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they occur. It is a perceptually motivated idea, which was very successfully used
in PLP (Perceptual Linear Predictive) (Hermansky, 1990). As per this study, in-
formation in relatively high and low frequency subbands are not so important for
the human ear as information in the bands from 345 Hz to 2756 Hz. Briefly, the
Hermansky solution (Hermansky, 1990) and (Hermansky, Morgan, 1994)
used a window to modify speech, decreasing frequencies not crucial for the hu-
man ear and amplifying the most important ones. The same aim was achieved in
our solution by assigning low weights to events occurring in detectable, but not
the most important frequencies, and the higher ones for the most sensitive bands
of human hearing system. Six DWT subbands were used. The third, fourth, and
fifth were grouped together, as the most crucial ones. As a result, in Table 2 the
last four columns with importance values (weights) are presented (the first one
for level d1, the second one for level d2, the third for the levels from d3 to d5 and
the last one for level d6).

6. Segmentation scenarios

There are four possible events presented in Fig. 6 and described in Table 2.
Second is a mirrored version of the third one, which will be described in details
later. The first one is a weaker condition for a similar scenario as the second and
third event. It has to be stressed that for some discrete times and subbands, more
than one event can occur (typically two and very rarely more). In these cases,
weights of both events are taken into account to the event function e(n). Also, the
weights from all subbands are summed. In all cases, the values of rate-of-change
information |rm(n)| are multiplied by scaling factor β equal to 1 [s].

The first event is called quasi-crossing point. It is the most general and com-
mon one. The mathematical condition for this event detects discrete times for
which the power envelope pen

m (n) and the absolute value of rate-of-change |rm(n)|
cross or approach each other very closely (on a distance of threshold p). Addi-
tionally, the power envelope pen

m (n) has to be higher than the threshold pmin.
The second and third events are twin events and represent rarer cases, namely

the crossing of the power envelope pen
m (n) and the absolute value of rate-of-change

|rm(n)| when pen
m (n) is higher than five times the minimum threshold, i.e. 5 pmin.

It means that the second and third cases are used to detect and include in con-
sideration more specific situations than the first one, because typically fulfilling
one of those conditions means fulfilling the first one as well. As we sum all event
importances for a given n, this will cause a higher value of event function e(n)
than just the first event. In these cases, one of the functions of pen

m (n) and |rm(n)|
starts with higher level than the other and goes below the level of the second one,
suggesting a phoneme boundary very strongly.

The fourth event is also quite rare and is designed for situations where the
DWT spectrum changes very rapidly, what happens for changes in speech content
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Fig. 6. Simple examples of four events described in Table 2. They are characteris-
tic of phoneme boundaries. Images present power envelope pen

m (n) and rate-of-change
information (derivative) rm(n).

like phoneme boundaries. In this situation, a level of pen
m (n) can be relatively low.

The absolute value of the rate-of-change information |rm(n)| being higher than
the power envelope pen

m (n) and the power envelope pen
m (n) being higher than

double the minimum threshold are searched for.
The fourth event is different, as it does not describe anything similar to cross-

ing used in the general description of the method in the previous section. However,
if |rm(n)| is so high, it also indicates that a phoneme boundary may occur. It is
less strict and more general, so a lower weight was given. The values of thresholds
in the first three events were chosen to make the second and third events more
difficult to fulfill than the first one. The threshold in the fourth type event was
chosen experimentally.

The method is designed so that it would be easy to improve it, by introducing
additional conditions. For example, a new condition will add or subtract addi-
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tional values to e(n). Subtracting would introduce negative events, which imply
that boundaries did not occur in particular n. They are not included in the pre-
sented solution, but generally are possible. Another aspect of the ‘intelligence’ of
the method is that even though it consists of several conditions, the sensitivity
can be easily changed by setting another decision threshold. The decision thresh-
old is lowered by one for finding the following discrete times (compared with the
first one in the group) owing to a hysteresis rule. The application of hysteresis
for the threshold produces better results.

The algorithm was implemented in Matlab and not optimized for time effi-
ciency. In its current version, it needs 14 [min] to segment the whole corpus using
Haar wavelet (the lowest order of filters) and 20 [min] for discrete Meyer wavelet
(the highest order of filters, namely 50). The corpus has 16 425 utterances (some
of them are words and others are sentences), which gives 0.05 [s] per utterance
for the version with Haar wavelet and 0.07 [s] for the Meyer one. The prop-
erly optimized code in C++ would be much more time-efficient. The experiment
was conducted on a computer with AMD Athlon 64 processor 3500+990 [MHz],
1.00 [GB] of RAM.

