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The parameters of sigma-delta audio DAC depend mainly on digital sigma-delta
modulator’s features, especially on its noise transfer function (NTF). Many methods
of design and optimization of the loop filter’s coefficients in sigma-delta modulators
have been proposed so far. These methods enable the designer to get suitable noise
transfer functions for specific application. This paper reviews NTF design and op-
timization methods which are particularly useful in audio applications.
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1. Introduction

Recently, sigma-delta DACs (oversampled noise-shaping DACs) have become
an attractive alternative to conventional R-2R DACs (Nyquist rate PCM or over-
sampled PCM) (Kulka, 2006). Generally, they offer higher integration at lower
cost, a possibility of implementation in modern sub micron CMOS VLSI tech-
nologies with on-chip digital interpolation filters as well as with additional digital
signal processing functions, relatively easy implementation in FPGA structures
(Kulka, Woszczek, 2008, cited by Kulka, Lewandowski, 2009), higher res-
olution without additional component trimming or calibration, single voltage
power supply (typ. 5 V) and lower power dissipation. These advantages, compared
to conventional R-2R DACs, significantly reduce manufacturing costs. Sigma-
delta DACs are now widely used both in consumer and professional digital audio
systems.

A typical sigma-delta DAC, shown in Fig. 1, consists of a digital interpolation
filter (DIF), a lowpass digital sigma-delta modulator (DSDM), an internal 1- or
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K-bit DAC and an analog lowpass post-DAC filter (ALPF). The DIF performs
an upsampling operation of a multibit digital input signal. That is, a stream
of B-bit words with a sampling rate of fs changes to a stream of B′-bit words
(usually, B′ > B) with a sampling rate of L·fs, where L is the oversampling
ratio. The DSDM shortens the word length to a single bit or to K bits (usually,
K ¿ B′) and spectrally shapes the truncation (requantization) noise which can
be viewed as pushing noise power from the signal band to higher frequencies. The
truncated output signal of the DSDM (i.e. a 1- or K-bit data stream with a rate
of L·fs) is converted to an analog signal by the internal DAC. Finally, the analog
output of the internal DAC is fed to the ALPF for out-of-band noise filtering and
analog signal reconstruction (Kulka, Lewandowski, 2009).

Fig. 1. Block diagram of a typical sigma-delta DAC.

The most important audio DACs (also ADCs) specifications are: signal to
noise ratio (SNR), dynamic range (DR) and total harmonic distortion plus noise
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(THD+N). Depending on application sigma-delta DACs can have the following
parameters: 90–120 dB SNR/DR and 90–110 dB THD+N. The digital loop filter
and its noise transfer function (NTF) play the most crucial role in order to
obtain required parameters of the high oversampled sigma-delta DAC (Kulka,
Lewandowski, 2009).

This paper presents chosen methods of designing and optimization of the loop
filter’s coefficients in sigma-delta modulators, which allow the designer to get
suitable noise transfer functions. Furthermore, the NTF design and optimization
methods, which are particularly useful in audio applications are presented.

2. Truncation noise shaping

The main task of the DSDM is shaping the noise in such a way that a high
portion of the noise energy is contained above the audio signal bandwidth. This
is done by the DSDM’s loop filter, which is shown in Fig. 2 (Kulka, Woszczek,
2008).

Fig. 2. The linear model of single-loop 1-bit DSDM with MSB feedback.

The DSDM’s output signal Y (z) is a superposition of the input signal X(z)
and the truncation noise signal E(z) (modeled as an additive, white noise). The
output signal Y (z) is transformed according to the formula (Løkken, 2005):

Y (z) = X(z) · z−1 + E(z) · (1− z−1). (1)

By following the signal flow in Fig. 2, the transfer function from input to
output (STF – signal transfer function) and from the truncator to output (NTF
– noise transfer function) can be derived as follows (Løkken, 2005):

STF(z) = z−1, (2)

NTF(z) = 1− z−1. (3)

Thus, the input signal X(z) has been delayed by just one sample, while the
truncation noise signal E(z) has been passed through a high-pass filter. This is
shown in Fig. 3. The combination of noise shaping in the DSDM’s loop filter with
an oversampling (which is shown in Fig. 3) significantly improves the SNR value.
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Fig. 3. Oversampling and noise shaping in sigma-delta modulator.

