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The Neumann boundary value problem for the Helmholtz equation within the
quarter-space has been considered in this paper. The Green function has been used
to find the acoustic pressure amplitude as the approximation valid within the Fraun-
hoffer’s zone for some time-harmonic steady state processes. The low fluid loading
has been assumed and the acoustic attenuation has been neglected. It has also been
assumed that the vibration velocity of the acoustic particles is small as compared
with the sound velocity in the gaseous medium.
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1. Introduction

Some vibrating flat surface elements mounted in the vicinity of some flat verti-
cal walls often become sound sources. There are many vertical walls of residential
buildings, shopping malls, supermarkets and office buildings in urban environ-
ments. Such walls reflect sound waves and modify considerably the acoustic field
generated if the sizes of the walls are large compared to the lengths of acoustic
waves. Therefore, the theoretical prediction of acoustic field near the walls of large
size is useful modelling the acoustic climate of urban and industrial environments
where the sound field can not be treated as a free field. The acoustic waves are
radiated into the semi-free region that is partially bounded by the walls. The mea-
surements of some acoustic quantities such as the amplitude of the acoustic pres-
sure, the space distribution of the acoustic pressure level, the acoustic power and
the acoustic impedance of the acoustic radiators mounted in the vicinity of the
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walls being high as compared with the sizes of the radiators as well as compared
to the radiated wavelengths become significant from the practical view-point.
The former two quantities are equivalent to one another whereas one of the lat-
ter is necessary to include the acoustic attenuation in the theoretical predictions
of acoustic pressure level. The results obtained are useful for both planning the
urban areas and minimizing vibrations and generated noise (Dykas et al., 2010;
Gołaś, Filipek, 2009; Gołaś et al., 2010; Piddubniak, Piddubniak, 2010;
Walerian et al., 2010a,b; Weyna, 2010). The piezoelectric effect is widely used
for this purpose within the low frequency range (Batko, Kozupa, 2008;Kozień,
Wiciak, 2009; Kozupa, Wiciak, 2010; Le Clézio et al., 2008; Leniowska,
2008, 2009; Pawełczyk, 2008; Zou, Crocker, 2009b). On the other hand, the
predictions of space distributions of acoustic pressure and acoustic power are
difficult or impossible until the walls are built in a given configuration. The in-
fluence of the changes in the configuration of the walls on the acoustic pressure
distribution is also difficult to predict. In this case, some elementary theoret-
ical formulations of the acoustic quantities mentioned above can be useful for
some flat elements vibrating and radiating the acoustic waves. The elementary
approximate formulas are derived using simplifying assumptions. Nevertheless,
they are convenient for initial estimations of the acoustic pressure distribution at
the design stage of some configurations of the vertical walls.

So far, theoretical expressions have been derived and measurements have
been conducted for the acoustic impedance and for the acoustic pressure for
the simplest piston radiators of the circular and rectangular geometry that have
been embedded on the flat baffles (Arase, 1964; Greenspan, 1979; Rdzanek,
Szemela, 2007; Rdzanek et al., 2007; Stepanishen, 1974; Svensson, 2001;
Thompson, 1971). The distribution of the acoustic pressure and the acoustic
pressure level of some simplest deformable acoustic sources such as vibrating
circular plates and membranes embedded onto a flat baffle have been investi-
gated theoretically or measured and all has been reported e.g. by Cieślik and
Pieczara (2008); Krishnappa and McDougall (1989); Rdzanek (1990);
Shuyu (2000). The acoustic power and the acoustic impedance of such sources
have been presented by Lee and Singh (2005); Levine and Leppington (1988);
Stepanishen and Ebenezer (1992); Zou and Crocker (2009a).

Few papers deal with the sound radiation within the region of the quarter-
space. The acoustic radiation of the vibrating sphere in the vicinity of the quarter-
space has been described in detail byHasheminejad andAzarpeyvand (2004).
The acoustic power radiated into the quarter-space by a vibrating circular mem-
brane has been presented by Rdzanek, Rdzanek, and Szemela (2009). The
distribution of the acoustic pressure radiated into the quarter-space and into
the semi-quarter-space by a vibrating circular piston has been presented by
Rdzanek, Szemela, and Pieczonka (2007). The acoustic pressure has been
formulated as an approximation valid for the Franhoffer’s zone. So far such ap-
proximations have not been presented for a vibrating circular membrane. Ob-
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viously, a deformable membrane is a better model of a real vibrating surface
radiator than a rigid piston. Therefore, the problem of sound radiation by a vi-
brating circular membrane embedded onto one of the two baffles perpendicular
to one another and bounding the quarter-space has been considered in this pa-
per. It has been assumed that the influence of the acoustic attenuation on the
membranes’ vibrations is small enough in the air to be neglected for frequencies
different from the membrane’s eigenfrequencies. The acoustic pressure radiated
into the quarter-space has been investigated for two different surface excitation
of the membrane. The Green function presented by Rdzanek and Rdzanek
(2006) has been used as the basis of solution. The approximation used has made
it possible to express the acoustic pressure distribution at the Fraunhoffer’s zone
using some elementary functions.

