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Usually, the judgement of one type fault of vehicle pass-by noise is difficult for engineers, especially
when some significant features are disturbed by other interference noise, such as the squealing noise is
almost simultaneous with the whistle in the exhaust system. In order to cope with this problem, a new
method, with the antinoise ability of the algorithm on the condition by which the features are entangled,
is developed to extract clear features for the fault analysis. In the proposed method, the nonnegative
Tucker3 decomposition (NTD) with fast updating algorithm, signed as NTD FUP, can find out the natural
frequency of the parts/components from the exhaust system. Not only does the NTD FUP extract clear
features from the confused noise, but also it is superior to the traditional methods in practice. Then, an
aluminium-foil alloy material, which is used for the heat shield for its lower noise radiation, replaces the
aluminium alloy alone. Extensive experiments show that the sound pressure level of the vehicle pass-by
noise is reduced 0.9 dB(A) by the improved heat shield, which is also considered as a more lightweight
design for the exhaust system of an automobile.
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1. Introduction

The problem of road traffic noise in the living en-
vironment has attracted a lot of attention due to con-
cerns for human health and life quality. One of the
essential reasons discovered in a comprehensive inves-
tigation is vehicle exterior noise in the pass-by driv-
ing manoeuvre (Park, Kim, 2001), which is an aw-
ful burden to people resulting in annoyance, sleep dis-
turbance, or cardiovascular disease (Okokon et al.,
2015). Governments in European countries have al-
ready revised the standard ISO 362, which is stringent
for the environmental protection, regulation of emis-
sions control of vehicle pass-by noise (Braun et al.,
2013). Sequentially, the sound pressure level (SPL) is
well reduced from 84 dB(A) to 76 dB(A) for K-cars
in China (Beijing Labour Protection Research, 2002,
p. 2). Presently, a stricter version as 74 dB(A) for noise
control in the next stage is being considered. The re-
duction of SPL, in a sense, becomes a very urgent task
due to the regulation requirement (Nilsson, 2007).
Therefore, how to develop an efficient way to extract
pure features is one of the most crucial issues for fault

interpretation. We note that nonnegative Tucker3 de-
composition (NTD) (Andersson, Bro, 1998), which
is enforced on nonnegative constraints (Kim et al.,
2007), may be an excellent method to extract features
from the vehicle pass-by noise.

NTD involves in feature extraction in many field
works ranging from blind source separation (Cichocki
et al., 2009), images (Wang et al., 2011), systems
biology (Xu, Yin, 2013), and others (Kopriva, Ci-
chocki, 2010). The advantage of NTD is in less com-
putation storage needed as compared with other tra-
ditional methods, such as nonnegative matrix factori-
sation (NMF) and nonnegative tensor factorisation
(NTF), which also reflect the frequency by the ba-
sic images of features extracted (Cichocki, Amari,
2010). Actually, NTD, known as well as a tensor tool
generalising the standard matrix to data arrays of or-
der higher than two (Lim, Comon, 2010), has been de-
veloped into a general form of NMF/NTF. Besides, the
updating algorithm of factors is used to overcome the
problem of data overfitting in the iteration, namely ro-
bustness (Wang et al., 2013a). More properties about
NTD can be found in (Andersson, Bro, 1998).
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The SPL of vehicle pass-by noise is mostly propor-
tional to the speed of the engine, in the case of wide
open throttle (WOT) when the accelerator pedal is
fully depressed. To objectively evaluate the SPL, vehi-
cle pass-by noise both at the 2-nd gear (2G) and the
3-rd gear (3G) is measured by WOT. Then the SPL
is checked with A-weighting way whether the noise
meets the regulation, which is also used to evaluate
the NVH (Noise, Vibration and Harshness) level of
an automobile (Nilsson, 2007, cited by Wang et al.,
2016). Mostly, vibration resonance, noise radiation, or
both statuses may occur when the vibration and noise
interfere with each other, especially with two or more
near natural frequencies, for example, the possibility
between the heat shield and the exhaust pipe (Davies,
Harrison, 1997).

In our case, the higher SPL is caused by the prop-
erty of the stiffness and damping of the material
(Romanowicz, 2014). In order to analyse the high
noise, conjugating with the feature bispectum of the
parts/components in the exhaust system, we find that
the noise radiation roots are frequently in the surface of
the heat shield. The aluminum-foil alloy material, used
for the heat shield, replaces the current aluminum alloy
alone. New heat shield damping and stiffness, also con-
sidered as the main contribution to the SPL, are im-
proved by the structural design and material selection.
Lastly, the NTD method is comprehensively verified
by the spectral analysis due to the feature extraction
and fault interpretation in the SPL problem solution.