The SNR value for large oversampling ratios (L) with B-bit representation
can be approximated by (Løkken, 2005):

SNR [dB] ≈ 6.02 ·B + 1.76− 10 · log
(

π2N

2N + 1

)
+ 10 · log(2N + 1) · log(L). (4)

The SNR gain vs. the oversampling ratio L based on Eq. (4) was simulated in
Matlab and is given in Fig. 4. Seemingly, to achieve very high value of the SNR,
the high order DSDM and the high oversampling ratio can be used. Unfortunately,
the (1−z−1)N -modulators are highly prone to instability and thus different NTFs

Fig. 4. Signal-to-noise ratio vs. oversampling ratio L with DSDM order N as parameter for
(1−z−1)N -modulators.
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must be used. Design of stable and high-performing modulators is one of the most
challenging and crucial matter in sigma-delta DACs design.

3. NTF selection criteria

The design of a sigma-delta modulator requires the selection of appropriate
NTF so that the modulator would be stable and at the same time could achieve
high SNR. For this purpose, the NTF should posses the following characteristics
(Bourdopoulos et al., 2003):
• The truncation noise has to be delayed by at least one sampling period before
returning to the truncator input. Thus, the first term of the impulse response
of the NTF should always be equal to 1 (Norsworthy et al., 1997). In this
case, sigma-delta modulator is a causal system.

• The NTF is of the form, where g is a constant (Bourdopoulos et al., 2003):

NTF(z−1) = g ·
n∏

i=1

(
1− zi · z−1

)

(1− pi · z−1)
, (5)

where zi are zeros and pi are poles. Using Taylor series expansion around
z−1 = 0, for the first term of the impulse response (h0) it will be:

h0 = NTF(0) = g. (6)

Consequently, g = 1 and this has to be taken into consideration when an
ordinary transfer function is to be selected from tabulated data.

• The sigma-delta modulator’s output sequence has always constant power δ2,
which is composed of the signal power (Px) and the total noise power (Pe−tot)
(Bourdopoulos et al., 2003):

Px + Pe−tot = δ2. (7)

The signal power (Px), which can be properly processed by the sigma-delta
modulator, decreases as the noise power (Pe) increases. If the truncation noise
spectrum is white, then:

Pe−tot =
Pe

2π

π∫

−π

∣∣∣NTF(ejθ)
∣∣∣
2
dθ = Pe ·A, (8)

where θ is a frequency in radians, A is the noise amplification factor and Pe is
white noise power.

• The truncation noise power within the signal band (Pe−in) depends on the
order of the NTF. It is shown in (Bourdopoulos et al., 2002) that the noise
power Pe−in is given approximately by (Bourdopoulos et al., 2003):

Pe−in ∼= Pe

R
· 1
e
·A−(N−1). (9)

Clearly Pe−in decreases rapidly with increasing A.
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• The maximum achievable SNR is given by (Bourdopoulos et al., 2003):

SNRmax =
Px

Pe−in
= e · N

Pe
·A(N−1) · (δ2 − Pe ·A

)
. (10)

According to Eq. (10) the maximum SNR is achieved for a high value of A
and consequently, for a high order NTF. However, this results in increasing the
Pe−tot and, according to Eq. (7), decreasing the tolerable Px. Therefore, for
encoding high values of the input signal, a compromise leading to lower SNR
must be accepted.

• The NTF with minimum phase will lead to higher SNR. Otherwise, a con-
stant g in Eq. (5) will be greater than 1, which will result in an increase in
the truncation noise power Pe−in and decrease in the SNR (Bourdopoulos
et al., 2003).