2. The analysis assumptions

A circular membrane of radius a is embedded onto one of the two flat perfectly
rigid baffles, perpendicular to one another, for z = 0. The membrane’s centre is
indicated by the leading vector l = (0, l, 0) (cf. Fig. 1) and its surface is excited by
an asymmetric external pressure. It has been assumed that the acoustic particles
adjacent directly to the membrane’s surface vibrate as acoustic monopoles with
the amplitude equal to the normal component value of the membrane’s vibration
vector. The backward interactions of the air column vibrations on the membrane’s
motion have been neglected. The time-harmonic steady state processes have been
analysed varying with respect to time according to exp(−iωt) where ω is the
excitation circular frequency.

Fig. 1. The circular membrane’s location within the quarter-space region Ω for z = 0
where r0 = r′ − l and R = r− r′.
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The main aim of this study is to determine the acoustic pressure distribution
within the region Ω bounded by the baffles at a big distance from the radiator
as compared with the radiator’s geometric sizes. The Cartesian coordinates have
been used to describe the generated acoustic waves. The quarter-space region
has been defined as Ω = {−∞ < x < ∞, 0 ≤ y < ∞, 0 ≤ z < ∞}. The
vector r indicates the location of the acoustic field’s point, the vector r′ indicates
the source’s point using the global coordinates and the vector r0 indicates the
same point using the local coordinates with the origin indicated by the vector l
(Fig. 1). The equation of motion of the excited circular membrane using the local
polar coordinates assumes the form of

(
k−2

T ∇2 + 1
)
W (r0, ϕ0) = −f(r0, ϕ0)

ω2σ
, (1)

where ω and σ are the vibration circular frequency and the surface density of the
membrane, respectively, kT = ω/cM is the structural wavenumber, cM =

√
T/σ

is the propagation velocity of the wave propagated on the membrane’s surface,
T is the membrane’s stretching force related to its circumference length unit,
f(r0, ϕ0) is the external excitation distribution on the membrane’s surface. The
solution represents the membrane’s transverse deflection amplitude and has been
formulated as the complete eigenfunction series

W (r0, ϕ0) =
∞∑

m=0

∞∑

n=1

{
c(c)
mnW (c)

mn(r0, ϕ0) + c(s)
mnW (s)

mn(r0, ϕ0)
}

, (2)

where W
(c)
mn(r0, ϕ0) and W

(s)
mn(r0, ϕ0) are the eigenfunctions (cf. Meirovitch

(1967)). The eigenfunctions are also the solutions of the equation of motion

(∇2 + k2
mn

)
{

W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)

}
= 0 (3)

for the free vibrations for the mode (m,n). The solutions are degenerated to the
two eigenfunctions for one mode, i.e. cosine and sine, for m ≥ 1. The membrane’s
transverse deflection W has been been defined herein as the function of the spatial
variables r and ϕ with the index 0 to emphasize the fact that this quantity is
defined in the local polar coordinates which is helpful for further analysis.

The eigenfunctions, expressed in these local coordinates, assume therefore the
form of {

W
(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)

}
= Wmn(r0)

{
cosmϕ0

sinmϕ0

}
,

Wmn(r0) =
√

εm
Jm(kmnr0)
Jm+1(βmn)

,

(4)

where λmn = kmna is the eigenvalue satisfying the membrane’s frequency equa-
tion Jm(λmn) = 0, kmn = ωmn/cM , ωmn is the eigenfrequency of the mode (m,n),



Acoustic Pressure Radiated by a Circular Membrane. . . 125

ε0 = 1 and εm = 2 for m ≥ 1. The eigenfunctions’ orthogonality condition as-
sumes the form of

1
S0

∫

S0

{
W

(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)

}{
W

(c)
m′n′(r0, ϕ0)

W
(s)
m′n′(r0, ϕ0)

}
dS0 = δmm′δnn′ , (5)

where δmm′ is the Kronecker delta, S0 = πa2 and dS0 = r0 dr0 dϕ0. Inserting the
solution (2) to Eq. (1) yields

{
c
(c)
mn

c
(s)
mn

}
=

1
ω2σ

(
k−2

T k2
mn − 1

)
{

f
(c)
mn

f
(s)
mn

}
(6)

after using Eq. (3), where
{

f
(c)
mn

f
(s)
mn

}
=

1
S0

∫

S0

{
W

(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)

}
f(r0, ϕ0) dS0. (7)

The expression (6) enables to determine the coupling matrix coefficients c
(c)
mn

and c
(s)
mn appearing in the solution (2) for a given surface excitation. The acoustic

attenuation has been neglected in any further computations presented in this
paper. However it can be included by using the values of the acoustic impedance
presented by Rdzanek, Rdzanek, and Szemela (2009).