2. Sub-tensor decompositon for the vehicle
pass-by noise

As to vehicle pass-by noise the response signal ap-
proximates to a sinusoid wave at the centre frequency
of a normal-mode filtering method (Mongia, Bhar-
tia, 1994) The equation can be written as

F (t) = atN−1 exp(−2πbt) cos(2πfc + ϕ)

(t ≥ 0, N ≥ 1), (1)

where a is the amplitude normalised for the peak mag-
nitude N is the data order, b is the value that de-
termines the bandwidth of the wave signal fc is the
centre frequency ϕ is the phase of the noise signal.
Patterson and Gillette (1977) give the relation-
ship between b and fc according to the psychological
characteristics then, the bandwidth bis represented as

b(fc) = 1.019 · 24.7(1 + 4.37fc/1000). (2)

Generally, the bispectrum exists as a matrix or vec-
tor after the transformation from time domain into
frequency domain. However, most features are in a
chaotic distribution at the initial state. Therefore all

the signals need to be preprocessed as a tensor or vec-
tor for well-ordered computation. The relationship be-
tween a tensor and mode matrices directing to time is
expressed in Fig. 1.

Fig. 1. Relationship between the tensor and mode matrices.

The conversion, as well known as matricisation, is
the rearrangement of the slices of a tensor into a matrix
or vector, marked as vec(·). For a given tensor Y ∈
RI1×···×IN , there exists a subset n := {1, 2, · · · , N} of
dimension indices, the relationship is,

Y(n) ∈ RIn×Is ,

In := {I1, I2, · · · , IN} ,

Is :=
∏
s6=n

Is.

(3)

Thus, the process of tensor decomposition will be
kept on when the higher order array is completely re-
arranged for the feature extraction.

2.1. Physical model of Tucker3 decomposition
to subtensors

Assume the vehicle pass-by noise is a real time-
domain signal, which is composed by a set of third-
order subtensors {Yk|k = (ik,1, ik,2, ik,3)} :∈ Y ∈
RI1×I2×I3 (ik,1 ∈ I1, ik,2 ∈ I2, ik,3 ∈ I3), where k
is the subtensor index. By decomposing it into a core
tensor Gk and three mode matrices {A(n)

k } : (n ≤ 3)
with Tucker3 decomposition the algorithm can be writ-
ten as

Yk = Ŷ(k) + E(k) =Gk × 1A
(1)
k × 2A

(2)
k × 3A

(3)
k + Ek

or Yk ≈ A
(n)
k G

(n)
k A

⊗−n

k (4)

s.t. A⊗k = A
(1)
k ⊗A

(2)
k ⊗A

(3)
k ,

where Ŷk approximates to its real-valued Yk, symbol
×n denotes the mode product between the core tensor
and the mode matrices ⊗ denotes the Kronecker prod-
uct A

⊗−n

k is the Kronecker product of all mode matri-
ces except A

(n)
k , G(n)

k is an unfold form of core tensor
Gk ∈ RJ1×J2×J3 (Jn ≤ In, n = 1, 2, 3) (Kopriva, Ci-
chocki, 2010) directing to n. The eigenvalues in the
core tensor are arranged in the order of feature weight-
iness, which leaves the core tensor if the eigenvalues are
less than 10−3. The core tensor and the mode matri-
ces make a product when Jn is fixed. For observation,
Tucker3 decompositon based on Eq. (4) is illustrated
in Fig. 2.
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Fig. 2. Model of Tucker3 decomposition to a subtensor.

All factors, including the core tensor Gk and mode
matrices Ak, reconstruct the basis images of features
after a tensor is completely decomposed. Herein, the
physical model provides local bispectrum features for
fault interpretation.

2.2. Algorithmic simplification for Tucker3
decomposition

The factors involving in Ak and Gk can be calcu-
lated by the way of alternating least square (ALS)
(Hemmateenejad et al., 2008), which uses the way
of parallel computation for less computer storage.
Besides, part calculation is implemented on Matlab
(2012b) by the tensor toolbox (Bader, Kolda, 2006).
The cost function based on the Frobenius norm for
ALS is written as:

D
(n)
k =

1

2

∥∥∥vec(Yk)(n) −A
(n)
k G

(n)
k {A

⊗−n

k }T
∥∥∥2
F
,

k = (ik,1, ik,2, ik,3),
(5)

s.t.