3.1. Stability criteria

Various stability criteria for selecting the appropriate NTF and thus assessing
the functionality of a digital sigma-delta modulator can be found in literature.
Most of them are based on extensive simulations. The chosen ones are the fol-
lowing:
• The sum of the absolute value of terms in the impulse response of the NTF
(S|h|) is bounded (Anastassiou, 1989, cited by Schreier, 1993):

S|h| ≡
∞∑

i=0

|hi| = 3− xmax, (11)

where xmax is the maximum signal amplitude for which the modulator remains
stable. In practice, the criterion is usually applied in the form S|h| < c, where
c ≈ 3.5.

• The mean-squared value of the magnitude response of the NTF(A) has to be
smaller than 2.5 (Anastassiou, 1989, cited by Schreier, 1993):

A ≡ 1
2π

π∫

−π

∣∣∣NTF(ejθ)
∣∣∣
2
dθ < 2.5. (12)

• The maximum value of the frequency response of the NTF(M) has to be smaller
than 2 (Schreier, 1993; Chao et al., 1990):

M ≡ max {|NTF(z)|} < 2. (13)

• The value of Sh2 (sum of squared impulse response values) after extensive
simulations is found to be (Bourdopoulos, 1999, cited by Bourdopoulos
et al., 2002):

Sh2 ≡
∞∑

i=2

h2
i < 0.07. (14)
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• For modulator orders from 3 to 8 the noise amplification factor (A) is bounded
(Kuo et al., 1999):

A ≤ Amax = C − 3Px max, (15)

A ≥ Amin = 1.5− 0.04 · (N − 3), (16)
where constant C was found after simulations (depending on N), and stability
regions are shown in Fig. 5.

Fig. 5. Acceptable NTF regions for orders from N = 3 to N = 8 (Kuo et al., 1999).

4. Noise transfer function determination

The noise transfer function (NTF) design process can be divided into several
basic steps (Norsworthy et al., 1997):
• choosing a modulator order and the NTF filter family,
• putting up a value for the filter cutoff frequency and scale the transfer function
so that the first sample of the impulse response is 1,

• constructing a modulator with this NTF and either simulate it (e.g. in Matlab
Simulink) or use the describing function method to determine its maximum
stable input and peak SNR,

• determining (taking into account the content of Subsec. 3.1) the NTF as a com-
promise between the maximum level of the input signal and the maximum value
of the SNR in order to stabilize the modulator’s operation.

4.1. Filter selection for NTF designing

Three filter families are taken into consideration in designing the NTF:
• Pure N -th order differentiators (Norsworthy et al., 1997):

H(z) = (1− z−1)N . (17)
These functions meet the causality requirement, established in Sec. 3, that the
first value of the impulse response must be equal to 1. The magnitude response
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of H(z) for various values of N was simulated using expand( ) function in
Matlab and is shown in Fig. 6. Note that at high values of N , more effective
suppression of the truncation noise can be obtained at low frequencies but
there is more gain at high frequencies, which can lead (according to Eqs. (11)
and (12)) to the instability of the modulator (Norsworthy et al., 1997).

Fig. 6. Pure differentiator NTFs for orders N = 1, 3, 5 and 7.

• The problem encountered in the previous noise-shaping function was the large
high-frequency noise-shaping gain for large N . In order to flatten the high-
frequency portion of H(z) poles are introduced into the pure differentiating
response. With a Butterworth alignment of the poles, which was simulated
using butter( ) function in Matlab, a maximally flat high-frequency region of
H(z) can be obtained as shown in Fig. 7 (Norsworthy et al., 1997).

• The Butterworth high-pass response can be modified to move the real stopband
zeros at the (1, j0)-dc point out on the unit circle to produce nulls in the
NTF at frequencies other than dc. Compared to the Butterworth, with the
Inverse-Chebyshev alignment, improved signal-to-noise ratio can be obtained
(Norsworthy et al., 1997). An example of the 5th order Inverse-Chebyshev
noise transfer function’s zeros and poles placement is shown in Fig. 8 and
the noise transfer function characteristic is shown in Fig. 9. Both figures were
obtained using functions cheby2 ( ) and fvtool( ) in Matlab.
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Fig. 7. Butterworth NTF characteristic compared to 5th order differentiator.

