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This paper introduces the concept of semi-infinite phononic crystal (PC) on account of the infinite
periodicity in x-y plane and finiteness in z-direction. The plane wave expansion and finite element methods
are coupled and formulized to calculate the band structures of the proposed periodic elastic composite
structures based on the typical geometric properties. First, the coupled plane wave expansion and finite
element (PWE/FE) method is applied to calculate the band structures of the Pb/rubber, steel/epoxy
and steel/aluminum semi-infinite PCs with cylindrical scatters. Then, it is used to calculate the band
structure of the Pb/rubber semi-infinite PC with cubic scatter. Last, the band structure of the rubber-
coated Pb/epoxy three-component semi-infinite PC is calculated by the proposed method. Besides, all the
results are compared with those calculated by the finite element (FE) method implemented by adopting
COMSOL Multiphysics. Numerical results and further analysis demonstrate that the proposed PWE/FE
method has strong applicability and high accuracy.

Keywords: semi-infinite phononic crystal; coupled plane wave expansion and finite element method;
band structure.

1. Introduction

Over the past decades, the artificial periodic elastic
composite materials called as PCs have been attracting
great interest (Sigalas, Economou, 1993; Sigalas
et al., 2005; Yan et al., 2010a). PCs have many po-
tential applications in filter, insulator, waveguide and
sensor of acoustics and vibration on account of the ex-
istence of acoustic/elastic band gaps (Wu et al., 2005;
Benchabane et al., 2006; Mohammadi et al., 2009).
Brag scattering (Sigalas, Economou, 1992; Zhang
et al., 2003) and locally resonant (Liu et al., 2000b;
Hirsekorn et al., 2004) are developed as the two
main mechanisms for the creation of band gaps, which
the frequency range of band gaps based on the first
mechanism is almost two orders of magnitude higher
than that based on the second mechanism (Liu et al.,
2000b). Recently, the design ideas of both the Brag
PCs and locally resonant PCs have been widely imple-
mented in some basic elastic structures such as rods,
beams and plates (Wang et al., 2006; Ma et al., 2014;
Hsu, Wu, 2007; Xiao et al., 2008; Oudich et al.,

2010; Zhao et al., 2016; Li et al., 2015; 2016; Qian,
Shi, 2016; 2017a; Yu et al., 2006).

In general, whatever the bandgap property re-
search or the application research, the researches on
calculation methods are fundamental. For now, sev-
eral methods have been developed, which include the
transfer matrices (TM) method (Hou et al., 2004;
Yan et al., 2010b), the finite difference time domain
(FDTD) method (Sigalas, Garcıa, 2000; Cao et al.,
2004b), the multiple scattering theory (MST) method
(Mei et al., 2003; Liu et al., 2000a), the lump mass
(LM) method (Wang et al., 2004; 2005), the plane
wave expansion (PWE) method (Kushwaha et al.,
1994; Kushwaha, Halevi, 1997; Hsu, Wu, 2006;
Xiao et al., 2012) and the finite element (FE) method
(Orris, Petyt, 1974; Åberg, Gudmundson, 1997).
The MST method is efficient to calculate the band
structures of PCs, but the shapes of the scatters are
limited in cylinder and sphere. The FDTD method is
very flexible in handling different kinds of PCs, but
it is generally rather time consuming, especially for
three dimensional systems. In recent years, with the
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emergence of the commercial software COMSOL Mul-
tiphysics, FE method has been widely applied to the
research on PCs (Ma et al., 2014; Oudich et al., 2010;
Zhao et al., 2016; Li et al., 2015; 2016). The FE
method can be applied to deal with almost all kinds of
PCs, but it also consumes too long time particularly
when the system is complex. The PWE method ex-
hibits flexibility and high efficiency in handling differ-
ent types of PCs, but has convergence problems when
dealing with systems of either very high or very low
filling ratios, or of large elastic mismatch. In addition,
for the proposed semi-infinite PCs in this paper, only
the FE method can be applied to calculate the band
structures, most of the traditional methods including
the PWE method are not applicable.