A
⊗−n

k = A
(n+1)
k ⊗· · ·⊗A(N)

k ⊗A(1)
k ⊗A

(2)
k ⊗· · ·⊗A

(n−1)
k ,

where ‖·‖F denotes the Frobenius norm. Operator
vec(·) is an unfold form of the subtensor Yk. Now let
us take partial differentiation on D

(n)
k as to A

(n)
k in

Eq. (5), that is,

min ∇
A

(n)
k

D
(n)
k =

(
Y

(n)
k −A

(n)
k G

(n)
k {A

⊗−n

k }T
)

· {A⊗−n

k }G(n)T
k , (6)

where Y
(n)
k is an unfold form of Yk directing to n. The

right part of Eq. (6) approximates to zero, while the
gradient convergence returns to a minimum value. Also
Eq. (6) derives the multiplicative iteration for NTD in
progress. We transpose all the polynomials above, then
the mode-n matrix A

(n)
k can be expressed as

A
(n)
k ←

Y
(n)
k A

⊗−n

k

G
(n)
k {A

⊗−n

k }T{A⊗−n

k }
=

Y
(n)
k A

⊗−n

k

a∗
, (7)

where

a∗ = G
(n)
k (A

(n+1)T
k A

(n+1)
k ⊗ · · · ⊗A

(N)T
k A

(N)
k

⊗A
(1)T
k A

(1)
k ⊗ · · · ⊗A

(n−1)T
k A

(n−1)
k ),

where the denominator in Eq. (7) is a simplified form.
On account of the computer cost, the deduction pro-
cess can be described as follows:(
A

(N)
k ⊗· · · ⊗A

(1)
k

)T (
A

(N)
k ⊗ · · · ⊗A

(1)
k

)
G

(n)
k

=
(
A

(1)T
k ⊗ · · · ⊗A

(N)T
k

)(
A

(N)
k ⊗ · · · ⊗A

(1)
k

)
G

(n)
k

= A
(n)T
k A

(n)
k G

(n)
k

(
A

(n+1)T
k ⊗ · · · ⊗A

(N)T
k ⊗A

(1)T
k

⊗ · · · ⊗A
(n−1)T
k

)
·
(
A

(n+1)
k ⊗ · · · ⊗A

(N)
k ⊗A

(1)
k ⊗ · · · ⊗A

(n−1)
k

)
= A

(n)T
k A

(n)
k

(
G

(n)
k (A

(n+1)T
k A

(n+1)
k

⊗ · · · ⊗A
(N)T
k A

(N)
k ⊗A

(1)T
k A

(1)
k

⊗ · · · ⊗A
(n−1)T
k A

(n−1)
k )

)
. (8)

Obviously, Eq. (7) follows if the deduction above
meets.

When all the mode matrices are fixed, the core ten-
sor could be updated through Eq. (4) and Eq. (6) with
the current results, that is

Gk
fold−n←−−−−− G

(n)
k ←

[
A

(n)
k Y

(n)
k

(
{A⊗−n

k }T
)†]

+

, (9)

where the symbol † at the upper right corner returns
a Moore-Penrose value within the round bracket,
[·]+ denotes the nonnegative constraint on the ma-
trix in the square bracket, which is used to improve
the sparseness of the factors for the features (Wang
et al., 2016). Actually, with ALS method between Gk
and {A(n)

k |n = 1, 2, 3, · · · , N}, Tucker3 decomposition
is realised (Patterson, Gillette, 1977).

If vehicle pass-by noise has K-different features,
that is, the tensor is composed by K subtensors, the
function can be described as

Y =

K∑
k=1

Yk, (10)

where Eq. (10) meets K ≤ N , Y is a real value that
equals to the noise signal.