Fig. 8. Inverse-Chebyshev NTF’s zeros and poles placement for N = 5 order.
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Fig. 9. 5th order Inverse-Chebyshev NTF characteristic.

5. NTF optimization

All mentioned in Sec. 4 NTF design methods are the basis for subsequent
optimization the zeros’ and poles’ position of the NTF. The purpose of optimizing
the zeros’ location within the unit circle is to reduce the noise power in the signal
band, while optimizing the position of poles reduces the out-of-band NTF gain,
resulting in improved stability of a modulator. Determining an optimal NTF
is related to finding first the best position of zeros and then the position of
poles.

5.1. Optimizing the position of zeros

The position of zeros should be such that the power of the truncation noise in
the signal band is minimized (Schreier, 1993). This means that the following
integral should be minimized (Bourdopoulos et al., 2003):

C1 =

π/L∫

0

∣∣∣NUM(ejθ)
∣∣∣
2
dθ. (18)
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Since zeros lie on the unit circle, they can be written in the form of ejφi . Then,
since θ, φi ≤ π/L ¿ 1, for z = ejθ and for even N (Bourdopoulos et al., 2003):

NUM(z−1) =
N/2∏

i=1

(
1− e−j(φi+θ)

) (
1− ej(φi−θ)

)

≈
N/2∏

i=1

(
φ2

i − θ2
)

=
N/2∑

i=0

biθ
2i (19)1

while for odd N (Bourdopoulos et al., 2003):

NUM(z−1) =
(
1− e−jθ

) (N−1)/2∏

i=1

(
1− e−j(φi+θ)

)(
1− ej(φi−θ)

)

≈ jθ

(N−1)/2∑

i=0

biθ
2i. (19)2

In order to evaluate the coefficients bi, expressions for NUM(z−1) from Eq. (19)1
and Eq. (19)2 are inserted into Eq. (18). Evaluation of integral (frequency π/L
was normalized to 1) leads to the following set (Bourdopoulos et al., 2003):

N/2−1∑

i=0

bi

2k + 2i + 1
= − (−1)N/2

N + 2k + 1
, k = 0, 1, . . . ,

N

2
− 1 (20)1

for even N and:
(N−1)/2−1∑

i=0

bi

2k + 2i + 3
= −(−1)(N−1)/2

N + 2k + 2
, k = 0, 1, . . . ,

N−1
2

− 1 (20)2

for odd N and coefficient bN/2 = (−1)N/2. The roots of the polynomials (19)1
and (19)2 are referred to as optimal. In Table 1 the performance achieved by the
optimal and Inverse-Chebyshev polynomials, when compared to the ωN polyno-
mials, which have all their roots at zero, is presented (Bourdopoulos et al.,
2003).

Table 1. SNR improvement compared to dc zero set (Bourdopoulos et al., 2003).

Order N
SNR improvement [dB]

Optimal Inverse-Chebyshev
2 3.5 2.3
3 7.9 6.7
4 12.8 11.6
5 17.9 16.7
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Another method for optimizing the position of zeros was proposed in (Schreier,
1993). Schreier derived the following analytical expression which approximately
relates the in-band (unweighted) noise power N2

u to zero frequencies fi by:

N2
u = k

fB∫

0

N∏

i=1

(f − fi)2 df, (21)

where k is a constant and fB is the upper signal band frequency. The resulting
values for zeros (normalized to the signal band limit) are given, for NTFs orders
from 1 to 8 and fB = 22.05 [kHz], in Table 2.

Table 2. Optimal NTF zero locations and SNR improvement compared
to dc zeros (Dunn, Sandler, 1995).