3. Sound pressure amplitude

The amplitude of the acoustic pressure radiated by the excited membrane for
harmonic steady state vibrations of the acoustic particles can be formulated as

p(r) = −ik%0c

∫

S′

vN (r′) G(r | r′) dS′ (8)

on the basis of the sharpened Sommerfeld radiation condition (Rubinowicz,
1971) and on the basis of the Neumann boundary conditions satisfied on the
surface of the rigid baffles where k is the acoustic wavenumber, %0 and c are
the air column density and the sound velocity in the air, respectively, vN (r0)
is the normal component of the vibration velocity amplitude of the membrane,
G(r | r′) is the Green function and S′ ≡ S0 is the area directly adjacent to the
vibrating membrane’s surface. It can be assumed that the normal component of
the membrane’s vibration velocity amplitude vN (r′) is approximately equal to
the vibration velocity amplitude of the acoustic particle directly adjacent to the
membrane for the small vibration velocity as compared with the sound velocity
in the air.
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The membrane’s vibration velocity has been formulated as the following eigen-
function series (cf. Meirovitch 1967; Rdzanek et al., 2009)

vN (r0, ϕ0) = −iωW (r0, ϕ0)

=
∞∑

m=0

∞∑

n=1

ω

ωmn

{
c(c)
mnv(c)

mn(r0, ϕ0) + c(s)
mnv(s)

mn(r0, ϕ0)
}

, (9)1

{
v

(c)
mn(r0, ϕ0)

v
(s)
mn(r0, ϕ0)

}
= vmn(r0)

{
cosmϕ0

sinmϕ0

}
, vmn(r0) = −iωmnWmn(r0), (9)2

where the mode (m,n) degenerates to the cosine and sine modeshapes v
(c)
mn(r0, ϕ0)

and v
(s)
mn(r0, ϕ0) (modal vibration velocities of the membrane) for m ≥ 1. The

vibrating membrane’s transverse deflection amplitude can be formulated as

W (r0, ϕ0) =
∞∑

m=0

∞∑

n=1

{
c(c)
mnW (c)

mn(r0, ϕ0) + c(s)
mnW (s)

mn(r0, ϕ0)
}

. (10)

The Green function for the considered boundary value problem has been
expressed as

G(r | r0) =
exp(ikRl)

2πRl
+

exp(ikR−l)
2πR−l

(11)

for z′ = 0 using the Weyl equation (Weyl, 1919) where Rl ≡ |Rl| = |r−r′| =
{(x − x′)2 + (y − y′)2 + z2}1/2 is the distance between the acoustic particle di-
rectly adjacent to the vibrating membrane and the acoustic field’s point, l is the
y coordinate of the vector l and also is the distance between the membrane’s
center or the center of the membrane’s image and the vertical baffle in the global
Cartesian coordinates. The resultant Green function is the superposition of the
two terms. The distance is equal to l for the membrane and is equal to −l for its
image. It is worth noticing that the Green function formulated as above can also
be obtained using the method of images. Consequently, it has been obtained that

p(r) =
∞∑

m=0

∞∑

n=1

ω

ωmn

{
c(c)
mnp(c)

mn(r) + c(s)
mnp(s)

mn(r)
}

(12)

after inserting the series from Eq. (9)1 into Eq. (8) where signm is the signum
function and {

p
(c)
mn(r)

p
(s)
mn(r)

}
= −ik%0c

∫

S′

{
v

(c)
mn(r′)

v
(s)
mn(r′)

}
G(r | r′) dS′. (13)

The cosine and sine modal sound pressure amplitudes appearing in Eqs. (12)
and (13) result from the asymmetric mode degeneration indicated in Eq. (9). Fur-
ther the following transformations have been introduced from the global Carte-
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sian coordinates to the global spherical coordinates and to the local polar coor-
dinates

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ, (14)1
x′ = r0 cosϕ0, y′ = l + r0 sinϕ0. (14)2

The distance Rl has been formulated as the expansion series around the point
r0/r = 0 assuming that r À r0 which has yielded the distance approximation

Rl ≈ Ql + r0 (αl cosϕ0 + βl sinϕ0) + O(r2
0/r2), (15)

where the distance between the membranes center (0, l, 0) and the observation
point (r, ϑ, ϕ) has been denoted as

Ql =
(
l2 + r2 − 2rl sinϑ sinϕ

)1/2 (16)1
and

αl = −r sinϑ cosϕ/Ql, βl = (|l| − r sinϑ sinϕsignl) /Ql. (16)2
The assumption r À r0 means that the above approximation is valid in the far
field. The following approximation has been used

exp(ikRl)
2πRl

≈ exp(ikQl)
2πQl

exp{ikr0 (αl cosϕ0 + βl sinϕ0)} (17)

given that the numerator in Eq. (11) grows rapidly with an increase in Rl and
given that the denominator is slowly varying with changes of Rl. It has been
inserted into Eq. (11) and further into Eq. (13) yielding

{
p
(c)
mn(r)

p
(s)
mn(r)

}
= − ik%0cS0

2π

·
(

exp(ikQl)
Ql

{
M

(c)
l,mn(r)

M
(s)
l,mn(r)

}
+

exp(ikQ−l)
Q−l

{
M

(c)
−l,mn(r)

M
(s)
−l,mn(r)

})
, (18)

where
{

M
(c)
l,mn(r)

M
(s)
l,mn(r)

}
=

1
S0

∫

S0

{
v

(c)
mn(r0)

v
(s)
mn(r0)

}
exp{ikr0 (αl cosϕ0 + βl sinϕ0} dS0

=
2
a2

a∫

0

vmn(r0)

