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A vocal tract model based on a digital waveguide is presented in which the vocal tract has been
decomposed into uniform cylindrical segments of variable lengths. We present a model for the real-time
numerical solution of the digital waveguide equations in a uniform tube with the temporally varying cross
section. In the current work, the uniform cylindrical segments of the vocal tract may have their different
lengths, the time taken by the sound wave to propagate through a cylindrical segment in an axial direction
may not be an integer multiple of each other. In such a case, the delay in an axial direction is necessarily
a fractional delay. For the approximation of fractional-delay filters, Lagrange interpolation is used in the
current model. Variable length of the individual segment of the vocal tract enables the model to produce
realistic results. These results are validated with accurate benchmark model. The proposed model has
been devised to elongate or shorten any arbitrary cylindrical segment by a suitable scaling factor. This
model has a single algorithm and there is no need to make section of segments for elongation or shortening
of the intermediate segments. The proposed model is about 23% more efficient than the previous model.
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1. Introduction

The acoustic theory of the speech production sys-
tem has a long history, beginning from the earliest
works by Helmholtz (1863), Fant (1971), and Ra-
biner and Schafer (1978). The early mathematical
models were presented by the authors (Gold et al.,
2011). Voice production system of the human being is
built on the theory of the source-filter model in which
the action of the source is independent of the filter
(Gunnar, 1960). The vocal folds are two symmetric
soft-tissue structures fixed between the thyroid car-
tilage and arytenoid cartilages and considered as the
source of sound in the human being. The vocal tract
is the aero-acoustic cavity between the vocal folds and
the open surface at the position of the lips, which acts
as a filter in the source-filter theory. Due to lungs pres-
sure, the self-excited motion of the vocal folds gener-
ates a train of pulses, which is further modulated by
the resonance of the vocal tract.

Vocal folds have been modelled with different de-
grees of complexity and a lot of work has been

dedicated to this field in the literature (Avanzi-
ni et al., 2001; Flanagan, Landgraf, 1968;
Ishizaka, Falanagan, 1972; 1977; Maddox et al.,
2014; Qureshi, Syed, 2011a; 2011b; Shimamura,
Tokuda, 2016; Titze, Titze, 2014). Parallelly, for
modelling of the vocal tract, several approaches
have been used in (Birkholz et al., 2010; Kelly,
Lochbaum, 1962; Mullen et al., 2003; Story, 2013;
Välimäki, Karjalainen, 1994; Vampola et al.,
2015; Wang et al., 2012b). The variation in the move-
ment of the tongue, jaw, and lips forms different
shapes of the vocal tract. This results in variation in
the cross-sectional area along the length of the vocal
tract. Hence, the vocal tract is considered as a func-
tion of the cross-sectional area that varies over time.
This leads to a special class of speech production
models that depend on the area function of the vo-
cal tract (Hoefer, 1985; Kelly, Lochbaum, 1962;
Smith, 1992; Van Duyne, Smith, 1993b). A waveg-
uide is a bidirectional delay line in which motion of
the wave can be considered by a one-dimensional wave
equation (Morse, 1981; Smith, 2002). The connec-
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tions of these waveguides in a grid lead to a higher-
dimensional space (Savioja et al., 1994; Speed et al.,
2013; Van Duyne, Smith, 1993b). The delay between
two nodes of the grid is one unit long and each node
on the grid represents a junction in which scatter-
ing of incoming waves occurs. Kelly and Lochbaum
(1962) were first to present a one-dimensional waveg-
uide model of the vocal tract. Transmission line ma-
trix (Hoefer, 1985; Johns, Beurle, 1971), finite-
difference time-domain methods (Karjalainen, 2003;
Välimäki et al., 2006; Wang et al., 2012a; 2012b),
real-time waveguide model (Mathur et al., 2006),
and wave digital filters (Fettweis, 1971) were devel-
oped in accordance with the idea of Kelly-Lochbaum
model (Kelly, Lochbaum, 1962). An extension of
a one-dimensional digital waveguide (digital waveguide
model) was first introduced by Smith (1985; 1992)
and Van Duyne, Smith (1993a; 1993b), and is be-
ing used in the modelling of the vocal tract (Cooper
et al., 2006; Mullen et al., 2003; 2006; 2007; Qureshi,
Syed, 2015; Speed et al., 2013; Wang et al., 2012b).
Qureshi and Syed (2015) introduced a novel ap-
proach to the development of two-dimensional fea-
tured one-dimensional waveguide model of the vocal
tract that has comparable formant frequencies with
the standard two-dimensional waveguide, but its effi-
ciency is comparable with that of a one-dimensional
waveguide model. Digital waveguides are very popular
for realistic, high-quality sound generation in real time
and are successfully employed for physical modelling of
sound synthesis.