In this paper, we propose the semi-infinite peri-
odic elastic composite structure named as semi-infinite
PC based on some engineering components. In al-
lusion to the periodicity in x-y plane and finiteness
in z-direction, the theories of plane wave expansion
and finite element division are coupled (Qian, Shi,
2017b) to describe the displacement field, and the
PWE/FE method is presented to calculate the band
structures of the semi-infinite PCS. In order to il-
lustrate the applicability of the proposed method to
different solid semi-infinite PCs with kinds of materi-
als, the band structures of the Pb/rubber, steel/epoxy
and steel/aluminum semi-infinite PCs are calculated
respectively. In order to illustrate the applicability of
the proposed method to semi-infinite PCs with dif-
ferent shapes of scatters, the band structures of the
Pb/rubber semi-infinite PCs with cylindrical and cu-
bic scatters are displayed respectively. Beside, in or-
der to reveal that the proposed method is applica-
ble to calculate not only two-component semi-infinite
PCs but also three-component semi-infinite PCs, both
the band structures of the Pb/rubber two-component
semi-infinite PC and rubber-coated Pb/epoxy three-
component semi-infinite PC are calculated and dis-
played. In addition, in order to illustrate the accuracy
of the proposed method, all the band structures cal-

a) b)

Fig. 1. a) The 3D semi-infinite PC infinitely periodic in x-y plane and finite in z-direction,
b) its unit cell, a is the lattice constant, and H is the length in z-direction.

culated by the PWE/FE method are compared with
those calculated by the FE method implemented by
adopting COMSOL Multiphysics.

2. Model and formulations

Consider a 3D semi-infinite PC by periodically
etching holes in a solid matrix and then filling them
with scatters in the x-y plane, as sketched in Fig. 1a.
Here, the length of the elastic medium in z-direction is
finite H with no periodicity, and the lattice constant is
a as shown in Fig. 1b. Because of the infinite periodic-
ity and the finiteness of the elastic medium in x-y plane
and z-direction, the theories of plane wave expansion
(Kushwaha et al., 1994; Kushwaha, Halevi, 1997)
and finite element (Eslami et al., 2013) are applied
respectively.

By representing the displacement field with the in-
terpolating function in an element in z-direction and
the spatial Fourier expansion in x-y plane, it can be
written as:

{u} = [Nz] [Nxy] {δe} = [N ] {δe} , (1)

where {u} =
{
u v w

}T
denotes the displacement vec-

tor, {δe} represents the nodal displacement vector in
an element, [Nz] is the shape function matrix along
z-direction, [Nxy] is the spatial Fourier expansion ma-
trix in x-y plane, and [N ] = [Nz] [Nxy] is the coupled
spatial Fourier expansion and shape function matrix.
When the interpolating function is linear, the matrixes
can be written as follows:

[Nz] =

a
∗ 0 0 b∗ 0 0

0 a∗ 0 0 b∗ 0

0 0 a∗ 0 0 b∗

, (2)

where

a∗ =
z − z2
z1 − z2

, b∗ = − z − z1
z1 − z2

,
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[Nxy]=



{GK} 0 0 0 0 0

0 {GK} 0 0 0 0

0 0 {GK} 0 0 0

0 0 0 {GK} 0 0

0 0 0 0 {GK} 0

0 0 0 0 0 {GK}


, (3)

{δe} =
{{
u1
} {

v1
} {

w1
} {

u2
} {

v2
} {

w2
}}T

, (4)

where

{GK}=
{
ei(G1+k)r ei(G2+k)r · · · ei(GN+k)r

}
, (5){

u1
}

=
{
uk(G1)u1z uk(G2)u1z · · · uk(GN )u1z

}
, (6){

v1
}

=
{
vk(G1)v1z vk(G2)v1z · · · vk(GN )v1z

}
, (7){

w1
}

=
{
wk(G1)w1

z wk(G2)w1
z · · · wk(GN )w1

z

}
, (8){

u2
}

=
{
uk(G1)u2z uk(G2)u2z · · · uk(GN )u2z

}
, (9){

v2
}

=
{
vk(G1)v2z vk(G2)v2z · · · vk(GN )v2z

}
, (10){

w2
}

=
{
wk(G1)w2

z wk(G2)w2
z · · · wk(GN )w2

z

}
. (11)

Here, z1 and z2 represent the range of element in z-
direction. k and Gi (i = 1, 2, · · · , N) are the 2D Bloch
wave vector limited in the irreducible first Brillouin
zone (1BZ) and the reciprocal-lattice vector, respec-
tively. N is the number of reciprocal-lattice vectors.

According to the fundamental equations of the elas-
todynamics (Eslami et al., 2013), the relations be-
tween the strain/stress in an element and the nodal
displacements can be expressed as:

{ε} = [∇] [N ] {δe} = [B] {δe} , (12)

{σ} = [D] [B] {δe} , (13)

where {ε} and {σ} denote the strain and stress vec-
tors, respectively. [∇], [B] = [∇] [N ] and [D] named
as differential operator matrix, geometric matrix and
elastic matrix are expressed as:

[∇] =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

∂

∂z
0

∂

∂x

∂

∂y

∂

∂x
0



, (14)

[D] =



α λ λ 0 0 0

λ α λ 0 0 0

λ λ α 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (15)

where λ and µ are the Lame constants of the elastic
medium, and α = λ+ 2µ.