{
F

(c)
l,m(r0)

F
(s)
l,m(r0)

}
r0 dr0, (19)1

{
F

(c)
l,m(r0)

F
(s)
l,m(r0)

}
=

1
2π

2π∫

0

exp{ikr0 (αl cosϕ0 + βl sinϕ0)}
{

cosmϕ0

sinmϕ0

}
dϕ0

= imJm(γlr0)
{

cosmϕ

sinmϕ

}
(19)2
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and γl = k
(
α2

l + β2
l

)1/2. The modal quantities M
(c)
l,mn(r) and M

(s)
l,mn(r) from

Eq. (19)1 describe the sound radiation related to the vibration mode (m,n).
It has been obtained{

M
(c)
l,mn(r)

M
(s)
l,mn(r)

}
= −im+1ωmn

√
εm ψl, mn

{
cosmϕ

sinmϕ

}
(20)

after integrating over the variable r0 in Eq. (19)1 where

ψl, mn =
2
a2

a∫

0

Jm(kmnr0)
Jm+1(λmn)

Jm(γlr0) r0 dr0 =
2λmnJm(γla)
λ2

mn − (γla)2
. (21)

Equation (20) has been inserted into Eq. (18) giving the acoustic pressure

p(r) = pl(r) + p−l(r) (22)1

formulated as the superposition of the pressure amplitudes generated by the
original source pl(r) and by its image p−l(r) where it has been denoted that

pl(r) = −kS0

2π
%0cω

eikQl

Ql

∞∑

m=0

∞∑

n=1

im
√

εm ψl, mn

·
{

c(c)
mn cosmϕ + c(s)

mn sinmϕ
}

. (22)2

These equations represent the approximation of the acoustic pressure amplitude
valid in a big distance between the observation point and the vibrating membrane
as compared with the membrane’s geometric sizes.

4. Numerical analysis

4.1. Forced vibrations

The following two surface excitations of the membrane have been used for the
numerical computations (cf. Rdzanek et al., 2009)

f1(r0, ϕ0) = f1
S

r
δ(r0 − r0) δ(ϕ0 − ϕ0), (23)1

f2(r0, ϕ0) = f2

{
1; 0 6 r0 6 b

0; b < r0 6 a

}
(cosMϕ0 − ϕ0) (23)2

for 0 6 b 6 a, where f1 and f2 [Pa] are the excitation amplitudes. The first
excitation is the concentrated force f1 exerted to the membrane at the point
(r0, ϕ0) and described by the Dirac delta function. This theoretical model of
excitation is useful for integration. However, it is necessary to remember that
the real membrane must be excited by the force exerted to a finite part of its
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surface to avoid damage. This excitation will be briefly referred to as the Dirac
excitation. The second excitation is described by the cosine function. It means
that the distribution of the excitation is uniform with respect to the local radial
variable r0 and varies cosinusoidally with respect to the local angle variable ϕ0

and assumes its maximum for ϕ0 = ϕ0. The M full variation periods are covered
within the limits (0, 2π) and the excitation shows M node lines. Consequently,
the modes contribute the membrane’s response only for m = M . The response
has the node point for r0 = 0 and M ≥ 1 (cf. Eq. (4)) and is much weaker than
the response for the Dirac excitation. Therefore, the amplitudes of f2 must be
assumed to be considerably higher than f1 to obtain comparable amplitudes of
the transverse deflection amplitude. This excitation will be briefly referred to as
the cosine excitation. The membrane’s response is essentially asymmetric except
of the two cases. One case is when r0 = 0 for the Dirac excitation and the second
is when M = 0 for the cosine excitation. Obviously, a number of excitations can
be modelled but the two presented have been arbitrarily selected as the most
representative for asymmetric vibrations and sound pressure distributions.

The following values of the modal excitation coefficients have been obtained
by inserting Eqs. (23) into (7)

{
f

(c)
1, mn

f
(s)
1, mn

}
= f1

{
W

(c)
mn(r0, ϕ0)

W
(s)
mn(r0, ϕ0)

}
, (24)1

{
f

(c)
2, mn

f
(s)
2, mn

}
= f2

δmM

εm
Fmn(b)

{
cosϕ0

sinϕ0

}
, (24)2

where

Fmn(b) =
2
a2

b∫

0

Wmn(r) r dr. (25)

First, the amplitude of the membrane’s transverse deflection has been calcu-
lated for the two surface excitations defined in Eqs. (23) to help further reading
the corresponding distributions of the resultant acoustic pressure amplitudes.
Performing the numerical calculations requires assuming the complete set of the
physical properties of the membrane, its surrounding gaseous medium, the consid-
ered region Ω and the excitation. The following properties have been arbitrarily
selected:

a = 0.2 m, σ = 0.5 kg/m2, T = 500 N/m,

l = 1.0 m, c = 343 m/s, %0 = 1.23 kg/m3,

f1 = 1 Pa, f2 = 1 kPa, r0 = 0.1 m,

ϕ0 = π/4, b = 0.1 m, f = 500 Hz.
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They result in the certain set of the membrane’s eigenfrequencies. The lowest
of them have been collected in Table. 1. If any of these parameters have been
modified it has been mentioned in the corresponding figure captions.