The Kelly-Lochbaum model uses fixed-length cylin-
drical segments of different cross-sectional areas to ap-
proximate the vocal tract (Kelly, Lochbaum, 1962),
while Mathur et al. (2006) model uses the cylindri-
cal segments of the vocal tract with variable lengths.
In their paper, the elongation of any segment is
achieved by concatenation of two extra segments. One
of the extra segments represents the fractional part of
the acoustic tube while another one is used as the fic-
titious tube. In the elongation of the intermediate seg-
ment, the segments of the vocal tract are divided into
two sections. The scattering on each section is eval-
uated independently and they are coupled with the
help of the delay line. This implies that the number
of sections increases with the increment to the num-
ber of elongated segments. The problem arises when
a large number of elongated segments is present in the
vocal tract segmentation. For example, there are N
intermediate cylindrical segments to be elongated in
the segmentation of the vocal tract. We have to make
N + 1 different sections of the cylindrical segments for
the evaluation of wave scattering in the Mathur’s work
(Mathur et al., 2006). The evaluation of wave scat-
tering is taken on each section separately and it is
completed in N + 1 steps. Finally, they are coupled
again with the help of delay lines in N steps. This im-

plies that the previous approach completes one itera-
tion of wave scattering in 2N +1 steps which makes the
previous model complex and inefficient. In the present
work, we propose an extension to the work of Mathur
et al. (2006). The proposed model addresses the is-
sue of making many sections of the cylindrical seg-
ments of the vocal tract to accommodate the wave
scattering. The current model evaluates wave scatter-
ing at all cylindrical segments of the vocal tract in
a row without making the sections of the cylindrical
segments. The new approach makes the current model
about 23% more efficient than the previous model. The
proposed model has been developed in such a way that
it works for both elongation and shortening of any
cylindrical segment of the vocal tract.

The present section is followed by four more sec-
tions. In Sec. 2, we describe a basic waveguide model
of the vocal tract and present its mathematical formu-
lation. Section 3 describes the algorithm for the elon-
gation of the segments of the vocal tract. Section 4 is
reserved for results and discussion. Section 5 is for the
conclusions.

2. Basic vocal tract model and fractional delay

The vocal tract is assumed to be constructed of
a certain number of co-axial uniform cylindrical seg-
ments. It is assumed that the cross-sectional area is
constant within each segment of the vocal tract and
the total vocal tract length is quantised to an inte-
ger multiple of the segment length. In this case, the
time delay for the wave scattering is the same for each
segment. Figure 1 describes the structure of the vocal
tract by the concatenation of total ten uniform cylin-
drical segments of the same length. The first segment
S1 and last segment S10 are representing larynx and
lips of the vocal tract, respectively, in the current fig-
ure while others segments from S2 to S9 are called in-
termediate segments. Any two consecutive cylindrical
segments with different cross-sectional areas are called
a junction. For example, the concatenation of seg-
ments S2 and S3 forms a junction, while the concate-
nation of segments S3 and S4 forms another junction.
A change in the cross-sectional area at the junction of
two cylindrical segments leads to a change in the wave
impedance. In such a junction, a part of the travelling
wave is transmitted while the other is reflected back.
This phenomenon is called scattering.

The segment of the index of an even number is
called an even-number segment and the segment of the
index of an odd number is an odd-number segment.
The propagation of a sound wave through each cylin-
drical segment of the vocal tract takes the time that
depends on the length of each cylindrical segment of
the vocal tract. If the cylindrical segments are of the
same in length, the time taken by the sound wave in
each segment will be the same. In the current example
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given in Fig. 1, all cylindrical segments are uniform
and of the same length, the time taken by the sound
wave to propagate through each cylindrical segment in
an axial direction is the integer multiple of each other.
In such a case, simulation of the wave propagation in
the vocal tract is easy and straightforward. However,
some more realistic speech sounds need a fractional
change in the total length of the vocal tract so that
some segments of the vocal tract are not quantised to
an integer multiple. In other words, some segments are
elongated with a fractional length and time delays in
these segments are the fractional delays. In such cases,
interpolators are used to approximate the fractional
delay. For example, Fig. 2 shows the elongation of the
segments S1, S6, and S10 with a factor of 1.5. The mea-
surement of wave scattering at the junction formed by
the segments S1 and S2 is not accurate because the
delay time of the wave in the segment S1 is more than
that of the segment S2. For accurate measurement of
the wave scattering in the current case, the delay time
in the segment S1 is approximated with the help of
interpolation. Similarly, this is the same case for the

Fig. 1. Cylindrical segments of the vocal tract model.

Fig. 2. Elongation of the segments of the vocal tract.

junctions formed by the segments S6 and S7, and the
segments S9 and S10.

First of all, we derive the equations for the scat-
tering of the wave at the junction of two successive
segments Si and Si+1 as shown in Fig. 3. In the cur-
rent junction, the arrows represent the flow direction
of the wave components while curved arrows repre-
sent the reflected back of the wave components. The
components p+ and p− are representing the right and
left travelling wave components of the pressure. Both
wave components of the pressure p+ and p− split into
two parts from the point where the cross-sectional
area changes. At this point, one part is moved forward
and another part is reflected back. Within a uniform
tube, the relationship between velocity and pressure
can be described by a wave equation (Markel, Gray,
1976; Rabiner, Schafer, 1978). D’Alembert’s solu-
tion of the wave equation is the sum of the left and
right travelling-wave components. By solving the well-
known momentum equation and mass continuity equa-
tion (Välimäki, 1995) for the i-th segment of the vocal
tract, we obtain:

ui(x, t) =
1

Zi
[p+i (t − x/c) − p

−
i (t + x/c)] , (1)

pi(x, t) = [p+i (t − x/c) + p
−
i (t + x/c)] , (2)

where Zi is the characteristic impedance of the i-th
tube section and other terms are described as earlier.