Taking advantage of the periodicity of the medium
we expand the elastic matrix [D] in Fourier series:

[D]=
∑
G



α (G) λ (G) λ (G) 0 0 0

λ (G) α (G) λ (G) 0 0 0

λ (G) λ (G) α (G) 0 0 0

0 0 0 µ (G) 0 0

0 0 0 0 µ (G) 0

0 0 0 0 0 µ (G)


eiGr. (16)

In addition, the density ρ can also be expanded in
Fourier series as:

ρ =
∑
G

ρ (G) eiGr. (17)

Here,

g (G) =
1

S

∫∫
S

g (r) eiGr d2r (g = α, λ, µ, ρ) . (18)

According to the variation principle (Eslami et al.,
2013), the stiffness matrix and mass matrix of the elas-
tic medium are obtained by coupling the element stiff-
ness matrix and element mass matrix, which can be
written as:

[Ke] =

∫∫∫
V e

[B]
T

[D] [B] dV, (19)

[Me] =

∫∫∫
V e

ρ [N ]
T

[N ] dV, (20)

where [Ke] and [Me] represent the element stiffness
matrix and element mass matrix, respectively. Partic-
ularly, the integral

∫∫∫
V e

(·) dV in the x-y plane is in the

infinite domain.
[Ke] and [Me] can be expressed in the form of block

matrix as follows:

[Ke]=



[Ke]11 [Ke]12 [Ke]13 [Ke]14 [Ke]15 [Ke]16

[Ke]21 [Ke]22 [Ke]23 [Ke]24 [Ke]25 [Ke]26

[Ke]31 [Ke]32 [Ke]33 [Ke]34 [Ke]35 [Ke]36

[Ke]41 [Ke]42 [Ke]43 [Ke]44 [Ke]45 [Ke]46

[Ke]51 [Ke]52 [Ke]53 [Ke]54 [Ke]55 [Ke]56

[Ke]61 [Ke]62 [Ke]63 [Ke]64 [Ke]65 [Ke]66


, (21)
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[Me]=



[Me]11 [Me]12 [Me]13 [Me]14 [Me]15 [Me]16

[Me]21 [Me]22 [Me]23 [Me]24 [Me]25 [Me]26

[Me]31 [Me]32 [Me]33 [Me]34 [Me]35 [Me]36

[Me]41 [Me]42 [Me]43 [Me]44 [Me]45 [Me]46

[Me]51 [Me]52 [Me]53 [Me]54 [Me]55 [Me]56

[Me]61 [Me]62 [Me]63 [Me]64 [Me]65 [Me]66


. (22)

Here, take [Ke]11 as an example. [Ke]11 can be ob-
tained from equation (16) as:

[Ke]11 =

∫∫∫
V e

∑
G

α (G) eiGr [B11]
T

[B11] dV

+

∫∫∫
V e

∑
G

µ (G) eiGr [B51]
T

[B51] dV

+

∫∫∫
V e

∑
G

µ (G) eiGr [B61]
T

[B61] dV. (23)

The first item of [Ke]11 can be further written as:

∫∫∫
V e

∑
G

α (G) eiGr [B11]
T

[B11] dV

=

∫∫∫
V e

∑
G

α (G) eiGr

(
z−z2
z1−z2

)2

{GK}T,x {GK},x dV

=

z2∫
z1

(
z−z2
z1−z2

)2

·


[Ke

1 ]1111 [Ke
1 ]1112 · · · [Ke

1 ]111N

[Ke
1 ]1121 [Ke

1 ]1122 · · · [Ke
1 ]112N

...
...

. . .
...

[Ke
1 ]11N1 [Ke

1 ]11N2 · · · [Ke
1 ]11NN

 dz, (24)

a) b) c)

Fig. 2. a) The two-component semi-infinite PC with cylindrical scatter, b) the two-component semi-infinite PC
with cubic scatter, c) and the three-component semi-infinite PC with cylindrical scatter.

where

[Ke
1 ]11lm =

∫∫
S

∑
G

α (G) eiGr (Gl + k)x

· (Gm + k)x ei(−Gl+Gm)r dS

=
∑
G

α (G) (Gl+k)x (Gm+k)x δG,(−Gl+Gm)

= α (Gm −Gl) (Gl + k)x (Gm + k)x

(l,m = 1, 2, · · · , N) . (25)

Similar to the first item of [Ke]11, all the block ma-
trixes of [Ke] and [Me] can be obtained. Particularly
when the cross section along x-y plane is constant in z-

direction, the integral
z2∫
z1

(·) dz can be obtained analy-

tically.
In addition, according to the variation principle

(Eslami et al., 2013), the equation of motion can be
written as: (

[K]− ω2[M ]
)

= 0, (26)

where [K] =
∑
e[K

e] and [M ] =
∑
e[M

e] represent the
stiffness matrix and mass matrix of the elastic medium.