Order N fi for fB = 22.05 kHz ∆SNRdc

1 0 0.0
2 ±12.7 3.5
3 0, ±17.1 8.0
4 ±7.5, ±19.0 12.8
5 0, ±11.8, ±20.0 17.9
6 ±5.3, ±14.6, ±20.6 23.2
7 0, ±8.9, ±16.4, ±20.9 28.6
8 ±4.0, ±11.6, ±17.6, ±21.2 34.0

5.2. Optimizing the position of poles

As mentioned earlier, optimizing the position of poles reduces the out-of-band
NTF gain, resulting in improved stability of a modulator. For Inverse-Chebyshev
NTFs the position of poles can be uniquely determined by the value of the pa-
rameter A (noise amplification factor) or M (the maximum value of the NTF’s
impulse response), in case the latter should be constrained (Eqs. (12) and (13)).
Another way for selecting the optimum position of poles was proposed by Bour-
dopoulos and his colleagues in their studies (Bourdopoulos, 1999, cited by
Bourdopoulos et al., 2002). The method relies on searching the whole re-
gion inside the unit circle to find the position of poles leading to the maximum
SNR. For this purpose, the stability criterion is constrained (Eq. (14)) and the
whole region is examined for poles to minimize the integral (Bourdopoulos
et al., 2003):

Pe−in =
Pe

π

π/L∫

0

∣∣∣NTF(ejθ)
∣∣∣
2
dθ. (22)

In Table 3 poles of the NTF are given as obtained from above presented
approach.
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Table 3. SNRmax and Xmax comparison for Inverse-Chebyshev NTF and optimal NTF
(Bourdopoulos et al., 2003).

Order N
Inverse-Chebyshev Optimized NTF

SNRmax [dB] Xmax [FS] SNRmax [dB] Xmax [FS]
3 90.4 0.741 93.4 0.589
4 105.8 0.575 107.9 0.562
5 118.4 0.501 121.5 0.575

Another method for optimizing the position of poles was proposed in (Schre-
ier, Temes, 2005). The main criterion was the NTF poles, which yield a maxi-
mally-flat all-pole transfer function (Schreier, Temes, 2005):

∣∣∣DEN(ejθ)
∣∣∣
2

= DEN(ejθ) ·
[
DEN(eiθ)

]∗
= DEN(z) ·DEN(1/z) |z=ejθ . (23)

Requirement that
∣∣DEN(ejθ)

∣∣ should be maximally flat around θ = 0 is equiv-
alent to the condition that DEN(z) ·DEN(1/z) should be maximally flat around
z = 1 (Schreier, Temes, 2005):

DEN(z) ·DEN(1/z) = DEN(1) + a(z − 1)N ·
(

1
z
− 1

)N

, (24)

where a is assumed to be some constant, which controls the sharpness of the filter
characteristic. After some calculations, poles of the sought-after NTF are given
by the roots of N complex quadratic equations (Schreier, Temes, 2005):

z2 + bkz + 1 = 0, k = 0, 1, . . . , N−1, (25)

where

bk =
ej(2k+1)π/N

a1/N
. (26)

5.3. Psychoacoustically optimal NTF

In sigma-delta modulators used in audio applications, psychoacoustic consid-
erations dictate the characteristics required of an optimal modulator. First, the
noise floor due to the truncation should posses a power spectral density within
the audio band that is invariant with changes in the input signal. Second, the
noise floor should be minimally audible (Dunn, 1994). In the later study by Dunn
and his colleague (Dunn, Sandler, 1995) authors have presented the NTF de-
signing method based on isophonic curves, which method was earlier specified
and used in conventional PCM audio converters (Lipshitz et al., 1991 cited by
Wannamaker, 1992).

In the psychoacoustically optimal NTF, noise shaping poles have negligible
influence in the audio band and thus, they are not taken into consideration. In
order to make an SNR measurement more psychoacoustically relevant, accord-
ing to Eq. (21), it is possible to accommodate this nonuniform sensitivity by
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skewing the noise floor with a weighting function W (f), which yields (Dunn,
Sandler, 1995):

N2
w ≈ k

fB∫

0

W (f)
N∏

i=1

(f − fi)2 df. (27)

The weighting function W (f) was chosen to be the F -weighting function de-
rived by Wannamaker (1992). The F -weighting curve in Fig. 10 is obtained by
modeling the ISO 15-phon equal-loudness data for noise, with a free-to-diffuse-
field correction applied. In Table 4 the performance achieved by the psychoa-
coustically optimal sets of zeros’ location, when compared to dc zero sets, is

Fig. 10. F -weighting curve (Wannamaker, 1992).