Fig. 3. Flow representation in the junction of two successive
segments Si and Si+1.

Let li be the length of the i-th cylindrical tube
with different length. Under the above assumptions, we
have the following boundary conditions at the junction
of the i-th and (i + 1)-th cylinders (Välimäki, 1995),

pi(li, t) = pi+1(0, t), (3)

ui(li, t) = ui+1(0, t). (4)
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Using Eqs (1) and (2) into Eqs (3) and (4), we have

p+i (t−τi)+p
−
i (t+τi) = p

+
i+1(t)+p

−
i+1(t), (5)

1

Zi
[p+i (t−τi)−p

−
i (t+τi)] =

1

Zi+1
[p+i+1(t)−p

−
i+1(t)], (6)

where τ = li/c, is the time required to travel the cylin-
drical tube.

By solving Eqs (5) and (6), we have (Välimäki,
1995),

p−i (t + τi) = rip
+
i (t − τi) + (1 − ri)p

−
i+1(t), (7)

p+i+1(t) = (1 + ri)p
+
i (t − τi) − rip

−
i+1(t), (8)

where

ri =
Zi+1 −Zi
Zi+1 +Zi

=
Ai −Ai+1

Ai +Ai+1
.

By rewriting Eqs (7) and (8), we obtain (Väli-
mäki, 1995):

p−i (t + τi) = p−i+1(t) +w(t), (9)

p+i+1(t) = p+i (t − τi) +w(t), (10)

where
w(t) = ri [p

+
i (t − τi) − p

−
i+1(t)] .

The current work is based on the elongation of an
arbitrary segment of the vocal tract. In such a case,
the delay in an axial direction is necessarily a frac-
tional delay (Laakso et al., 1996; Mathur et al.,
2006; Samadi et al., 2004; Välimäki, 1995). In the
present work, the fractional delay is also approximated
by the Lagrange interpolator (Laakso et al., 1996;
Mathur et al., 2006; Samadi et al., 2004; Välimäki,
1995). Lagrange interpolation is a type of FIR filter
which is popular for easy and fast calculation of the
filter coefficients. It has a very good magnitude and
phase response at low frequencies with the magnitude
response never exceeding one (Välimäki, 1995).

Suppose that the total length of the vocal tract
is l, the length of each cylindrical segment is d, M is
any positive integer, and αd is the fractional change
in the length of the vocal tract due to the movement
of the articulators (Mathur et al., 2006), then

l = (M + α)d, α ∈ [0,1] . (11)

In a full sample delay waveguide model, there is
only a forward wave in every other tube at each instant
of time and a backward wave in every other. To make it
efficient, we consider the half-sample delay waveguide
model in the current work (Lim, Lee, 1993; Mathur
et al., 2006). This means that two consecutive steps of
the full-sample model are combined into a single step
which leads to the efficiency of the model. Thus, the
sampling frequency of the half-sample delay waveguide
model is obtained as

Fs = c/2d, (12)

where c is the velocity of sound and d is described
earlier.

Let’s define Pf for forward pressure component and
Pb for backward pressure component. Then interpola-
tion of Pf and Pb may be written as,

Pf interp =
NFL

∑
k=0

h(k + 1)Pf (q + k), (13)

Pbinterp =
NFL

∑
k=0

h(NFL + 1 − k)Pb(q + k), (14)

where q is the index of the segment of the vocal tract,
NFL is the filter order, and h is the impulse response
for the NFL order Lagrange filter (Laakso et al.,
1996).

3. Model for the variation in the length
of any segment of the vocal tract

In the current work, we present the model for the
elongation or shortening of any cylindrical segment of
the vocal tract. Our model is an extension of the work
presented by Mathur et al. (2006). In the previous
work, the elongation of any segment is achieved by
adding two extra segments. However, one of the extra
segments represents the fractional part of the acous-
tic tube while another one is for the fictitious acoustic
tube. In the elongation of the intermediate segment,
the segments of the vocal tract are divided into two
sections. The scattering on each section is evaluated
independently and they are coupled later with the help
of the fractional delay line. This indicates that the
number of independent sections increases with the in-
crement to the total number of segments elongation.
The problem of complexity arises when a huge num-
ber of elongated-segments is present in the vocal tract
segmentation. The proposed model addresses the is-
sue of making many sections of the cylindrical seg-
ments of the vocal tract to simulate the wave propaga-
tion. The current model simulates wave propagation on
all cylindrical segments of the vocal tract in a row with-
out making the sections of the cylindrical segments.
The new approach makes the current model about 23%
more efficient than the previous model. The proposed
model has been developed in such a way that it works
for both elongation and shortening of any cylindrical
segment of the vocal tract.