Equation (26) represents a generalized eigenvalue
problem for ω2. By solving the equation for each 2D
Bloch wave vector limited in the irreducible first Bril-
louin zone (1BZ), the band structure can be obtained
finally.

3. Numerical results and analyses

3.1. Two-component semi-infinite PC
with cylindrical scatter

The semi-infinite PC is formed with Pb cylinders
arranged in a square lattice in rubber matrix, as shown
in Fig. 2a. The materials’ parameters are shown in Ta-
ble 1. The lattice constant a, height H and scatter
radius R are displayed in Table 2.
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Table 1. Materials’ parameters used in calculations.

Material Mass density
[kg/m3]

Young’s modulus
[1010 N/m2]

Poission’s
ratio

Epoxy 1180 0.435 0.368

Rubber 1300 1.175e-5 0.469

Pb 11600 4.08 0.37

Steel 7780 21.06 0.3

Aluminum 2730 7.76 0.352

Table 2. Geometric parameters used in calculations.

a [m] H [m] R [m] l [m] R1 [m] R2 [m]

0.02 0.02 0.008 0.008 0.008 0.009

In this section, three groups of examples are dis-
played. In addition, to check the accuracy of the for-
malism and program, the band structure of each exam-
ple calculated by the proposed approach (PWE/FEM)
is compared to that calculated by FEM, which is imple-
mented by adopting the commercial software, COM-
SOL Multiphysics. In order to improve the calcula-
tion accuracy, the improved PWE method (Cao et al.,
2004a) is applied to PWE/FE method.

Here, equation (18) can be written as:

g(G)=

{
gAf+gB(1−f), G = 0

(gA−gB)P (G) , G 6= 0
(g = α, λ, µ, ρ),

(27)
where subscript A and B denote the scatter (Pb) and
matrix (rubber) respectively. f = πR2/a2 represents
the filling ratio, and P (G) can be expressed as:

P (G) = 2f
J1 (GR)

GR
, (28)

where J1 is the Bessel function of the first kind of or-
der 1, and G = |G|.

Figure 3 displays the band structure of the semi-
infinite phononic crystal with the unit cell shown in

Fig. 3. Band structures of the Pb/rubber two-component
semi-infinite PC with cylindrical scatter calculated by

PWE/FEM and FEM.

Fig. 2a. Here, N = (5 · 2 + 1)
2 plane waves in x-y plane

and 5 elements in z-direction are chosen. As a com-
parison, the band structure calculated by FEM is also
shown. As shown in the figure, two locally resonant
band gaps are formed (the gray area in Fig. 3). Be-
sides, by comparing the band structures calculated by
the two methods, they are in good agreement under
450 Hz. Thus, for PWE/FEM, only a small number of
plane waves in x-y plane and elements in z-direction
are needed to obtain the accurate band gap, which is
very efficient.

In order to illustrate the applicability of the pro-
posed method in this paper, the band structures of
different semi-infinite PCs formed by different materi-
als are calculated. Figures 4a and 4b show the band
structures of steel/epoxy and steel/aluminum semi-
infinite PCs respectively with the same geometric pa-
rameters as those in the example shown in Fig. 3. The
materials’ parameters are displayed in Table 1. From
Fig. 4a, the Bragg scattering band gaps are formed in
steel/epoxy semi-infinite PC. But Fig. 4b show that
no band gaps can be formed in steel/aluminum semi-
infinite phononic crystal. In addition, both the band
structures of the two semi-infinite PCs calculated by
PWE/FEM agree very well with those calculated by
FEM. Therefore, the proposed PWE/FEM can be ap-
plied for different solid semi-infinite phononic crystals
with kinds of materials.

a) b)

Fig. 4. Band structures of the steel/epoxy and steel/alu-
minum two-component semi-infinite PCs with cylindrical

scatter calculated by PWE/FEM and FEM.