Table 4. Weighted SNR advantages of psychoacoustically optimal zero locations rela-
tive to dc zero sets (Dunn, Sandler, 1995).

Order N fi for fB = 22.05 kHz ∆SNRdc

1 0 0.0
2 ±4.014 2.1
3 0, ±6.443 2.0
4 ±3.590, ±11.954 9.2
5 0, ±4.308, 12.959 14.2
6 ±3.325, ±7.078, ±13.389 17.9
7 0, ±4.017, ±10.471, ±13.842 22.3
8 ±2.933, ±5.167, ±12.012, ±14.381 28.0
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presented. An example of the F -weighted 4th order NTF for psychoacoustically
optimal zero sets is shown in Fig. 11.

Fig. 11. F -weighted optimal 4th order NTF (Dunn, Sandler, 1995).

6. Improved psychoacoustic noise shaping

The F -weighting curve introduced in Subsec. 5.3 represents a diffuse-field cor-
rected variant of the 15-phon equal-loudness contour specified in the ISO standard
226 (International Org. for Standardization [ISO], 2003). Adopting such a con-
tour as W (f) in a noise shaping system supposedly renders the truncation noise
perceptually uniform at loudness levels of 15-phon and as stated by Helmrich
and his colleagues in their studies (Helmrich et al., 2007), does not guaran-
tee minimal audibility of the truncation noise. This statement was based on an
investigation of the equal-loudness contours in (ISO, 2003), which reveals two
major issues with audio data truncation. The first issue can be identified by the
scope of the standard 226, revision 2003 (ISO, 2003), which “specifies combina-
tions of sound pressure levels and frequencies of pure continuous tones, which
are perceived as equally loud by human listeners”. Helmrich and his colleagues
(Helmrich et al., 2007) suggested that the noise spectrum produced by dithered
truncator shouldn’t be regarded as a combination of pure tones. This view was
supported by (Stuart, 1994, cited by Stuart, 1997, cited by The Wikimedia
Foundation Inc., 2007) where it is suggested that the inner ear acts like a bank
of narrow-band filters. The bandwidth of each filter is proportional to its center
frequency, so as the frequency increases, a wider portion (in absolute terms) of
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spectral energy is “collected” from a noise source. Accordingly, sensitivity to noise
differs markedly from sensitivity to pure tones. The second issue that should be
considered when selecting a perceptual weighting function for noise shaping is the
potential discrepancy between listening conditions. The equal-loudness contours
specified in the ISO standard 226 (which was the basis for the F -weighting curve)
were measured in a non-reflective environment (freefield conditions) in which the
sound source is directly in front of the listener. In fact, listening conditions in
a real world (diffuse-field equalized headphones and two or more loudspeakers
in a more or less reflective room) differ considerably from a freefield environ-
ment for which the contours in (ISO, 2003) apply. Given the two issues outlined
above, Helmrich and his colleagues (Helmrich et al., 2007) used the ITU-R 468-
4 (International Telecomm. Union, Radiocommunication Assembly, 1986) noise
weighting curve as a basis for truncation noise shaping optimization. The ITU-R
468-4 defines a weighting network based on data from experiments performed
by British Broadcasting Corporation (BBC) and it was a response to calls for a
weighting curve providing satisfactory agreement with subjective evaluations. Its
spectrum (shown inverted in Fig. 12) peaks at 6.3 kHz, whereas the F -weighting
contour exhibit maximum gain around 3.5 kHz. Helmrich and his colleagues mod-
ified ITU-R 468-4 curve (Helmrich et al., 2007) – it’s identical to original ITU-
R 468-4 for frequencies from 1 to 12 kHz, but above 12 kHz, they customized it
by modeling a steeper progression for high frequencies by applying cubic spline
extrapolation. The motive behind this modification is the observation that the
ear’s sensitivity to high frequencies rapidly declines above approximately 12 kHz
(Zwicker, Fastl, 1990, cited by Lipshitz et al., 1991, cited by Zölzer, 1997).

