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A voiceless stop consonant phoneme modelling and synthesis framework based on a phoneme modelling
in low-frequency range and high-frequency range separately is proposed. The phoneme signal is decom-
posed into the sums of simpler basic components and described as the output of a linear multiple-input
and single-output (MISO) system. The impulse response of each channel is a third order quasi-polynomial.
Using this framework, the limit between the frequency ranges is determined. A new limit point searching
three-step algorithm is given in this paper. Within this framework, the input of the low-frequency com-
ponent is equal to one, and the impulse response generates the whole component. The high-frequency
component appears when the system is excited by semi-periodic impulses. The filter impulse response
of this component model is single period and decays after three periods. Application of the proposed
modelling framework for the voiceless stop consonant phoneme has shown that the quality of the model

is sufficiently good.
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1. Introduction

In recent years, speech technology has made rapid
advances in many areas such as automatic speech
recognition (ASR), automatic audio-visual speech
recognition (AVSR), automatic transcription, building
meaningful multimodal speech corpora, etc. Numer-
ous examples of national speech corpora other than
English exist (e.g. AGH Corpora; BROCKI, MARASEK,
2015; IGRAS et al., 2013; JADCZYK, ZIOLKO, 2015; Jo-
HANNESSEN et al., 2007; KORZINEK et al., 2011; O0ST-
DIJK, 2000; PINNIS, AUZINA, 2010; PINNIS et al., 2014;
UPADHYAYA et al., 2015; STANESCU et al., 2012), but
in most cases they are devoted to build a material
for speech recognition tasks. The common feature of
such corpora is a careful analysis of design criteria and
search for a relevant speech material. Also, there ex-
ist websites,e.g. VoxForge which were set up to collect
transcribed speech for use with Open Source Speech
Recognition Engines. Though, many challenges such

as poor input signal quality, noise and echo distur-
bance, ambiguity and the use of non-standard phrase-
ology remain, resulting in reducing the recognition rate
and the performance of speech recognition systems
(CzyzZEWSKI et al., 2017). Thus, even though the prob-
lem of speech data collecting and analyzing is not new,
there are still ongoing research studies on several as-
pects.

Also, speech synthesis has generated wide inter-
est in speech processing for decades. The dominat-
ing speech synthesis technique is unit-selection syn-
thesis (ZEN et al., 2009). Many recent studies have
focused on using Hidden Markov Model (HMM) in
synthesizing speech. A general overview of speech syn-
thesis based on this method is given in the paper by
TOKUDA et al. (2013). DEMENKO et al. (2010) present
a study on adapting the open-source software, called
BOSS (The Bonn Open Synthesis System), which was
originally designed for generating German speech uti-
lizing a concatenative speech synthesis to the Polish
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language. For that purpose Polish speech corpus based
on various databases was created and later evaluated
(DEMENKO et al., 2010; SAMPA, 2005; SAMPA Po-
lish, 2005). As pointed out by the authors of that pa-
per, creating a versatile speech synthesis system is not
an obvious task as such a system depends on gathering
not only a specific task-oriented speech material, but
should be enhanced by co-articulatory effects, enabling
to create expressive speech as well (DEMENKO et al.,
2010). It is also interesting that the analysis of dynamic
spectral properties of formants may lead to a signifi-
cant reduction of information carried by speech signal
(GARDZIELEWSKA, PREIS, 2007).

A voice source modelling method based on pre-
dicting the time domain glottal flow waveform using
a DNN (Deep Neural Network) is described in very re-
cent sources (RAITIO et al., 2014). TAMULEVICIUS and
KAUKENAS (2016) apply Autoregressive model param-
eter estimation technique for modelling of semivowels.
Contrarily, much less attention has been paid to for-
mant speech synthesis. The main reason is that the
synthesized speech quality does not achieve the natu-
ral speech quality yet (SASIREKHA, CHANDRA, 2012;
TABET, BOUGHAZI, 2011). Formant synthesizers have
advantages against the concatenative ones. The speech
produced by them can sufficiently be intelligible even
at high speed (TABET, BouGHAZzI, 2011). They can
control prosody aspects of the synthesized speech. Still,
in order to reduce synthetic sounding, there is a need to
develop new mathematical models for speech sounds.