We take an example to show the difference between
the modelling of the previous and proposed works. Let
us elongate two intermediate segments S4 and S6 in
the example given in Fig. 1. According to the previ-
ous approach, there is a need to make three separate
sections of the segments for the simulation of wave
propagation in the vocal tract, as shown in Fig. 4.
In the current figure, the extra segments are repre-
sented by the hatch style segments. The first section
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Fig. 4. Previous approach to elongation of two segments.

starts from segments S1 to S4 with two extra segments
which are concatenated at the end of the segment S4

to accommodate its elongation. The second section has
segments S5, S6, and two extra segments that lead to
total four segments in this section. There is a total of
four segments in the third section starting from seg-
ment S7 to S10. In the previous work, scattering for
the wave propagation is taken separately in these sec-
tions and then these three sections are rejoined with
the help of the delay line to complete the wave prop-
agation in the vocal tract. However, the proposed ap-
proach for the modelling of the vocal tract has been
shown in Fig. 5. There is no need to make the sections
of segments in the current approach and all segments
including extra segments are concatenated in a row.
This implies that the scattering for wave propagation
in the vocal tract can be easily taken in a row, which
leads to the efficiency of the proposed model.

Fig. 5. Proposed approach to elongation of two segments.

In the current work, the elongated segments are
assumed to have the fractional increments in their
lengths with respect to the length of the smallest seg-
ment. To accommodate elongation or shortening of

any cylindrical segment, we suppose that l is the total
length of the vocal tract and di is the length of the
i-th cylindrical segment Si that has cross-sectional Ai
as shown in Fig. 3, then

l =
M

∑
i=1

di, (15)

where M is the total number of cylindrical segments
of the vocal tract.

We find the cylindrical segment of the minimum
length such that

dmin = min
1≤k≤M

{dk}, (16)

dfi =
di
dmin

− 1, i = 1,2, ...,M, (17)

where dmin is the length of the smallest segment of the
vocal tract and dfi is representing the fraction delay
value of the i-th segment of the vocal tract.

Equation (17) gives the values of dfi within the
interval [0, 1). If the value of dfi is zero then the i-th
cylindrical segment has no fraction delay. However, the
i−th cylindrical segment has a fraction delay when the
value of dfi is greater than zero and less than 1. This
approach helps us model elongation or shortening of
any cylindrical segment. In our work, the division of
the shortened cylindrical segment leads to a normal
state or elongation of the other cylindrical segments.
This implies that both cases become the problem of
elongation of the cylindrical segments. However, the
sampling frequency for the half-sample delay turns out
to be higher for the case of the shortened cylindrical
segment. In the current work, the sampling frequency
can be written as

Fs =
c

2dmin
, (18)

where c is the velocity of sound.
As described earlier, the two extra cylindrical seg-

ments are added successively to the original elongated
segment so that the number of segments remains even.
The addition of extra segments to the original segment
is of two types depending on the position of the seg-
ment. If the position of the elongated segment is even
then the extra segment will be added after the elon-
gated segment, otherwise, the extra segment will be
added before the elongated segment.

In this way, the total number of segments of the
vocal tract increases with the addition of positive even
numbers. Let N be the total number of segments after
the addition of extra segments, then,

N =M + 2K, (19)

where K is the total number of elongated segments.
During the addition of extra segments, we also de-

fine the type of these segments in our work. The origi-
nal segments whether they are elongated or non-elon-
gated, may be named as normal and they are assigned
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the value of 1. The extra segment adjacent to the orig-
inal elongated segment may be called as fractional-
delay segment and it is assigned a value of its fractio-
nal delay. However, the last extra segment is assumed
as fictitious and it is assigned a value of zero.

The type of each segment may be found by the
equation:

Type(Si) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if Si is a normal segment,
dfi if Si is a fractional-delay segment,
0 if Si is a fictitious segment.

(20)
Further, the fractional delay is approximated with

the help of Lagrange interpolation (Mathur et al.,
2006). In the model, the approximation of the frac-
tional delay is different for an even and an odd elon-
gated segment of the vocal tract. For an odd elongated
segment, the backward pressure component of the frac-
tional delay segment is approximated with the help of
Eq. (14), while the forward pressure component is ap-
proximated with the help of Eq. (13) in the case of
an even elongated segment. The scattering equations
of the first and the last segments are different from
the intermediate segments. The following equation de-
scribes basic three blocks of the scattering equations
for the non-elongated segments of the vocal tract:

Scatt(Si)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pf i =
uρ c

A1
+ rgPb if i = 1,

⎛
⎜
⎜
⎝

∆ = ri(Pf i −Pbi+1)

Pf i+1 = Pf i +∆

Pbi = Pbi+1 +∆

⎞
⎟
⎟
⎠

if 0 < i <M,

(
Pbi = rlPf i
P = (1 + rl)Pf i

) if i =M,

(21)

1. Read M cross-sectional areas in array A and their corresponding delay lengths in array dA.

2. Read the values of glottal and lips reflection coefficients rg and rl respectively.

3. Evaluate the Eqs (16) and (17) for fractional delay length dfi of each segment Si.

4. For each 0 < dfi < 1, insert two segments (fictitious and fractional delay segments) at position i of the array A with the
same cross-sectional area Ai of the segment Si. These two segments are inserted before the position i if the segment
number is odd, otherwise they are inserted after the position i. This step changes the array A to A

′
with the length

N such that N ≥M . Define also an array of name Type for the status of each segment Si according to Eq. (20).