2.3. Fast updating algorithm

Updating factors in the process of iterative calcula-
tion is beneficial to the efficiency and accuracy (Wang
et al., 2013b). However, the factors in a large-span
space possibly lead to the problem of mutual interfer-
ence, due to the reason of nonorthogonal vectors with
3D Cartesian product. For example, we unfold three
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different tensors to be matrix form included in three
subspaces, respectively, that is:

U = span{A} = {a(:,1)k ,a
(:,2)
k · · · ,a(:,N)

k }
= {u1,u2, · · · ,uN},

V = span{vec(Gk)} = span{Gk}
= {v1,v2, · · · ,vN}, (11)

W = span{vec(Yk)} = span{Yk}
= {w1,w2, · · · ,wN},

where the matrices U, V, and W are strictly limited in
a different subspace, but are not initialised. When up-
dating one factor, the other two factors must be fixed.
The iteration goes on when the new tensor approxi-
mates to the original tensor. Part updating procedure
can be described as follows:

1. u1 × v1 → w1;
2. v1 ×w1 → u2;
3. {u1,u2} ×w1 → v2,v3;
4. {u1,u2} × {v1,v2,v3} → w1,w2,w3,w4,w5,w6;
5. {v1,v2,v3} × {w1,w2,w3,w4,w5,w6}
→ u1,u2,u3,u4, · · · ,u18;

6. {u1,u2,u3,u4, · · · ,u18}×{w1,w2,w3,w4,w5,w6}
→ v1,v2,v3, · · · ,v108;

...

Theoretically, the way above, which greatly reduces
the cost of the computer storage, avoids restarting the
vectors which are not involved in the iteration. Mean-
while, the number of vectors involved increases quickly
when the procedure goes forward one by one. More im-
portant, it is necessary to keep all the vectors orthog-
onal, so the steps are restrained as follows:

1) Initialise the vectors v1 and w1, that is, v̂1 ←
v1

‖v1‖F
, ŵ1 ← w1

‖w1‖F
. Assume the Cartesian pro-

duct between the original tensor and the core ten-
sor is Z. Then u2 will be u2 ← Z × v̂1 × ŵ1.
Unitise vector u2, then u2 = u2

‖u2‖F
.

a) b)

Fig. 3. Installed status of the original heat shield: a) heat shield, b) installed status.

2) Assume n := n + 1(n ≤ J) and U0 = [∅], then
the set of vector u is u :← Z × v̂n × ŵn is ortho-
gonalised as û := (I−Un−1U

T
n−1)un.

3) Compute Un. Reunitise the new vector ûn ←
un

‖un‖ , and the new mode matrix becomes Un =

[Un−1ûn].
4) Compute Vn. Assume k = 1 : J2, thus v :← Z ×

ûT
n ×wT; orthogonalise the vector as vn := (I −

Vn−1V
T
n−1)vn; then unitise v̂n ← vn

‖vn‖F
, so that,

Vn = [Vn−1v̂n].
5) Compute Wn. Assume n = 1 : J3, the set of vec-

tor w is w :← Z × ûT
n × vT. Orthogonalising the

vector wn := (I −Wn−1W
T
n−1)wn and unitise

wn, that is, ŵn ← wn

‖wn‖F
, and the mode matrix

W will be Wn = [Wn−1ŵn].

NTD with fast updating algorithm is signed as
NTD FUP for short. In step 2) above, the orthogo-
nal method mentioned is similar to the way of Gram-
Schmidt decomposition is done, which keeps the vec-
tors normalised. All the factors are constrained to be
nonnegative when the iteration continues for sparse
matrices as well.

3. Problem description of vehicle pass-by noise

The SPL of vehicle pass-by noise mainly lies in the
speed of vehicle/engine, which works both at 2G and
3G with WOT. Mostly, multidirectional noise is likely
to dramatically increase the SPL, so it is necessary to
improve the performance of the parts/components in
the exhaust system, especially in the heat shield.

3.1. Performance problem of current heat shield

The heat shield is installed on the exhaust pipe
consists of two-layer aluminium alloy, which prevents
the heat transfer and noise radiation during the accel-
erating process. The two pieces of the heat shields are
shown as in Fig. 3.
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As to the heat shield above, on which the vibration-
noise resonance possibly occurs, the frequency of reso-
nant function on the surface of the sheet metal relates
to the material itself (Romanowicz, 2014), that is,

ω =

√
π4Eh3

3L4(1− µ2)ρh
, (12)

where ω is the natural frequency, E is the elastic modu-
lus, h, L are the thickness and the length, respectively,
µ is the Poisson ratio, ρ is the density of the heat shield.
Then the resonant frequency fk of the heat shield from
Eq. (12) is rewritten as:

fk =
π4Eh3

12(1− µ)L2
, (13)

where the test ground must meet the requirement of
the regulation GB 1495–2002 in China (Beijing Labour
Protection Research, 2002). The data acquisition sys-
tem of LMS test.lab is fixed at the position of one of
the two microphones. Then the sample frequency as
10240 Hz and the sample time are set to last 10 sec-
onds. The accelerator should be kept on WOT status in

a) b)