There are about 200 different vowels in the world’s
languages and more than 600 different consonants
(LADEFOGED, DISNER, 2012). It should be pointed
out, that vowel or vowel-consonant modelling is a bet-
ter exploited subject. Therefore, in this paper the main
focus is given to the consonants. The development of
consonant models is a classic problem in speech syn-
thesis. The signals of consonant phonemes are more
difficult than those of vowels and semivowels. For ex-
ample, no previous study has considered Lithuanian
consonant phoneme models. Most studies in Lithua-
nian consonant phonemes have only been carried out
in the speech recognition area. A system for discrim-
ination of fricative consonants and sonants is pro-
posed in the paper (DRIAUNYS et al., 2012). The work
(RASKINIS, DERESKEVICIUTE, 2007) describes an in-
vestigation of spectral properties of the voiceless velar
stop consonant /k/ of Lithuanian. The phonology of
Polish was described in many sources (e.g. JASSEM,
2003; GUSSMANN, 2007; OLIVER, SZKLANNY, 2006),
but interestingly also by LABARRE (2011). He pointed
out that in terms of consonants, one can distinguish 36
contrastive consonant phonemes in Polish (LABARRE,
2011). The goal of his study was to show differences
between Polish and American English phonology. The
study was carried out at the University of Washing-
ton by the author having Polish ancestry. In the study

of KRYNICKI (2006) some contrasting aspects of Po-
lish and English phonetics were shown and adequate
examples of such were recalled. The acoustic part of
the AGH AVSR consists of a variety of speech scenar-
ios, including phonetically balanced 4.5 h subcorpus
recorded in an anechoic chamber, which may be use-
ful for extracting material for carrying out evaluation
tests (AGH Corpora; ZELASKO et al., 2016). The pho-
netical statistics were collected from several Polish cor-
pora (Z1OLKO et al., 2009). A corpus of spoken Polish
was used to collect statistic values of real language and
evaluated to be applied in an automatic speech recog-
nition and speaker identification systems. This feature
could be used in phoneme parametrization and mod-
elling (Z16r.KO, Z16LKO, 2011).

A search of world literature revealed few studies
which deal with vowel or consonant-vowel modelling
(BIRKHOLZ, 2013; STEVENS, 1993). Mostly, speech or-
gans producing sounds of the given language are con-
sidered in these papers. In the current research sound
is described in terms of acoustical properties, i.e. sig-
nal characteristics are considered. For this purpose, we
describe the signal as the output of MISO (multiple-
input and single-output) system. The usage of the liner
system for speech synthesis is proposed in the paper
(RINGYS, SLIVINSKAS, 2010). This solution requires
estimation of the filter parameters and inputs.

The object of this research is voiceless stop conso-
nant phonemes. The phonemes /b/, /b’/, /d/, /d’/,
J8/, [%]. /k/, /K. /o], [0'[. /5], /¥] ave called stop
consonants because the air in the vocal tract is stopped
at some period. We can divide those phonemes into two
sets: voiced and voiceless sounds (DOMAGAEA, 1994;
KRyYNICKI, 2006). The difference between these sets
lies in the action of the vocal folds. For phonemes /b/,
/v'/,/d/, /A, Je/, /&’ /, the vocal folds vibrate while
saying these sounds. Therefore, they are called voiced
sounds. Meanwhile for voiceless phonemes /k/, /k’/,
/p/, /P’/, /t/, /¥’/ the vocal folds are apart.