7. Database

The method was developed on a set of 50 hand-segmented Polish words
with the sampling frequency f0 = 11 025 [Hz], equivalent to a sampling pe-
riod t0 = 90.7 [µs]. To assess the quality of our results, the method was tested
on a much larger set, called CORPORA, created under the supervision of Ste-
fan Grocholewski from the Institute of Computer Science, Poznań University of
Technology in 1997 (Grocholewski, 1995).

Speech files in CORPORA were recorded with the sampling frequency f0 =
16 [kHz] equivalent to sampling period t0 = 62.5 µs. Speech was recorded in an
office with a working computer in the background, which makes the corpus not
perfectly clean. Signal to Noise Ratio (SNR) is not stated in the description of
the corpus. It can be assumed that SNR is very high for actual speech, but minor
noise is detectable for periods of silence.

The database contains 365 utterances (33 single letters, 10 digits, 200 names,
8 simple computer commands, and 114 short sentences), each spoken by 11 fe-
males, 28 males, and 6 children (45 people), giving 16 425 utterances in total.
One set spoken by a male and one by a female were hand-segmented. The rest
were segmented by the dynamic programming algorithm, which was trained on
hand-segmented ones, and manually checked afterwards. The quality of all tran-
scriptions can be assumed to be as good as hand-made transcription. None of the
CORPORA utterances were in the original set used during development. Hand-
segmentation was done by different people in the small development set and for
CORPORA.
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8. Evaluation method

Detected boundaries may have various degrees of accuracy with respect to
hand-segmentation of speech. There are a number of factors that must be consid-
ered, including the accuracy of hand-segmented boundaries, since hand-segmenta-
tion is not in itself an entirely accurate process because of uncertainties in human
perception of the phoneme boundaries. Additionally, overlapping phonemes or
partially merged phonemes are a natural phenomena. There is, therefore, a de-
gree of uncertainty in the precision of the boundaries of the phonemes.

Simply assigning a Boolean value (correct or incorrect) is not really a sensitive
measure of segmentation quality. For this reason, fuzzy logic was used, which
produces a graded rating of boundary locations in a more sensitive and human-
like way. The concept of fuzzy sets and logic was used to derive recall and precision
scores. The reasons for why we believe this evaluation is better than the typical
ones are presented in (Ziółko et al., 2007).

Let us begin with two assumptions. Firstly, correct (hand) segmentation is
presented as a set of narrow ranges (typically 5 [ms]). Although it might be
tempting to interpret each range as the end of the previous phoneme and the
beginning of the next one, the real situation is that neighboring phonemes overlap
with each other in these ranges. Detected boundaries are represented as a set of
single discrete times. Secondly, perfect detection of silence is assumed. Silence
segments may be of almost any length. This is why, including them in evaluation
would cause serious inaccuracy. There are other very good methods for speech and
silence separation (Zheng, Yan, 2004). Our goal is then to match the detected
and hand-segmented boundaries in pairs and assess the quality of the recovered
boundaries.

Let us define three sets. Set A contains the predicted boundaries (the re-
trieved set). Set G contains the correct hand-segmented boundaries (the relevant
set). Finally, let us define the set of correctly found boundaries C (i.e. the bound-
aries that are both retrieved and relevant). This is essentially the intersection of
A and G. The membership of C is fuzzy; if x is a detected boundary from A,
then f(x) describes the degree of membership of C. If f(x) = 1, then x ∈ A
is a correct boundary and therefore x ∈ C, whereas if f(x) = 0, then x ∈ A is
incorrectly detected. Values between 0 and 1 indicate partially correct bound-
aries.

Each boundary in A is paired with the closest hand-segmented boundary
from G. For matched boundaries, when the detected boundary is inside the hand-
segmented boundary range, the boundary is correct and f(x) = 1. Otherwise, it
is a fuzzy case and we set f(x) = 1 − b(x)/a(x) where a is half of the duration
of the phoneme in which the boundary x resides and b(x) stands for the dif-
ference between the nearest end of hand-segmented boundary and the detected
one. This grades the membership from 0, when x is precisely halfway between
two hand-segmented boundaries to 1, when it lies exactly in the range of one
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of the boundaries. Then, the traditional precision and recall measures can be
redefined:

Fuzzy Precision =





1 when
∑

x∈A f(x)
|G| > 1,

∑
x∈A f(x)
|G| otherwise;

(16)

Fuzzy Recall =
∑

x∈A f(x)
|A| , (17)

where |A| and |G| are cardinalities of sets A and G, respectively. Recall (17)
and precision (16) can be used to give a single evaluation grade in many differ-
ent ways according to their importance. A widely used way is the F-score (van
Rijsbergen, 1979)

F =
2P R

P + R
, (18)

where P is fuzzy precision and R is fuzzy recall. F is the measure from 0 to 1,
which we use in our experiments, where higher results mean better ones.