Fig. 4. Part origin basis images of 2G status with main frequency pair: a) (180, 180), b) (100, 180).

a) b)

Fig. 5. Part origin basis images of 3G status with main frequency pair: a) (180, 180), b) (180, 340).

the whole process of data acquisition. The data length
is chosen as 65536 for bispectrum analysis. With 256
points for each axis, thus, one bispectrum is composed
by a matrix with the size 256× 256. Two fault statuses
are illustrated in Fig. 4 and Fig. 5, where the figures
are plotted by the frequency f1 on x-axis, and the fre-
quency f2 on y-axis (the same below).

As it can be seen in Fig. 4, the frequency pairs
mainly centre around (180, 180) (Hertz, the same be-
low), (100, 180), and (420, 180), (580, 180), where there
are too many pairs and it is hard to recognize the fre-
quency of the heat shield. Similarly, the noise of the
low frequency happens on 3G in Fig. 5a and Fig. 5b.

The maximum amplitudes of the vibration fre-
quency of the features extracted point to (180, 180),
(340, 180), (560, 180) and (740, 180), respectively, and
hardly interpret where the fault comes. Mostly, the
radiation noise comes in the secondary interference,
which amplifies the SPL of the vehicle pass-by noise
both in Fig. 4 and Fig. 5, and results in too many fre-
quency pairs to recognise. Therefore, the frequency of
the basis images should be improved for sparse and
clear bispectrum features.
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3.2. SPL of vehicle pass-by noise with the original
heat shield

As one of the most important evaluation indexes to
vehicle pass-by noise, the SPL meets most people’s psy-
chology characteristics, so the A-weighted SPL based
on logarithmic function by Nilsson (2007) is writ-
ten as:

Lp = log10

P 2

P 2
0

, (14)

where Lp denotes the SPL value, P is the current sound
pressure, P0 is the referenced equivalent threshold of
sound pressure, that is, 2× 10−5 Pa. In GB 1495–2002
(Beijing Labor Protection Research, 2002, p. 2), the
average value is included both at the left and the right
side tested, and the mean value equals to the larger one
between the average values (subtract 1 dB(A) only to
K-cars) Then the final evaluation value equals to the
average value of mean values of 2G and 3G. The results
are listed as in Table 1.

Table 1. SPL of vehicle pass-by noise with the original heat
shield.

Gear
range

Posi-
tion

Test
num-
ber

Test
result

[dB(A)]

Average
value

[dB(A)]

Mean
value

[dB(A)]

Evalu-
ating
value

[dB(A)]

2G

Left

1 79.2

79.4

78.4

76.2

2 79.5

3 79.4

4 79.4

Right

1 79.5

79.32 78.8

3 79.5

4 79.2

3G

Left

1 75.9

75.1

74.1

2 73.8

3 74.6

4 75.9

Right

1 75.1

74.52 74.1

3 74.6

4 74.3

In Table 1, the evaluating value still exceeds
0.2 dB(A) as compared with the specified SPL of
76 dB(A), according to the GB 1495–2002 which limits
the vehicle noise emission on the road. Therefore, some
improved measures are necessary to move to lower
SPL.

4. Feature extracted by NTD FUP
for bispectrum analysis

4.1. Performance comparison with other
traditional methods

In this section, NTD FUP is compared with other
typical algorithms in the performance of tensor decom-
position. One of the existing methods is NTF, which is
a special form of NTD with diagonal unit values fully in
the core tensor and which uses traditional alternative
least square (ALS) to calculate the vectors one by one
in a factor in the iteration, namely NTF ALS. NTD
with ALS (NTD ALS), which is similar to NTF ALS,
calculates the vectors one by one. NTD with Hierar-
chical ALS (NTD HALS, Cichocki et al., 2009) per-
forms a factor-by-factor procedure instead of updating
column-by-column vectors, according to the hierarchy
of features. NTD with beta divergences (NTD Beta,
Cichocki, Amari, 2010) belongs to the exponential
dispersion model family of distributions, a generalisa-
tion of the exponential family, which are the response
distributions for generalised linear models. The last
one is NTD with alpha divergences (NTD Alpha, Ci-
chocki, Amari, 2010), whose minimisation of Alpha-
divergence is based on the projected quasi-Newton
method, whereby the adaptively-regularised Hessian
within the Levenberg-Marquardt approach is inverted
using the QR decomposition. When the methods are
used to decompose the same size tensor, the deviation
of successive relative error (DSRE) as an evaluation
index is marked as γ, that is,