Fig. 12. Proposed modification of ITU-R 468-4 weighting curve (Helmrich et al., 2007).

Besides the frequency-dependent loudness of noise (considered above), Helm-
rich and his colleagues (Helmrich et al., 2007) examined two other psychoa-
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coustic effects in the design of noise-shaping truncators: simultaneous and tem-
poral masking. Simultaneous masking occurs when a signal becomes inaudible in
the presence of a masker and, on the other hand, temporal masking of a signal
takes place before (pre-masking) and after (post-masking) the presentation of
the masker and is only of relatively short duration (Zwicker, Fastl, 1990). If
the input to a noise-shaping truncator is seen as the masker signal, simultane-
ous masking can be exploited as a means to minimize the relative audibility of
the truncation noise. The effect of simultaneous masking (and to some extent, of
temporal masking) depends greatly on the spectral content of both masker and
masked signal (Zwicker, Fastl, 1990). This implies that the noise shaping spec-
trum should resemble the input spectrum in order to achieve minimal audibility.
The frequency content of typical signals such as music or speech, however, varies
over time, so the noise shaping spectrum must be updated regularly, which leads
to time-variant noise shapers (Fig. 13). As a basis for optimization, Helmrich and
his colleagues in (Helmrich et al., 2007) used time-variant noise shaper based
on Least Squares approach presented in (Verhelst, Koning, 2002). There, the
following simplified psychoacoustic model is applied to obtain W (f):

W

(
fk =

2πk

N

)
=

1
βPXX(fk) + (1− β)PTQ(fk)

, (28)

where PXX(fk) represents the power spectrum of a 512-point Hanning-windowed
segment of input signal x(n). PTQ(fk), the threshold in quiet, denotes the spec-
trum of the 9th-order filter approximating the inverse F -weighting curve. The
scaling factor β epends on the window size (N = 512 is used) and the word-
length (in bits) of the input x(n). W (fk) is updated every 256 input samples.
While this adaptive psychoacoustic approach was found to weaken the trunca-
tion noise during signal portions of moderate and high level (Verhelst, Kon-
ing, 2002), Helmrich and his colleagues (Helmrich et al., 2007) observed that
a significant amount of noise shaping potential is left unused. In relatively loud
segments, the unweighted truncation noise power tends to decline considerably

Fig. 13. Time-variant DSDM model with adaptive feedback filter H(z) controlled
by a psychoacoustic model (Helmrich et al., 2007).
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– the louder and more spectrally complex a signal part is, the lower the trun-
cation noise power tends to be for this part. The reason for this phenomenon
is the strong adaptation of the noise shaping filter to high-level signals. In typ-
ical signals such as music or speech, most of the spectral energy is contained in
the lower frequencies up to about 10 kHz (Zwicker, Fastl, 1990). High levels
in this region, therefore, cause the truncation noise to rise above the absolute
threshold in quiet, as approximated by PTQ(fk). Consequently, the noise shaping
spectrum produced by the filter determined with W (fk) from Eq. (28) shows
a decrease in a high-frequency gain relative to its logarithmic average. In other
words, the noise spectrum tends to “flatten” (Helmrich et al., 2007). From this
observation, Helmrich and his colleagues (Helmrich et al., 2007) concluded
that the truncation noise produced by an adaptive noise shaper can be kept at
a relatively high level for the range from approximately 15 kHz up to fs/2 and
that an overall reduction in noise loudness can be expected as more noise en-
ergy is shifted to the less audible upper end of the spectrum. Helmrich and his
colleagues (Helmrich et al., 2007) achieved constant truncation noise power by
fixation of the high-frequency filter response by “stretching” the amplitude spec-
trum of PTQ(fk) based on the spectral content of PXX(fk). For this purpose, the
portion of the spectral power in PXX(fk) lying above the threshold defined by
PTQ(fk) was determined by:

Sk =
N/2−1∑

k=0

(log10 d(k), d(k) > 1), N = 512, (29)

where

d(k) =
PXX(fk)
PTQ(fk)

(30)

PTQ(fk) was then expanded in magnitude range to yield the fundamental spec-
trum for the instantaneous masking threshold (Helmrich et al., 2007):

P ′
TQ(fk) = PTQ(fk)1+(Sk/Smax), Smax = 2.7

N

2
. (31)

Finally, PTQ(fk) was replaced with P ′
TQ(fk) in Eq. (28) to attain W (fk), that is,

the inverse of the desired improved filter spectrum.

6.1. Listening experiments

Helmrich and his colleagues (Helmrich et al., 2007) performed two lis-
tening tests with different types of transducers. Tests were prepared and exe-
cuted according to MUSHRA (Multi-Stimulus test with Hidden Reference and
Anchor) methodology (International Telecomm. Union, Radiocomm. Assembly,
2003, cited by Vincent, 2005) with the following changes (in order to decrease
the variance of the results):
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• instead of the 3.5-kHz low-pass filtered anchor stimulus, a dithered truncated
signal with a flat error spectrum was chosen (Helmrich et al., 2007),

• test subjects were asked to assign a grade of zero to the stimulus which they
judged as having the lowest overall quality. The recommended instructions
(International Telecomm. Union, Radiocomm. Assembly, 2003) do not require
this explicitly (Helmrich et al., 2007).
Figure 14 illustrates the results of two listening experiments. For each noise

shaper under test, the arithmetic average of the individual assessments (the mean
opinion score, MOS) was given. A significance level of 95% was used to deter-
mine the confidence interval for each MOS (Helmrich et al., 2007). While the
F -weighting noise shaper yields a significant perceptual improvement over plain
truncation without noise shaping, it is clearly outperformed by modified ITU-R
468-4 filter design presented in Sec. 6. In the headphone test, truncation without
noise shaping was scored lowest by all subjects. The F -weighting filter achieved
satisfactory results, but its overall quality was rated lower than modified ITU-R
468-4 filter design. The adaptive noise shaper design was judged superior to all
other implementations by most subjects. Nonetheless, a clear advantage over the
static filter design was only observed at moderate and high signal levels. As re-
ported by most subjects, low-level noise similar to that in other stimuli became
audible during quiet signal passages (Helmrich et al., 2007).

Fig. 14. Results of the two listening experiments (Helmrich et al., 2007).

7. Conclusion

In the last few years a large number of works focusing on the optimization
of the NTF have been written. Based on extensive simulations, experiments and
complex analysis, some kind of “guides” for the NTF designing and optimization
were established. After designing the optimum noise transfer function, its coeffi-
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cients should be matched to the specific structure of the sigma-delta modulator.
Chosen methods for realizing NTF in a specific structure are shown in (Kuo
et al., 1999; Schreier, Temes, 2005; Yetik et al., 2007; Ho et al., 2009). In
addition, software solutions for designing sigma-delta modulators from scratch are
available. One of the most popular is Schreier’s Delta Sigma Toolbox (Schreier,
Temes, 2005). When designing audio DACs, it is worth examining closely the
NTF optimization procedure based on the psychoacoustically optimal truncation
noise shaping, as described in Subsec. 5.3 and Sec. 6. The approach and results
of the paper will be used by the author of this paper for further optimization
of the digital sigma-delta audio DAC in order to make the truncation noise in-
variant with changes of the input signal and make it less audible. In addition,
investigation performed in (Kostrzewa et al., 2003) shown that a group de-
lay fluctuations in sigma-delta modulators exist with amplitude correlated with
a period of stimulated signal and inversely proportional to its slew rate. This
may affect the character of a sound and it appears advisable to perform fur-
ther investigations on a time performance of sigma-delta modulators with e.g.
Time-Frequency Toolbox (Auger et al., 1996).
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