The main purpose of the investigations reported
here is to propose a new voiceless stop consonant
phoneme modelling and synthesis framework. The syn-
thesis technique presented in this paper enables one to
develop phoneme models. The proposed models can
be used for developing a formant speech synthesizer
which does not use any recorded sounds. These mod-
els can also be adapted to other similar problems, for
example treating language disorders, speech recogni-
tion, helping with pronunciation and learning foreign
languages.

The paper starts with introducing the proposed
phoneme mathematical model. It then pass to the
modelling framework with the main focus on signal
dividing into components into low and high-frequency
ranges. Then, the paper presents the results of the ex-
periments. Conclusions are presented in the last sec-
tion.
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2. Phoneme mathematical model

The goal of the research is to obtain the math-
ematical model of the analyzed phoneme. Generally,
a phoneme signal has a quite complicated form. It is
proposed to expand this signal into the sum of com-
ponents (formants). Each of these components is re-
sponsible for a certain frequency band and is treated
as the output of MISO system channel. The diagram
of such a system is shown in Fig. 1, where: K — number
of components, K; — number of low-frequency compo-
nents, {u(n)}, {h(n)}, {y(n)} are the sequences of the
input, impulse response and output, respectively.
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Fig. 1. Multiple channel synthesis scheme.
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The expansion of the signal into a sum of formants
is needed to satisfy the criteria of the minimal model
i.e. the number of formants and the order of formant
needs to be as minimal as possible. The impulse re-
sponse of such a system is described as a third order
quasi-polynomial:

h(t) = eM(aysin(27 ft + ¢1)
+agtsin(2w ft + p2)
+azt?sin(2m ft + p3)
+ayt? sin(27 ft + @4)), (1)

where t € RTU{0}, A > 0 — the damping factor, f — the
frequency, ar — amplitude, @i (—7 < @i < ) — phase.
Computations show (see PYZ et al., 2014) that a third
degree quasi-polynomial is a good trade-off between
the resulted quality and the model complexity.

The modelling of components consists of two steps,
the first of which is the impulse response parameter
estimation and the second refers to the determination
of the exciting input impulse periods and amplitudes.
The parameters of the impulse responses are estimated
using the Levenberg-Marquardt method. A step-by-
step algorithm of this method for a second-degree
quasi-polynomial is described in an earlier paper of
one of the authors of this study (PYZ et al., 2011). In
order to obtain more natural sounding of the synthe-
sized speech, it is important to use not only high-order
models but complex input sequence scenarios as well.
A procedure of determining inputs is presented in the
more recent paper by PyZ et al. (2014).

3. Modelling framework

The analyzing of stop consonant phonemes shows
that high frequencies generate sound of the phoneme,
contrarily, low frequencies retain timbre of the speaker.
Therefore, in this research, it is proposed to divide the
phoneme signal into two parts and model it in the high-
frequency range and low-frequency ranges separately.
In order to divide a phoneme into two parts, it is nec-
essary to set the limit between those frequency ranges.
For this purpose, the three-step algorithm is given be-
low:

1) The y-coordinate of the highest point on the given
curve is estimated. This value is marked as max
(see Fig. 2).

2) The point where the line y = max /3 crosses the
y-axis is determined. This point is marked as cross
point.

3) From the cross point, we will go down until we
reach a minimum. Such a point will be a limit

point.
Z max - — — —
S
oA
3 cross point
2
S 1 |
g-max ~-x~/~x—F/ —FY——F————— - — — — — — —
< 3 \ /

\\T 2 N TN y ~~— ~— N~
0 limit point 2000

Frequency [Hz|
Fig. 2. The magnitude response of the phoneme /k/.

Figure 2 shows the graphical representation of limit
point searching. Note that the frequency spectrum
from the range [0, 2000] Hz is considered.