5. Compute reflection coefficients ri, i = 1, ...,N − 1 by using Eq. (22).

6. Define the total number of samples such as tSamples = C0 and volume velocity u = u0.

7. Define two arrays Pf and Pb of the length N for pressure forward and pressure backward components, respectively,
and initialise with values of zero.

8. Define the order of Lagrange Filter NFL = 3 and define an array h of impulse response with the length NFL + 1 for
fractional delay.

9. While k ≤ tSamples, repeat the steps 10–16.

[Fig. 6.]

where u is the volume velocity, ρ is the density of air,
c is the velocity of sound, A1 is the cross-sectional area
of the first segment, rg is the glottal reflection coeffi-
cient, rl is the lips reflection coefficient, M is the total
number of segments, P is output pressure and ri is the
reflection coefficient defined in the Eq. (22):

ri =
Ai −Ai+1

Ai +Ai+1
, (22)

where Ai is the cross-sectional area of the segment Si.
In our model, we define four blocks for the algo-

rithm of scattering equations. In the first block, the
algorithm checks the elongation of the first segment. If
elongation of the first segment is found, then backward
pressure component of the fractional delay segment is
approximated as Pbinterp with the help of Eq. (14) and
is used in the Eq. (21) when i = 1. The second block
is reserved for intermediate segments and it has fur-
ther two sub-blocks. The first sub-block is used for the
scattering of even-number segments, while the scat-
tering of odd-number segments is performed in the
second sub-block. In the third block, the adjustment
of the scattering for the fractional delay segments is
accomplished by using Eqs (13) and (14) if it is re-
quired. For elongation of the odd-number segment,
backward pressure component Pb is approximated as
Pbinterp with the help of Eq. (14), while forward pres-
sure component Pf is approximated as Pf interp by
using Eq. (13) in the case of the even-number elon-
gated segment. In the final block, the forward pres-
sure component Pf is approximated as Pf interp in
the case of the last-elongated segment of the vocal
tract. Figure 6 presents a complete algorithm of the
model.
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10. The first segment S1 represents the larynx segment. Evaluation of this segment depends on the condition of non-
elongation or elongation.

If Type(S1) = 0 and 0 < Type(S2) < 1 (if elongation is true):
Interpolate the pressure backward component as Pbinterp using Eq. (14) with the value of Type(S2) that is the
fractional delay value and put q = 1,

Pf (2) =
uρc

A′(1)
+ rgPbinterp.

Else
Pf (1) =

uρc

A′(1)
+ rgPb(1).

11. Put u = 0.
12. For even junction scattering, take i ∈ {2,4,6, ...,N − 2} and evaluate such as:

If Type(Si) > 0 and Type(Si+1) ≠ 0 (non-elongated segments),

∆ = ri[Pf (i) −Pb(i + 1)], Pf (i + 1) = Pf (i) +∆, Pb(i) = Pb(i + 1) +∆.

Else if Type(Si) = 0 and Type(Si+1) = 0 (if even-odd segments are elongated):
Interpolate pressure backward component as Pbinterp using Eq. (14) with the value of Type(Si+2) that is the
fractional delay value and put q = i + 1,

∆ = ri[Pf (i − 1) −Pbinterp], Pf (i + 2) = Pf (i − 1) +∆, Pb(i − 1) = Pbinterp +∆.

13. For odd junction scattering, take i ∈ {1,3,5, ...,N − 1} and evaluate such as:

∆ = ri[Pf (i) −Pb(i + 1)], Pf (i + 1) = Pf (i) +∆, Pb(i) = Pb(i + 1) +∆.

14. Adjustment of fractional delayed scattering wave components is done in this section.
For even junction scattering, take i ∈ {2,4,6, ...,N − 2} and evaluate such as:

If Type(Si) = 0 and Type(Si+1) ≠ 0 (if single even elongated):
Interpolate the pressure forward component as Pf interp using Eq. (13) with the value of Type(Si−1) that is the
fractional delay value and put q = i − 3,

∆ = ri[Pf interp −Pb(i + 1)], Pf (i + 1) = Pf interp +∆, Pb(i − 1) = Pb(i + 1) +∆.

Else if Type(Si) = 0 and Type(Si+1) = 0 (if even-odd elongated):
Interpolate the pressure forward component as Pf interp using Eq. (13) with the value of Type(Si−1) that is the
fractional delay value and put q = i − 3,

∆ = ri[Pf interp −Pb(i + 2)], Pf (i + 2) = Pf interp +∆, Pb(i − 1) = Pb(i + 2) +∆.