Table 1. The lowest eigenfrequencies fm, n [Hz] of the circular membrane for
the modes (m, n) used in the numerical computations.

n
m

1 2 3 4 5 6 7 8

0 60.52 138.91 217.77 296.73 375.73 454.75 533.78 612.82

1 96.42 176.54 256.01 335.29 414.48 493.63 572.75 651.86

2 129.24 211.82 292.41 372.34 451.95 531.40 610.75 690.03

3 160.55 245.63 327.52 408.26 488.43 568.29 647.94 727.47

4 190.96 278.44 361.68 443.30 524.10 604.43 684.45 764.27

5 220.73 310.50 395.09 477.63 559.10 639.95 720.38 800.53

6 250.04 341.97 427.89 511.37 593.54 674.92 755.79 836.30

7 278.98 372.97 460.20 544.60 627.48 709.42 790.74 871.63

The resultant membrane’s vibration profiles are shown in Fig. 2. They rep-
resent the membrane’s response for the given excitations and can be useful for
understanding some further distributions of the corresponding acoustic pressure
amplitudes in the far field. The first row of this figure shows the complex distrib-
utions of the profiles which is caused, obviously, by the superposition of a number
of the lowest membrane’s modes that dominantly contribute them. The second
row shows their intersections for ϕ0 = ϕ0 = π/4 and the third row illustrates the
corresponding approximation error. Figure 2a shows the membrane’s response
for the Dirac excitation. The point where excitation is exerted is invisible on the
perspective view. However, it can easily be noted on the intersection for r0 = 0.1.
Paradoxically, the membrane’s response at this point is small as compared with
the rest of the intersection but the response of its close neighbourhood assumes
significant values about minus unity. This is the consequence of the complex su-
perposition of the contributing modes and this can vary considerably with the
change in the excitation frequency f . It is worth noticing for this kind of excita-
tion that all the modes of the membrane are excited except of the modes having
the node at the point where the excitation is exerted. However, only some of
the modes contributes the output dominantly. Figure 2b shows the membrane’s
response for the cosine excitation. It can be noted that for the selected excitation
frequency only a part of the membrane’s area located around its centre responses
considerably on the cosine excitation. This is the consequence of the nature of
this excitation which excites only the selected modes for m = M . Also a nodal
point at r0 = 0 can be observed. It is the intersection of the nodal lines of the
excited modes.
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a) b)

Fig. 2. The normalized membrane’s transverse deflection amplitude W and its relative error
estimation δW for: a) the Dirac excitation; b) the cosine excitation. Key for the intersections
of W : −−−−− N = 30, −−− N = 25, · · · · · · N = 20, − ·− · N = 15. Key for the error

estimations |δW |: −−−−− N = 25, −−− N = 20, · · · · · · N = 15.

The question arises what is the approximation error resulting from the trunca-
tion in the eigenfunction series given in Eq. (9) and to what number of the lowest
modes it should be limited? It has been found that for the selected properties
of the radiator and its surroundings the reference value of Wref can be achieved
by assuming the maximum modenumbers m−1, n = 30 which is enough to test
the computation accuracy of the normalized membrane’s transverse deflection
amplitude defined as

W =
W

Wref
, Wref = max

r0,ϕ0

|W |. (26)
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The approximation error has been defined as

δW =
WN −WN=30

maxr0,ϕ0 |WN=30| , (27)

where the index N denotes the number of terms used in the eigenfunction se-
ries (10).

The membrane’s profile intersections for W shown in the second row in Fig. 2
present four curves for the Dirac excitation and four curves for the cosine excita-
tion for the following maximum values of the modal number N = max{m−1, n} =
30 (solid lines), 25 (dashed lines), 20 (dotted lines) and 15 (dashed-dotted lines).
It is difficult to distinguish the lines except of the close neighbourhood of the
concentrated force exertion point for the Dirac excitation. This means that even
using the matrix of 15× 15 modes gives, i.e. for N = 15, a good approximation
of the profiles beyond the mentioned above exception. This exception however
should not cause any significant problem while calculating the resultant acoustic
pressure amplitude since it is essentially the integral quantity, i.e. it is the sum of
all the infinitesimal contributions from the acoustic particles adjacent directly to
the surface of vibrating membrane (cf. Eq. (13)). This hypothesis will be tested
numerically later. The error estimation caused by truncation has been illustrated
in the third row in Fig. 2. It has been shown that the matrix of N = 15 is enough
to assure that the error is smaller than 10% beyond the mentioned exception for
the Dirac excitation (cf. the dotted lines for N = 15). The higher accuracy re-
quires increasing the maximum number N – see the remaining curves for N = 20
– the dashed lines and for N = 25 – the solid lines. It can be noted that N = 20
is enough to assure that the approximation error is considerably smaller than
1h except small areas around the exertion point for the Dirac excitation (where
exceptionally even N = 30 is not enough) and that N = 15 is enough to achieve
the error level about 1h for the cosine excitation except the small area at the
membrane’s centre.