3.2. Two-component semi-infinite PC
with cubic scatter

In order to reveal the applicability of PWE/FEM
for calculating the band structure of the semi-infinite
PC with different shapes of scatters, the PC with Pb
cuboids arranged in rubber matrix is formed, as shown
in Fig. 2b. The materials’ parameters and geometric
parameters are displayed in Table 1 and Table 2, re-
spectively.
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Here, in Eq. (27), f = (2l)
2
/a2 and P (G) can be

written as:

P (G)=



f
sin(Gyl)

Gyl
, Gx = 0, Gy 6= 0,

f
sin(Gxl)

Gxl
, Gy = 0, Gx 6= 0,

f
sin(Gxl)

Gxl

sin(Gyl)

Gyl
, GxGy 6= 0.

(29)

The band structures of the semi-infinite PC with
the unit cell shown in Fig. 2b calculated by PWE/FEM
and FEM are both shown in Fig. 5. Here, the same
numbers of plane waves and elements as the exam-
ple in Fig. 3 are used. In the figure, by comparing
the band structures calculated by the two methods,
they are in good agreement under 650 Hz only except
for the flat band around 550 Hz. Thus, the proposed
method is completely applicable for dealing with the
two-component semi-infinite PC with cubic scatter. By
comparing Fig. 5 with Fig. 3, we can conclude that
the proposed method is applicable to semi-infinite PCs
with different shapes of scatters.

Fig. 5. Band structures of the Pb/rubber two-
component semi-infinite PC with cubic scatter

calculated by PWE/FEM and FEM.

3.3. Three-component semi-infinite PC
with cylindrical scatter

In order to reveal that the proposed method in
this paper can be not only used to calculate the band
structure of the two-component semi-infinite PC but
also applicable to the three-component semi-infinite
PC, the rubber-coated Pb cylinders are arranged in
a square lattice in epoxy matrix, as shown in Fig. 2c.
The materials’ parameters are shown in Table 1. The
geometric parameters are displayed in Table 2.

Here, equation (18) can be written as:

g(G) =

{
gAf1 + gBf2 + gC(1− f1 − f2), G = 0,

(gA − gB)P1(G) + (gB − gC)P2(G), G 6= 0

(g = α, λ, µ, ρ), (30)

where subscript A, B and C denote the Pb layer, rub-
ber layer and epoxy layer, respectively. f1 = πR2

1/a
2

and f2 = π(R2
2 − R2

1)/a2 represent the filling ratios of
Pb layer and rubber layer separately. P1(G) and P2(G)
can be expressed as:

P1(G) = 2f1
J1(GR1)

GR1
, (31)

P2(G) = 2(f1 + f2)
J1(GR2)

GR2
. (32)

Figure 6 shows the band structures of the three-
component semi-infinite PC calculated by PWE/FEM
and FEM. Here, N = (20 · 2 + 1)2 plane waves are
used to improve the convergence. As shown in the
figure, a narrow locally resonant band gap is formed
around 500 Hz, and the band structures calculated by
the two methods agree well under 2600 Hz. By com-
paring Fig. 6 with Fig. 3, what can be concluded is
that the proposed method can be applied to not only
the two-component semi-infinite PC but also the three-
component semi-infinite PC.

Fig. 6. Band structures of the rubber-coated Pb/epoxy
three-component semi-infinite PC with cylindrical scatter

calculated by PWE/FEM and FEM.

4. Conclusions

In this paper, we formulize the PWE/FE method
to calculate the band structures of the proposed semi-
infinite PCs. All the band structures calculated by the
proposed method are compared to the ones calculated
by FE method, which are in good agreement. In addi-
tion, three groups of examples are calculated and dis-
played to illustrate the applicability of the proposed
method:

1) By comparing the band structures of the Pb/
rubber, steel/epoxy and steel/aluminum two-
component semi-infinite PCs with cylindrical scat-
ter, we conclude that PWE/FE method is applica-
ble to different solid semi-infinite PCs with kinds
of materials.

2) By comparing the band structures of the Pb/rub-
ber two-component semi-infinite PCs with cylin-
drical and cubic scatters, it can be concluded that
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the proposed method is applicable to semi-infinite
PCs with different shapes of scatters.

3) By comparing the band structures of the Pb/rub-
ber two-component semi-infinite PC and rubber-
coated Pb/epoxy three-component semi-infinite
PC with cylindrical scatter, what can be con-
cluded is that the proposed method is applicable
to not only two-component semi-infinite PCs but
also three-component semi-infinite PCs.

All the results of the investigation verify the strong
applicability and high accuracy of PWE/FE method,
which provide a new method for dealing with the semi-
infinite periodic elastic composite structures with the
infinite periodicity in x-y plane and finiteness in z-
direction.
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