For odd junction scattering, take i ∈ {1,3,5, ...,N − 1} and evaluate such as:
If i > 1 and Type(Si) = 0 and Type(Si−1) ≠ 0:

Interpolate the pressure forward component as Pbinterp using Eq. (14) with the value of Type(Si+1) that is the
fractional delay value and put q = i,

∆ = ri−1[Pf (i − 1) −Pbinterp], Pf (i + 1) = Pf (i − 1) +∆, Pb(i − 1) = Pbinterp +∆.

15. The last segment SN represents the lips segment. Evaluation of this segment also depends on the condition of the
non-elongation or elongation.

If 0 < Type(SN−1) < 1:
Interpolate the pressure forward component as Pf interp using Eq. (13) with the value of Type(SN−1) that is the
fractional delay value and put q = N − 3,

Pb(N − 1) = rlPf interp, P (k) = (1 + rl)Pf interp.

Else
Pb(N) = rlPf (N), P (k) = (1 + rl)Pf (N).

16. Increment the value of k by 1 and go to step 9.

Fig. 6. Algorithm for the modelling of the vocal tract with the non-uniform length of segments.

4. Results and discussion

In the previous sections, we have described the
mathematics of the basic vocal tract model and pre-
sented the model for elongation of any segment of the
vocal tract. In this section, we describe the working

of our model, its characteristics and comparison with
the benchmark model. In the current work, ABCD ma-
trix model is assumed as a benchmark model (Sondhi,
Schroeter, 1987). The ABCD matrix model contains
chain matrices of the order 2× 2. It accurately mod-
els the frequency response for any cylindrical segment
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and may be used for validation of any other mod-
els. We also validate our model with ABCD matrix
model. We choose cross-sectional areas of the vocal
tract for the vowel in the literature (Mathur et al.,
2006; Story, Titze, 1998). This vowel has almost
equal spaced formant frequencies in the frequency do-
main named as the neutral vowel. It has 44 cylindri-
cal segments for the vocal tract of the length 17.5 cm.
Each segment of the vocal tract has the length d such
that d = 17.5/44 = 0.397 cm. For demonstration of our
work, we elongate some segments of the vocal tract
with 1.5% of the original length in such a way that
the dmin in Eq. (16) becomes the original length of
the segments, i.e. dmin = 0.397. The density of air ρ
and velocity of sound c are taken as 0.00114 g/cm3 and
35000 cm/s, respectively. Thus, the sample frequency
can be obtained as 44.1 kHz with the help of Eq. (18).
The glottal and lips reflection coefficients are chosen
as rg = 0.999 and rl = −0.999, respectively.

The frequency profiles of the vocal tract can be
found with the help of impulse response. In the present
work, the first value of the impulse response is set as
100, while other values are kept zeros. The Fast Fourier
transformation is applied to the output of the model
to get frequency profiles of the vocal tract model. The
peaks in the frequency profiles are called formant fre-
quencies which represent the frequencies of the partic-
ular vowel. The validity and accuracy of the proposed
model are based on the comparison of these formant
frequencies with that of the benchmark model. In the
later discussion, we will use these formants frequencies
as a reference in the figures.

Figure 7 represents the formant frequencies of the
neutral vowel up to 5000 Hz. In the current case, the 44
segments of the vocal tract have the same length. The
dotted line shows the frequency profile obtained by
Mathur’s model, the dashed line represents the fre-
quency profile generated by the algorithm in Fig. 6,
and the solid line shows the frequency profile generated
by ABCD matrix model. The current figure shows that
the formants frequencies (peaks) of the current model
are very close to that of ABCD matrix model. Table 1
gives error comparison of the first five formant frequen-
cies of the current model with ABCD matrix model.

Table 1. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for non-elongated segments.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 621 621 621 0.00 0.00

F2 1578 1579 1579 0.06 0.06

F3 2487 2487 2487 0.00 0.00

F4 3301 3301 3301 0.00 0.00

F5 4275 4277 4277 0.05 0.05

Fig. 7. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

non-elongated segments.

First, second, third, fourth, and fifth formant fre-
quencies are represented by F1, F2, F3, F4, and F5,
respectively, in the current table. The second, third,
and fourth columns of the tables show the measure-
ment of the formant frequencies from ABCD matrix
model, Mathur’s model, and proposed model, respec-
tively. The absolute relative errors of the Mathur’s
model and the present model with respect to ABCD
matrix model are mentioned in the fifth and sixth
columns of the table, respectively.

It is noted from the current table that Mathur’s
model and the proposed model have the same relative
errors as shown in the fifth and sixth columns of the
table. The maximum relative error occurs at the sec-
ond formant frequency with the value of 0.06%. From
the table, it is noted that the maximum relative er-
ror of Mathur’s model occurs at the second formant
frequency with the value of 0.12%, while it has a max-
imum value of 0.09% at the fifth formant frequency
in the case of the present model. This shows that the
present model and Mathur’s model generate the same
formant frequencies in the current case and both mod-
els are very close to ABCD matrix model.
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In the second case, we elongate the first segment
S1 that represents the larynx of the vocal tract. The
increment in this segment is taken as d1 = 1.5d1. Fig-
ure 8 also shows the first five formant frequencies up to
5000 Hz. Table 2 represents the error comparisons of
formant frequencies for the elongated segment S1. In
this case, the formants frequencies of the current model
and Mathur’s are also very close to that of ABCD ma-
trix model. Table 2 depicts that the proposed model
and Mathur’s model have same relative errors with
ABCD matrix model. The maximum relative error
occurs at the first formant frequency with the value
of 0.16% which is insignificant. This implies that the

Fig. 8. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

the elongated segment S1.