γ = −20 log10

∥∥∥Ŷ − Y∥∥∥
F

YF
, (15)

where Eq. (15) means the higher DSRE and a higher
accuracy, respectively. In the experiment, the DSRE
and the computation time are adopted as two eval-
uation indexes for those methods’ comparison. Be-
sides, the rank of the core tensor is also chosen as
(128, 128, 32) for the candidate tensors. Results of all
methods for DSRE (γ/dB) and time (t/s) are recorded
in Table 2.

In order to observe the results intuitively, the bar
diagrams have been generated from Table 2 and are
shown in Fig. 6.

As it can be seen in the bar diagram above, com-
bining with the results recorded, it is easy to find
that the maximum DESR arrives at 50.16 dB by
NTD FUP against other methods under the same con-
dition. According to Eq. (15), NTD FUP performs
less computation error compared with other meth-
ods listed. Particularly, the NTF ALS algorithm takes
more than 3100.0 s to decompose the tensor with
the size 256× 256× 64 in Fig. 6b, it only gets the
DSRE at 20.31 dB. The NTD ALS takes less time than



H. Wang et al. – A Fast Method of Feature Extraction for Lowering Vehicle Pass-By Noise Based. . . 625

Table 2. Computation results of different methods from three dataset.

Method
256× 256× 40 256× 256× 48 256× 256× 64

DSRE [dB] Time [s] DSRE [dB] Time [s] DSRE [dB] Time [s]

NTF ALS 18.32 1625.7 19.24 2169.6 20.31 3109.0

NTD ALS 22.14 1054.0 22.25 1325.5 23.57 1817.6

NTD HALS 31.59 1531.0 31.36 1687.5 32.22 1865.6

NTD Alpha 36.65 1836.2 38.15 2164.6 39.68 2304.9

NTD Beta 40.61 1706.4 39.46 1968.3 39.87 2465.6

NTD FUP 48.10 1687.5 50.24 1762.3 50.16 1905.4

a) b)

Fig. 6. Bar comparison of different methods: a) computation accuracy, b) computation time.

NTD FUP, according to Table 2. However, the up-
dating procedure is not implemented due to the al-
gorithm limitation itself, which results in a bigger er-
ror under the same condition. Generally, the updating
algorithms implemented in NTD HALS, NTD Alpha,
NTD Beta, NTD FUP have comparatively fewer er-
rors than NTF ALS and NTD ALS, which calculate
the factors without updating. This is especially clear
from the last row of Table 2, the larger tensor, the less
time is used by NTD FUP. Therefore, NTD FUP is
superior to traditional methods both in accuracy and
time in the case of large tensors.

a) b)

Fig. 7. Partially improved basis images of 2G status with main frequency pair: a) (180, 180), b) (100, 180).

4.2. Bispectrum analysis from the basis features
extracted by NTD FUP

With the data collected before, the tensor about
vehicle pass-by noise is composed by the slice matrices,
which adds 0.1:0.01:6.4 dB white noise. Thus, the size
of the reconstructed tensor is 256× 256× 64. Set the
dimensions (128, 128, 32) as the rank of the core tensor
(Wang et al., 2013b). Then partial basis images of
bispectrum features are extracted by NTD FUP on 2G
at WOT shown in Fig. 7.
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a) b)

Fig. 8. Partial basis images of 3G status with main frequency pair: a) (180, 180), b) (100, 100).

As the basis images in Fig. 7 above show, the
sparseness of the bispectrum features is improved com-
pared with Fig. 4 and Fig. 5. The dominant frequency
pairs of the features centre around (180, 180) and
(100, 180), which meets the frequency in Fig. 4, and
help to find the main parts/components in the exhaust
system. Similarly, partial basis images on 3G status are
shown in Fig. 8.

In Fig. 8a, the reduced amplitude of the bispectrum
of frequency pair approximate to (180, 180), while the
dominant frequency pairs range from (100, 180) to
(100, 100) in Fig. 8b, which exposes the frequency of
semi-order noise of the heat shield, possibly masked in
Fig. 5. So these features provide engineers with more
information for fault interpretation, which is crucial
for the design of the parts/components for the SPL
reduction of vehicle pass-by noise.