4.2. Acoustic pressure

All the graphs in Figs. 3–5 have been prepared for a big distance from the
corner of the region Ω (from the origin of the coordinates system) for r ≡ |r| =
100 m assuming that the membrane is excited by the time-harmonic surface
pressure at the frequency f = 500 Hz. Only Fig. 5b has been prepared for r =
2.5 [m]. The matrix of the 252 initial modes of the membrane has been used for the
numerical computations, i.e. the modenumbers m = 0, . . . , 24 and n = 1, . . . , 25
to assure high accuracy. All the remaining parameter values have been assumed
identically as in Subsec. 4.1 unless stated differently in the figure captions. The
initial eigenfrequencies have been taken from Table 1.
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Fig. 3. The directivity factor D of vibrating membrane for the Dirac excitation, r0 = a/2,
ϕ0 = π/4 and Lp,ref = 41.74 [dB]. First row – perspective view, second row – intersections,
third row – error estimation. Key: · · · · · · ϕ = 0, π, ϑ = 0; −−− ϕ = π/4, ϑ = π/6; −−−−−

ϕ = π/2, ϑ = π/3; − ·− · ϕ = 3π/4, ϑ = π/2.

The normalized acoustic pressure amplitude

D =
|pN |
pref

, pref = max
ϑ,ϕ

|pN | (28)

has been presented in the figures where pref is the maximum of the acoustic
pressure modulus within the region Ω. The index N = 25 denotes the limit
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Fig. 4. The directivity factor D of vibrating membrane for the cosine excitation, ϕ0 = π/4,
M = 3 and Lp,ref = 45.78 [dB]. First row – intersections, second row – error estimation.
Key: · · · · · · ϕ = 0, π, ϑ = 0; −−− ϕ = π/4, ϑ = π/6; −−−−− ϕ = π/2, ϑ = π/3; − ·− ·

ϕ = 3π/4, ϑ = π/2.

a) b)

Fig. 5. The membrane’s response |p| for the Dirac excitation as the function of: a) ϑ
for Lp,ref = 35.39 [dB] – half-space and Lp,ref = 41.41 [dB] – quarter-space; b) l for
r = 100 [m], Lp,ref = 67.43 [dB] – half-space and r = 2.5 [m], Lp,ref = 73.34 [dB] –

quarter-space. Key: −−−−− quarter-space, −−− half-space.

for the modenumbers m and n as in the previous subsection which means that
N2 = 252 initial modes have been used for numerical computations. The defini-
tion in Eq. (28) is similar to the directivity factor (Skudrzyk, 1971). The only
difference is that the maximum acoustic pressure amplitude does not necessarily
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appear at the source’s main direction. The approximation of the acoustic pressure
amplitude for any observation point r = (r, ϑ, ϕ) can be obtained easily within
the quarter-space by multiplying it by pref under the condition that r À r0.
The acoustic attenuation has been neglected during the numerical computations.
However it can be included by using the values of the acoustic impedance while
solving the algebraic equations system presented by Rdzanek, Rdzanek, and
Szemela (2009) and computing the values of the coupling matrix c

(c)
m, n and c

(s)
m, n

for a given excitation. The maximum of the acoustic pressure level has been
computed using the following relation

Lp,ref = 10 log10

(
p2
ref

p2
0

)
, (29)

where p0 = 20 [µPa] is the reference acoustic pressure. The approximation error
has been defined as (cf. Eq. (27))

δp =
pN=25 − pN=30

pref
, (30)

where the meaning of N is identical as in Eq. (28).
In the case of the excitation f1 the normalized acoustic pressure amplitude

distribution has been obtained for a given value of the angle ϕ0 and presented
in Fig. 3. The angle ϕ0 determines the numerical results introducing the asym-
metricity clearly noticeable for ϕ0 = π/4 (the first two rows in Fig. 3). The
results become similar to those valid for the vibrating circular piston for the val-
ues ϕ0 = π/2, 3π/4 (cf. Rdzanek, Szemela, and Pieczonka (2007) and the
second row in Fig. 3). The main difference is that in the case of the membrane the
localization of the acoustic pressure amplitude local extrema depends strongly on
the angle ϕ for the growing values of the angle ϑ whereas it cannot be noticed
for a vibrating piston. The approximation error does not exceed 1h within the
entire range of the spatial variables ϑ and ϕ which means that the formulations
for the acoustic pressure are useful in the entire region Ω in the far field (the
third row in Fig. 3).

In the case of the circular membrane excitation by the function f2 the straight
nodal lines of the acoustic pressure distribution have been obtained for the fixed
values of ϕ (the first row in Fig. 4). The nodal line of the acoustic pressure appears
for ϕ0 = π/4, M = 1 and ϕ ≈ 3π/4. If the number of the excitation nodal lines
is increased to M = 2 then the nodal line of the acoustic pressure appears for
ϕ ≈ π/2 whereas if M is increased to the value of 3 then the three nodal lines
of the acoustic pressure are obtained for ϕ ≈ π/10, 2π/5, 3π/4. The estimated
approximation error does not exceed 1h in the far field within the considered
region Ω (the second row in Fig. 4).