Table 2. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for elongated segment S1.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 619 620 620 0.16 0.16

F2 1568 1567 1567 0.06 0.06

F3 2408 2407 2407 0.04 0.04

F4 3158 3155 3155 0.09 0.09

F5 4237 4238 4238 0.02 0.02

Table 3. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for elongated segment S44.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 606 607 607 0.17 0.17

F2 1537 1536 1536 0.07 0.07

F3 2470 2469 2469 0.04 0.04

F4 3290 3292 3292 0.06 0.06

F5 4245 4247 4247 0.05 0.05

present model and Mathur’s model generate the same
formant frequencies in the current case and both mod-
els are very close to ABCD matrix model in the view
of the fifth and sixth columns of the table.

In the next case, the elongation of lips is carried out
by extension in the length of the last segment S44 by
choosing d44 = 1.5d44. Figure 9 represents that the for-
mants frequencies of the current model and Mathur’s
model are nearly equal to that of ABCD matrix model.
Maximum relative errors in the proposed model and
Mathur’s model are the same with the values of 0.17%,
as shown in Table 3. The negligible values of the rela-
tive errors in the fifth and sixth columns of the current

Fig. 9. Comparison of formant frequencies of the current
model with ABCD matrix model for the lips elongation.
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table imply that the formants frequencies of the cur-
rent model and Mathur’s model are very close to those
of the ABCD matrix model in the present case.

Figure 10 represents the formant frequencies of the
elongation of even number segment S14 with the same
scaling factor 1.5. This figure exhibits the similar-
ity of formants frequencies of the current model and
Mathur’s model with that of ABCD matrix model.
Due to elongation of segment S14, Table 4 depicts
that the maximum relative errors of Mathur’s model
and the proposed model relative to the ABCD matrix
model are measured as 33% and 16%, respectively. The

Fig. 10. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

the elongated segments S14.

Table 4. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for elongation of an even-number segment S14.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 614 612 613 0.33 0.16

F2 1563 1562 1562 0.06 0.06

F3 2461 2460 2460 0.04 0.04

F4 3271 3270 3270 0.03 0.03

F5 4228 4229 4227 0.02 0.02

Table 5. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for elongation of an odd-number segment S31.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 614 616 616 0.33 0.33

F2 1561 1562 1562 0.06 0.06

F3 2467 2469 2469 0.08 0.08

F4 3278 3279 3279 0.03 0.03

F5 4208 4210 4210 0.05 0.05

negligible errors of the proposed model and Mathur’s
model establish that both models have approximately
the same formant frequencies as those of ABCD matrix
model.

Figure 11 shows the formant frequencies of the elon-
gation of odd number segment S31 with the scaling
factor 1.5. The close matching of the proposed model
and Mathur’s model with that of ABCD matrix model
have also been observed in this figure. In this case, the
present model and Mathur’s model have a maximum
error of value 0.33%, as shown in Table 5.

Fig. 11. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

the elongated segments S31.
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We also consider two special cases of elongation for
the even-odd and odd-even consecutive segments. Fig-
ures 12 and 13 demonstrate the formant frequencies of
the elongation of consecutive even-odd and odd-even
numbered segments, respectively, with the scaling fac-
tor of 1.5. In the present work, we take the elongation
of both consecutive segments S10−S11 in the first case,
while we consider the elongation of both consecutive
segments S37−S38 in the second case. Both figures show
that the formants frequencies of the current model and
Mathur’s model are also very close to that of ABCD

Fig. 12. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

even-odd number segments elongation.

Table 6. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for even-odd-number segments S10 and S11.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 609 608 608 0.16 0.16

F2 1547 1548 1548 0.06 0.06

F3 2420 2420 2420 0.00 0.00

F4 3254 3253 3253 0.03 0.03

F5 4156 4158 4158 0.05 0.05

Table 7. Relative errors of the current model and Mathur’s model compared with ABCD matrix model
for odd-even-number segments S37 and S38.

Formant
frequency

ABCD matrix model
[Hz]

Mathur’s model
[Hz]

Proposed model
[Hz]

Relative error
in Mathur’s model

Relative error
in the proposed model

F1 609 610 610 0.16 0.16

F2 1521 1519 1519 0.13 0.13

F3 2450 2451 2451 0.04 0.04

F4 3271 3270 3270 0.03 0.03

F5 4176 4176 4176 0.00 0.00

Fig. 13. Comparison of formant frequencies of the current
model and Mathur’s model with ABCD matrix model for

odd-even number segments elongation.

matrix model. Tables 6 and 7 show the calculated for-
mant frequencies with respect to the Figs 12 and 13,
respectively. From Tables 6 and 7, the proposed model
and Mathur’s model have maximum the same relative
errors 0.16% with ABCD matrix model. In both cases,
the negligible errors show that the formants frequen-
cies of the current model and Mathur’s model are very
close to that of ABCD matrix model.