4.3. Improved heat shield

The material selection plays an important part in
voiding the noise radiation, which involves the design
of the central frequency fc in Eq. (1). Synthetically,
the aluminum-foil alloy is considered as the material of

a) b)

Fig. 9. Installation status of the improved heat shield: a) the improved heat shield, b) installation on the heat shield.

the heat shield, according to the property of well ther-
mal conductivity and low density itself. Two sample
pieces of heat shield with the same size are illustrated
in Fig. 9.

As shown in Fig. 9, the improved heat shields
consist of two-tier aluminum-foil with many uni-
form pits on it with the size of 10× 10× 2 mm
(length×wide×depth), which helps to avoid the
vibration-noise working at the same direction on the
surface of the heat shield. Thus, the input in differ-
ent directions lowers the possibility of the vibration-
noise resonance . What is more, the light and soft al-
loy helps to lower the stiffness of the heat shield, which
cuts down the sharpness of the noise for sound quality
(Wang et al., 2016). The SPL of the vehicle pass-by
noise as the evaluating value is recorded in Table 3.

In Table 3, the evaluating value marked
75.3 dB(A), which meets the requirement of SPL
76 dB(A) in the regulation, is 0.9 dB(A) lower than
the one in Table 1 by the improved heat shield.
Apparently, the SPLs both on the left and the right
have been reduced. The comparison between the
original and the improved heat shields is shown in
Fig. 10.
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Table 3. SPL of vehicle pass-by noise with the improved
heat shield.

Gear
range

Posi-
tion

Test
num-
ber

Test
result

[dB(A)]

Average
value

[dB(A)]

Mean
value

[dB(A)]

Evalu-
ating
value

[dB(A)]

2G

Left

1 77.5

77.3

76.8

75.3

2 77.3

3 76.9

4 77.3

Right

1 77.6

77.82 78.1

3 77.9

4 77.6

3G

Left

1 74.9

74.4

73.7

2 73.7

3 74.0

4 74.9

Right

1 75.1

74.72 74.3

3 74.6

4 74.8

a)

b)

Fig. 10. SPL comparison of vehicle pass-by noise between
2G and 3G: a) SPL at the WOT status of 2G, b) SPL at

the WOT status of 3G.

In Fig. 10, the maximum SPL both at 2G and 3G
is lower than the ones with the original heat shield un-
der the same conditions. The SPL has been reduced by
1.45 dB(A) at 3G status. Particularly, a reduction of
near 3.2 dB(A) of SPL at 2G status is achieved, com-
pared with the maximum value when the heat shields
are not improved. This result demonstrates that the
SPL now meets the limitation requirement of the reg-
ulation.

4.4. Results and discussion

Many useful features of vehicle pass-by noise are
interfered with irrelevant signals. The frequency pairs
such as (180, 100), (250, 180), (500, 180), (340, 180) in
Fig. 4 and Fig. 5, allow us to know that the dominant
frequency of parts/components should be improved in
application. Such difficulties still exist because the un-
sparseness features dramatically affect the judgement
of the fault statuses. NTD FUP is used to extract the
bispectrum with the feature based on its performances
of computation time and sparser features, which is
able to correctly interpret the fault present in the
parts/components. However, it fails to find out one
special part/component depending on the bispectrum
alone, especially for an engineer in the case of not un-
derstanding the structure of the exhaust system. So
how to explore the phase angle of bispectum features
to provide with exact information is a significant chal-
lenge for solving the NVH problem.

NTD FUP is successfully used to bispectrum anal-
ysis for part design of exhaust systems. The knowledge
of NTD is very important to promote the new technol-
ogy applied into fault diagnosis of an automobile.

5. Conclusions

1) NTD FUP method has comprehensively superior
performances both in computation accuracy and
time compared with other traditional methods.

2) NTD FUP method is successfully applied into
extracting the bispectrum features, which deter-
mines the natural frequency of the parts/compo-
nents in the exhaust system.

3) The material of aluminum-foil alloy replaces the
aluminum alloy alone. The new material improves
the performance of the heat shield such as light
design and low noise radiation.

4) The SPL of vehicle pass-by noise has been lowered
by 0.9 dB(A) by using the improved heat shield
under the same condition.
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