9. Experimental results

Our first set of results looks at the usefulness of the six wavelet functions for
analyzing phoneme boundaries. The obtained results for different wavelets (see
Table 3) shows the differences in their efficiency. The results show that discrete
Meyer wavelet (Fig. 2) (Abry, 1997) performs the best in this case, probably
because of its symmetry in time domain, which helps in synchronization of the
subbands. Asynchronization in time domain can be caused by ripples in frequency
domain. An experiment using two wavelets (Meyer and sym6) one after another
was also conducted. As it might be expected, it improved results only a little,
while it doubled the time of calculations. Analyzing seven subbands was also
checked, where the seventh one was from 125 [Hz] to 62.5 [Hz].

Table 3. Comparison of the proposed method using different wavelets.

Method av. recall av. precision F-score
Meyer 0.7096 0.7408 0.7249
db2 0.6770 0.7562 0.7144
db6 0.7029 0.7414 0.7217
db20 0.7034 0.7408 0.7216
sym6 0.7015 0.7426 0.7215
haar 0.6377 0.8042 0.7113

Meyer+sym6 0.6825 0.7936 0.7339
Meyer 7subbands 0.6449 0.6714 0.6579
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The accuracy of our phoneme detection technique was then compared with
some standard framing techniques (see Table 4) like constant segmentation meth-
ods, where the speech is broken into fixed length segments, and where the speech
signal is segmented randomly. Accuracy of constant segmentation for many mul-
tiplications of 5.8 [ms] (the time length between neighboring discrete times) was
evaluated, but we only present results for 23 [ms], as it corresponds to typical
length of frames in speech recognition and for 92.8 [ms] for which the result is the
best of all constant segmentations. It was not possible to compare our method
with any referred segmentation method because we do not have access to the
software and corpora used by other researchers. We made attempts to make such
collaboration but we were refused.

Table 4. Comparison of some other segmentation strategies and the proposed method.

Method av. recall av. precision F-score
Const 23.2 ms 0.9651 0.1431 0.2493
Const 92.8 ms 0.7635 0.4659 0.5787

SVM 0.50 0.33 0.40
Wavelet 0.7096 0.7408 0.7249

We also trained the support vector model (SVM) using powers and derivatives
from DWT subbands. Features for SVM included analyzed part of speech as well
as left and right context. No other phoneme segmentation method available for
comparison was found. While constant segmentation is able to find most of the
boundaries with a 23 [ms] frame, this is only at the expense of very short segments
and many irrelevant boundaries. The overall score of our method is much superior
to the constant segmentation approach.

Several researchers claim that syllables are better basic units for ASR than
phonemes. It is probably true in terms of their content, but it seems not to be
the same for detecting unit boundaries. Our method is not perfect, but the ob-
served DWT spectra of speech (e.g. Fig. 3) clearly show that boundaries between
phonemes can be extracted. Boundaries between syllables seem not to differ from
phoneme boundaries in observed DWT spectra, while obviously there are fewer
syllable boundaries than phoneme ones. It is, therefore, difficult to detect sylla-
ble boundaries without also finding phoneme boundaries when analyzing DWT
spectra.

10. Conclusions

Because of the uniform segmentation, most of the ASR systems do not use
information about boundaries of phonetic units like phonemes. A method based
on the DWT to find such boundaries is presented. The method is language-
agnostic, as it does not rely on any phonetic models, but relies purely on the
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analysis of the power spectrum and hence has applicability to any language. For
the same reason, it can be easily introduced to most of the existing systems, as
it does not depend on any exact configuration or does not need training of the
speech model. It can also be used to provide additional information or primal
hypothesis for segmentation methods based on models like in Ostendorf’s et al.
solutions (Ostendorf et al., 1996). Our method is constructed in a way that
additional conditions or changing weights can be applied in need of search for
solutions for specific applications, noisy data, etc.

The use of several wavelet functions were compared and our results show that
Meyer wavelets are better than the others. Fuzzy recall and precision measures
were introduced for segmentation to evaluate the method with more sensitivity,
grading errors more smoothly than in the commonly used evaluation methods.
Our results give approximately 0.72 F-score for Meyer and slightly less for other
wavelets.
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