The acoustic pressure amplitude radiated by a vibrating circular membrane
has also been shown in Fig. 5. Figure 5a shows the quantity as the function of ϑ
for r = 100 [m] and ϕ = π/2. The solid curve valid within the quarter-space is
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much more directive and assume almost twice higher values at the local maxima
than this valid within the half-space. Similar effect can be noted in the case of
the radiation of a vibrating circular piston (Rdzanek et al., 2007).

The acoustic pressure amplitude radiated by a vibrating circular membrane
has been shown in Fig. 5b. The curve valid within the quarter-space begins
from l = a since the condition l ≥ a must be satisfied. Obviously, the curve
valid in the half-space is not limited by this condition and does not depend
on the variable l. Therefore, it begins in this figure from zero and does not
vary with the change in l. It can be noted that the acoustic pressure ampli-
tude is almost twice higher in the quarter-space than in the half-space on the
main direction of the source, as expected. Several local maxima and nodes ap-
pear while changing variable l. This is caused by the superposition of the direct
and reflected acoustic waves. The location of the maxima and the nodes de-
pends on the distance l related to the wavelength of radiated waves, i.e. the
distance measured in terms of the radiated wavelengths. The same situation ap-
pears for the vibrating circular piston (Rdzanek et al., 2007). The value of
2.5 [m] has been selected for variable r in this figure to assure that the angle
between the origins of the quarter-space and the source changes considerably
with the change in l. This value is considerably smaller than in the previous fig-
ures. However, the ratio r/a is still much higher than unity as required in the
far-field.

5. Concluding remarks

The problem of sound radiation by the vibrating circular membrane into the
region of the quarter-space has been considered. As the result, the elementary
equations have been found for the approximate value of the acoustic pressure am-
plitude. The equations enable numerical computations with the acoustic attenu-
ation neglected as well as included. If the acoustic attenuation is to be included
then the knowledge of the modal acoustic impedance presented by Rdzanek,
Rdzanek, and Szemela (2009) is necessary. High accuracy of the numerical
results has been achieved by conducting rigorous manipulations while analysing
the approximate formulations. Significant differences in the acoustic pressure am-
plitude space distribution have been noticed for the excitations considered. It has
been found that the differences result from the nature of the excitation, i.e. from
the selection of the excitation as well as from choosing such the excitation pa-
rameter values as the number of nodal diameters M , the coordinates r0, ϕ0 and
the amplitudes f1 and f2.

The values of the acoustic pressure amplitude of the vibrating circular piston
located in the region of the quarter-space presented by Rdzanek, Szemela, and
Pieczonka (2007) highly correspond with the results presented in this paper.
The radiation of the vibrating circular piston and the radiation of the vibrat-
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ing circular membrane show several similarities as well as significant differences
depending strongly on the geometry of the excitation and its parameters.

The elementary equations presented in this paper enable determining the in-
fluence of the vertical wall presence on the acoustic pressure distribution includ-
ing some different asymmetric excitations of the membrane. The investigations
presented herein can be useful for predicting the acoustic pressure radiated into
the regions bounded by the earth and some vertical walls often appearing in the
urban and industrial environments. They can also be used to reduce the noise
generated by the vibrating flat elements that can be modelled by the membrane
excited asymmetrically. It is necessary to remember that the results presented
are valid for small vibration velocities of the acoustic particles. The results pre-
sented herein are more useful than those presented by Rdzanek, Szemela, and
Pieczonka (2007) since a deformable membrane is a better model for some real
vibrating elements than a piston.

References

1. Arase E.M. (1964), Mutual impedance of square and rectangular pistons in a rigid infinite
baffle, J. Acoust. Soc. Amer., 36, 8, 1521–1525.

2. Batko W., Kozupa M. (2008), Active vibration control of rectangular plate with piezoce-
ramic elements, Archives of Acoustics, 33, 4, Supplement, 195–200.

3. Cieślik J., Pieczara J. (2008), Precision analysis of vibration energy flux in angular
connection of plates, Archives of Acoustics, 33, 4, Supplement, 201–206.

4. Dykas S., Wróblewski W., Rulik S., Chmielniak T. (2010), Numerical method for
modeling of acoustic waves propagation, Archives of Acoustics, 35, 1, 35–48.

5. Gołaś A., Filipek R. (2009), Numerical simulation for the Bell directivity patterns de-
termination, Archives of Acoustics, 34, 4, 415–427.

6. Gołaś A., Suder–Dębska K., Filipek R. (2010), The influence of sound source directiv-
ity on acoustics parameters distribution in Kraków Opera House, Acta Physica Polonica A,
118, 1, 62–65.

7. Greenspan M. (1979), Piston radiator: Some extensions of the theory, J. Acoust. Soc.
Amer., 65, 608–621.

8. Hasheminejad S.M., Azarpeyvand M. (2004), Sound radiation due to modal vibrations
of a spherical source in an acoustic quarterspace, Shock and Vibration, 11, 625–635.

9. Kozień M., Wiciak J. (2009), Choosing of optimal voltage amplitude of four pairs square
piezoelectric elements for minimization of acoustic radiation of vibrating plate, Acta Phys-
ica Polonica A, 116, 3, 348–350.