From Figs 7–13 and Tables 1–7, it is concluded that
the present model and Mathur’s model have approxi-
mately the same formants frequencies as those of the



298 Archives of Acoustics – Volume 44, Number 2, 2019

ABCD matrix model. Despite the different approach
used in the proposed model, our model generates ex-
actly the same frequency profile as that of Mathur’s
model. However, the main difference between the pro-
posed model and Mathur’s model is the efficiency of
the current model.

Table 8 presents the computational efficiency of
the current model compared with the Mathur’s model
and ABCD matrix model. We used a high-level com-
puter language Matlab 2016 for the development of
computer codes for all the models. To compute the
maximum elapsed time, all the segments of the vo-
cal tract have been elongated with a factor of 1.5%
except for the first segment. We worked on a laptop
with Windows 10 Professional as an operating sys-
tem. The specifications of the laptop are: i7-7500U
processor, 8 GB RAM, and dual-core architecture. The
actual average elapsed time of twenty iterations of
the algorithms has been shown in the second col-
umn of the table and the normalised elapsed time
has been mentioned in the third column, where nor-
malisation was performed by the elapsed time of the
proposed method. It may be noted from the table
that the present model is 1.23 times more efficient than
the Mathur’s model and more than four times more ef-
ficient than the ABCD matrix model.

Table 8. Elapsed time taken by the proposed, Mathur’s,
and ABCD matrix models.

Methods Time [s] Normalized time

Proposed model 0.7556424 1.00

Mathur’s model 0.9317220 1.23

ABCD matrix model 3.1517223 4.17

5. Conclusions

The vocal tract of the length 17.5 cm has been cho-
sen in the present work. The vocal tract may be divided
into N number of segments. The new model has been
devised to elongate or shorten any arbitrary cylindrical
segment by a suitable scaling factor. This model has
a single algorithm and there is no need to make the sec-
tions of the segments for the elongation or shortening
of the intermediate segments. The fractional delay has
been approximated with linear Lagrange interpolator.
Many cases include elongation of the first segment, last
segment, intermediate even segment, intermediate odd
segment. Intermediate even-odd segments and inter-
mediate odd-even segments have been tested with the
current model and the results have been validated with
a more accurate ABCD matrix model. In all cases, we
conclude that:

• Despite the different approach used in the cur-
rent model, the formants frequencies generated by
the proposed model are equal to that of Mathur’s
model.

• The formants frequencies of the proposed model
and Mathur’s model are found to be very closely
matched with that of benchmarked ABCD matrix
model.

• The proposed model is about 23% more efficient
than Mathur’s model.

• The proposed model is about 400% more efficient
than the benchmark ABCD matrix model.

Hopefully, the proposed model in the present work
may serve as a useful vocal tract model in speech syn-
thesizers.
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Švec J.G. (2015), Human vocal tract resonances and



300 Archives of Acoustics – Volume 44, Number 2, 2019

the corresponding mode shapes investigated by three-
dimensional finite-element modelling based on CT mea-
surement, Logopedics Phoniatrics Vocology, 40, 14–23.

43. Van Duyne S.A., Smith J.O. (1993a), The 2-D dig-
ital waveguide mesh, [in:] Applications of Signal Pro-
cessing to Audio and Acoustics. Final Program and
Paper Summaries, 1993 IEEE Workshop, pp. 177–180,
IEEE, New Paltz, NY.

44. Van Duyne S.A., Smith J.O. (1993b), Physical mod-
eling with the 2-D digital waveguide mesh, [in:] Pro-
ceedings of the International Computer Music Confer-
ence, pp. 40–40, International Computer Music Asso-
ciation, Tokyo, Japan.

45. von Helmholtz H. (1863), On the sensations of
tone as a physiological basis for the theory of music
[in German: Die Lehre von den Tonempfindungen ais

physiologische Grundlage für die Theorie der Musik],
Braunschweig.

46. von Helmholtz H. (1866), Treatise on physiological
optics [in German: Handbuch der physiologischen Op-
tik], Leopold Voss, Leipzig.

47. Wang Y., Wang H., Wei J., Dang J. (2012a), Acous-
tic analysis of the vocal tract from a 3D physiologi-
cal articulatory model by finite-difference time-domain
method, [in:] Proceeding of international conference on
Automatic Control and Artificial Intelligence, pp. 329–
333, IET, Xiamen, China.

48. Wang Y., Wang H., Wei J., Dang J. (2012b), Man-
darin vowel synthesis based on 2D and 3D vocal tract
model by finite-difference time-domain method, [in:]
Signal & Information Processing Association Annual
Summit and Conference (APSIPA ASC), 2012 Asia-
Pacific, pp. 1–4, IEEE, Hollywood, CA.