3.1. Signal dividing into components
in low-frequency range

First of all, the signal is filtered with a filter from
the bandwidth of [1, fiimit] Hz. The second step is to di-
vide the signal into components, each of which contains
a single harmonic with inharmonics. In order to deter-
mine the partition points, the second order derivative
of the spectrum function is computed. The local min-
ima of the derivative are considered as partition points.
The length of adjacent periods of consonant phoneme
signal (in contrast to vowel and semivowel phoneme)
differs slightly from each other. We can consider this
signal as quasi-periodic signal in noise. As a result, af-
ter dividing the spectrum into components using deter-
mined partition points, we obtain some signals which
hold inharmonics but do not hold a harmonic. These
signals are insignificant. Therefore, it is necessary to
reject the points which are adjacent to each other. For
this purpose, the near point rejection algorithm is pro-
posed.
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Input:

1) p1,p2,...,pL, — the initial partition points,

2) L; — number of the initial partition points,

3) d — the allowed minimal distance between points
(this value depends on the speaker’s fundamental
frequency).

Output:

1) Py, P,..., Pr, — the partition points,

2) Lo — number of the partition points,

A pseudocode of this algorithm is shown below:

Set the first partition point to the first
value of the initial partition point list

Loop through each value in the initial
partition point list

If the distance between this value and the
last value from the partition point list

is bigger than the allowed minimal distance
between points, then set this value to the
partition point list.

End loop

It is worth emphasizing that there are not lower and
upper limits to calculate partition points. In order to
use the proposed algorithm, we have to determine the
allowed minimal distance between points. We assume
that each component should have a harmonic. It can
be done if the allowed distance is not less than half fun-
damental frequency (fo). We set that d = fy/2. Esti-
mation of the fundamental frequency is an active topic
of research. Currently there exist many fundamental
frequency estimation methods (DzTUBINSKI, KOSTEK,
2005). An example was proposed by PYZ et al. (2014).

A block diagram of this algorithm is presented in
Fig. 3.

After applying the algorithm shown in Fig. 3, the
near points will be rejected and the number of fre-
quency bands will be equal to K7 (K; = Ly — 1). The
frequency band is divided into subbands:

FT(m), m € [Pk, Pk+1],
gelm) =

0, m & [Py, Pri1], @

where FT(m) — Fourier transform of the phoneme sig-
nal s(n), k=1,...,K;.

The component of the phoneme is calculated us-
ing the inverse Fourier transform in the corresponding
frequency band:

N
O <11v> D gr(m)elPmI I (3)

where N — phoneme length (n =1,...
nary unit.

After implementation of Eq. (3), we obtain K sig-
nals of the NV point length. These signals are used for
parameters of the impulse responses Eq. (1) estima-
tion.

,N), i — imagi-

Lallullnle]. [n]
m=1
i=1
Pm:pi

>
1 Y

y A4

Fig. 3. A block diagram of the near points rejection
algorithm.

8.2. Signal dividing into components
in the high-frequency range

The signal is filtered with a filter with the band-
width of [fiimit, 8000] Hz. Low frequencies are attenu-
ated and the signal gains the periodic character after
voiceless stop consonant filtering in the high-frequency
range. Therefore, only a single period is considered.
The conditions of the period selection are as follows:

1) The first sample of the period is as close as possi-
ble to zero.

2) The energy of the beginning of the period is larger
than that of the end.

Such a period is called a representative period and
is used for the parameter estimation. The method that
allows one to select representative period automati-
cally was given by PYZ et al. (2014). The magnitude
response of the representative period is calculated. The
procedure of determining the partition points is as fol-
lows:

1) The first peak of the magnitude response is cho-
sen.

2) The frequency corresponding to this minimum is
the first partition point.

3) The second point is obtained analogously, i.e. the
second peak of the magnitude response is chosen
and then the algorithm proceeds to the right from
the peak until the nearest local minimum.

After this procedure, we get Ko frequency bands.
In each of these bands, the inverse Fourier transform is
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performed. Respectively, K5 signals are obtained. The
length of these signals is equal to the length of the
selected period. For each of them, the parameters are
estimated.