10. Kozupa M., Wiciak J. (2010), Active vibration control of rectangular plate with distrib-
uted piezoelements excited acoustically and mechanically, Acta Physica Polonica A, 118,
1, 95–98.

11. Krishnappa G., McDougall J.M. (1989), Sound intensity distribution and energy flow
in the nearfield of a clamped circular plate, ASME Trans. J. Vib. Acoust. Stress Reliabil.
Des., 111, 465–471.



138 W.P. Rdzanek, K. Szemela, D. Pieczonka

12. Le Clézio E., Delaunay T., Lam M., Feuillard G. (2008), Piezoelectric material
characterization by acoustic methods, Archives of Acoustics, 33, 4, 603–608.

13. Lee H., Singh R. (2005), Acoustic radiation from out-of-plane modes of an annular disk
using thin and thick plate theories, Journal of Sound and Vibration, 282, 313–339.

14. Leniowska L. (2008), Influence of damping and fluid loading on the plate vibration control,
Archives of Acoustics, 33, 4, 531–540.

15. Leniowska L. (2009), Modelling and vibration control of planar systems by the use of
piezoelectric actuators, Archives of Acoustics, 34, 4, 507–519.

16. Levine H., Leppington F.G. (1988), A note on the acoustic power output of a circular
plate, Journal of Sound and Vibration, 121, 2, 269–275.

17. Meirovitch L. (1967), Analytical methods in vibrations, MacMillan, New York.

18. Pawełczyk M. (2008), Active noise control – a review of control-related problems, Archives
of Acoustics, 33, 4, 509–520.

19. Piddubniak O., Piddubniak N. (2010), Sound radiation from a roundabout, Archives of
Acoustics, 35, 3, 437–456.

20. Rdzanek W. (1990), Directional characteristic of a circular plate vibrating under the
external pressure, Archives of Acoustics, 15, 1–2, 227–234.

21. Rdzanek W., Rdzanek W.P. (2006), Green function for the problem of sound radiation
by a circular sound source located near two-wall corner and three-wall corner, Archives of
Acoustics, 31, 4, 99–106.

22. Rdzanek W.P., Szemela K. (2007), Reduction of the sound power radiated by a two
piston system located near the three-wall corner, Archives of Acoustics, 32, 2, 339–350.

23. Rdzanek W.P., Szemela K., Pieczonka D. (2007), The sound pressure radiated into
the far field by a circular piston located in the vicinity of the two-wall corner and the
three-wall corner, Archives of Acoustics, 32, 4, 883–893.

24. Rdzanek W.P., Rdzanek W., Szemela K. (2009), Acoustic power radiated into the
quarter-space by a circular membrane with an asymmetric excitation, Archives of Acoustics,
34, 1, 75–94.

25. Rubinowicz A. (1971), A sharpened formulation of Sommerfeld’s radiation condition for
Green’s functions of the Helmholtz equation, Reports on Mathematical Physics, 2, 2, 93–98.

26. Shuyu L. (2000), Acoustic field of flexural circular plates for air-coupled ultrasonic trans-
ducers, Acta Acustica/Acustica, 86, 388–391.

27. Skudrzyk E. (1971), The Foundations of Acoustics, Basic Mathematics & Basic Acoustics,
Springer-Verlag, Wien, New York.

28. Stepanishen P.R. (1974), Impulse response and radiation impedance of an annular piston,
J. Acoust. Soc. Amer., 56, 2, 305–312.

29. Stepanishen P.R., Ebenezer D.D. (1992), A joint wavenumber – time domain technique
to determine the transient acoustic radiation loading on planar vibrators, Journal of Sound
and Vibration, 157, 3, 451–465.

30. Svensson U.P. (2001), Line integral model of transient radiation from planar pistons in
baffles, Acta Acustica/Acustica, 87, 307–315.



Acoustic Pressure Radiated by a Circular Membrane. . . 139

31. Thompson Jr. W. (1971), The computation of self- and mutual-radiation impedances for
annular and elliptical pistons using Bouwkamp’s integral, Journal of Sound and Vibration,
17, 2, 221–233.

32. Walerian E., Janczur R., Czechowicz M., Smyrnova Y. (2010), Possible improve-
ment of acoustical climate. Part I: Measurements and theoretical description, Archives of
Acoustics, 35, 3, 395–420.

33. Walerian E., Janczur R., Czechowicz M., Smyrnova Y. (2010), Possible improve-
ment of acoustical climate. Part II: Possible solutions, Archives of Acoustics, 35, 4, 595–
618.

34. Weyl H. (1919), Ausbereitung elektromagnetischer wellen über einem ebenen leiter, An-
nalen der Physik, 4te Folge, 60, 481–500.

35. Weyna S. (2010), Acoustic intensity imaging methods for in-situ wave propagation,
Archives of Acoustics, 35, 2, 265–273.

36. Zou D., Crocker M.J. (2009), Sound power radiated from rectangular plates, Archives
of Acoustics, 34, 1, 25–39.

37. Zou D., Crocker M.J. (2009), Response of a plate to PZT actuators, Archives of
Acoustics, 34, 1, 13–23.