4. Experimental results

An utterance of the voiceless stop consonant /p’/
is considered in this Section. Its duration is 0.013 s.
This consonant was recorded as wav audio file format
with the following parameters: PCM 44.1 kHz, 16 bit,
stereo. The signal consists of 603 samples and is shown
in Fig. 4.

4000
Z 2000
E o
< -2000
2
= -4000
£
£ -6000
-8000 : ;
0 0.003 0.006 0.009 0.012
Time [s]

Fig. 4. The oscillogram of voiceless stop consonant /p’/.

First, the magnitude response of this signal is cal-
culated and the limit point between high and low fre-
quencies is determined. After applying the three-step
algorithm described in Sec. 3, we get that limit point
which is equal to 930 Hz. Then, the signal is filtered
with a filter from the bandwidth of 1-930 Hz and the
magnitude response of this signal is calculated. The fre-
quency bands are selected as shown in Table 1. After
dividing the magnitude response into frequency bands,
five intervals are determined. In each of these intervals,
the inverse Fourier transform is carried out. As a re-
sult, five signals of length 0.013 s are obtained. These
signals are shown in Fig. 5.

i) 1000 15t component
E
g 07
2
g-IOOO : : T "
0 0.003 0.006 0.009 0.012
500 ~ 34 component
' W
-500 T T r :
0 0.003 0.006 0.009 0.012
1000 5th component
0
-1000 + T T T
0 0.003 0.006 0.009 0.012

Table 1. Subbands in low-frequency range.

1st band 0— P
2nd band P — P
Ki-th band Px,-1— Pk,

Next, the signal is filtered within the bandwidth of
[930-8000] Hz. The filtered signal is shown in Fig. 6.
As seen in Fig. 6, this signal exhibits the periodicity.

4000 -

2Z 2000

[=1

=2

o) 0 4

=

£ 2000

£

£ -4000

-6000 . . .
0 0.003 0.006 0.009 0.012
Time [s]

Fig. 6. The phoneme /p’/ signal with frequencies from the
bandwidth of 930-8000 Hz.

The dark curve shown in Fig. 6 indicates the chosen
period on the basis of which the synthesizer model will
be created. The magnitude response of the selected
period is calculated. The obtained magnitude response
is divided into 10 frequency bands that are shown in
Fig. 7.

1

Amplitude [units]
(=]
S

o

2530 4130 5730 7330
Frequency [Hz]

o
< 4
=1

Fig. 7. The phoneme /p’/ signal spectrum with frequencies
from the bandwidth of 930-8000 Hz.

1000 - 2" component
0 4
-1000 T T : v
0 0.003 0.006 0.009 0.012
1000 1 4th component
0 4
-1000 T T : v
0 0.003 0.006 0.009 0.012
400 6t component
0
-400 + T T T T
0 0.003 0.006 0.009 0.012
Time [s]

Fig. 5. The phoneme /p’/ components with frequencies from the bandwidth of 1-930 Hz.
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Fig. 8. The phoneme /p’/ components with frequencies from the bandwidth of 790-8000 Hz.

For each of the frequency bands, the inverse Fourier
transform is applied. The obtained signals are pre-
sented in Fig. 8.

After dividing the signal into components in low
and high frequency ranges, 17 signals of a simple form
are obtained. The lengths of these signals are 0.013 s
and 0.0024 s, respectively. Each of the obtained sig-
nals is modeled by formula (1). The parameters of the
5th—8th component impulse responses are shown in Ta-
ble 2.

The inputs {u(n)} of the MISO system are pre-
sented in Fig. 9.

Input value

1
6

0 N |

] ||.||||I|I ||||I||‘ ‘ |||| |
1 2 3 4 5

Period number

Fig. 9. The input values of the phoneme /p’/.

In order to evaluate the accuracy of modelling, the
Fourier transforms of the real data and output of the

Table 2. The parameters of the 5th—8th comp

MISO system have been compared. The magnitude re-
sponse shows only small differences (see Fig. 9).

w

Amplitude [units]

T T T * T = T
3000 4000 5000 6000 7000

Frequency [Hz]

0 1000 2000 8000

Fig. 10. The spectra of the true phoneme /p’/ and its model
(solid line — the true speech signal spectrum, dotted line —
the modeled signal spectrum).

The mean absolute error (MAE) is employed in the
model evaluation (CHAI, DRAXLER, 2014). The MAE
is calculated by the following formula:

Q
MAE=100%-$Z)Sq—§q : (4)
q=1

where S, is the ¢g-th value of the spectrum of the true
phoneme, S, — the ¢-th value of the spectrum of the
true phoneme.

onent impulse responses of the phoneme /p’/.

Component f A @ a s a o1 02 0 o1
number
5 605 | —504 | 222.7 | 7.11 | 0.040 | 0.0005 | 2.89 | —2.35 | 1.59 | —2.06
6 729 | —530 | 168.9 | 4.10 | 0.011 | 0.0002 | 0.85 | 0.76 | —2.14 | 0.88
7 999 | —3101 0 162.8 | 7.89 | 0.24 0 0.86 | —1.55| 1.29
8 1718 | —3098 0 18.0 | 0.64 0.02 0 —0.84 | 2.31 | —0.87
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We carried out the modelling using 15 utterances
for all voiceless stop consonants. In order to show how
the method deals with noise, we add random noise to
the consonant phoneme signals. The signal-to-noise ra-
tio (SNR) of the noisy signal is equal to 20 dB. The
MAE values of the estimated signal spectrum and its
confidence intervals are presented in Table 3.

Table 3. The MAE for the estimated voiceless stop
consonant phoneme signal spectrum.

Rea?-valued Noisy signal
Phoneme signal
MAE C‘onﬁdence MAE Confidence
intervals intervals

/k/ 571 % | [6.17,6.26] |6.17 % | [5.59, 6.75]
/K’/ 6.98 % | [6.30, 7.65] |7.38 % | [6.74, 8.02]
/p/ 5.96 % | [6.32,6.61] |7.12% | [5.95, 8.29]
/p’/ 6.52 % | [5.94, 7.11] |7.36 % | [6.35, 8.37]
/t/ 6.24 % | [5.46,7.01] |6.78 % | [5.94, 7.62]
/t/ 6.67 % | [5.86, 7.48] |7.11 % | [6.37, 7.85]

The spectrum estimation errors (see Table 3) re-
vealed that quality difference between the models of
the real-valued signal and the noisy signal is small.
The average MAE for the estimated signal spectrum
of real-valued signals is equal to 6.35%, the average
MAE for the estimated signal spectrum of noisy sig-
nals is equal to 6.99%. The small spectrum estimation
errors revealed that quality of models is good.

Examples of the synthesized speech are uploaded
on the website: http://audioakustyka.org/voiceless-
stop-consonant-modeling-and-synthesis// .

5. Conclusions

Voiceless stop consonant phoneme modelling
framework based on a phoneme modelling in low-
frequency range and high-frequency range separately
is proposed. A new limit point searching three-step al-
gorithm and a new near points rejection algorithm is
given in this paper.

The simulation has revealed that the proposed
modelling framework is able to reconstruct the signal
with noise. The average MAE of the estimated signal
spectrum is equal to 6.35% for real-valued signals and
6.99% for noisy signals. The SNR of the noisy signal
was equal to 20 dB.

Small estimation errors indicate that the phoneme
model obtained by the proposed methodology is suf-
ficiently good. High modelling quality was achieved
due to:

1) the high order of quasi-polynomial order,

2) separate excitation impulse sequences for each
component.

The study shows that it is possible to develop the
consonant signal mathematical model that generates
naturally sounding sound. In the future, such models
of other consonant groups are to be developed.
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