
ARCHIVES OF ACOUSTICS DOI: 10.2478/v10168-010-0038-9
35, 4, 493–504 (2010)

An Improved Method of Permutation Correction
in Convolutive Blind Source Separation

Lin WANG(1),(2), Heping DING(2), Fuliang YIN(1)

(1)Dalian University of Technology
School of Electronic and Information Engineering
Dalian, 116023, P.R. China
e-mail: wanglin_2k@sina.com

heping.ding@nrc-cnrc.gc.ca
flyin@dlut.edu.cn

(2)Institute for Microstructural Sciences
National Research Council Canada
1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada

(received June 7, 2010; accepted September 1, 2010 )

This paper proposes an improved method of solving the permutation problem
inherent in frequency-domain of convolutive blind source separation (BSS). It com-
bines a novel inter-frequency dependence measure: the power ratio of separated
signals, and a simple but effective bin-wise permutation alignment scheme. The pro-
posed method is easy to implement and surpasses the conventional ones. Simulations
have shown that it can provide an almost ideal solution of the permutation problem
for a case where two or three sources were mixed in a room with a reverberation
time of 130 ms.
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1. Introduction

A typical problem in array processing and data analysis is to recover the
source signals from their mixtures. Blind source separation (BSS) deals with this
problem (Hyvarien et al., 2001). In recent years, BSS has received considerable
attention and became a hotspot of modern signal processing. It has many poten-
tial applications, ranging from wireless communication, speech processing, image
processing, biomedicine and radar technology, even to financial data analysis. An
interesting application is the separation of audio sources that have been mixed
and recorded by multiple microphones in a room, i.e. the so-called cocktail party
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problem. A major challenge is that the mixing process is convolutive, i.e. the
observations are combinations of filtered versions of the sources. This requires
many channel parameters to be estimated.

Many approaches have been proposed to do convolutive BSS (Pedersen
et al., 2007). Among them, frequency-domain approaches are considered to be
promising with faster convergence and lower complexity (Smaragdis, 1998;
Sawada et al., 2007a). In frequency-domain BSS, the observed time-domain sig-
nals are converted into the frequency-domain, e.g. using the short-time Fourier
transform (STFT), and then instantaneous BSS is applied to each frequency
bin, after which the separated signals of all frequency bins are combined and
re-transformed to the time-domain. An issue with frequency-domain BSS is that
the permutation ambiguity may become serious. Even if satisfactory separation
in each frequency bin is achieved, combining of the separated frequency bins
to recover the original sources is difficult because of the unknown permutations
associated with individual frequency bins.

Considerable work has been done to tackle the permutation problem. A pop-
ular strategy is to exploit mutual dependence of bin-wise separated signals across
the frequencies, which tends to be high if the components originate from the same
source (Murata et al. 2001; Sawada, 2007b). Another strategy is based on the
direction-of-arrival estimations. By estimating the arriving delays of sources or
analyzing the directivity pattern formed by a separation matrix, source direction
can be estimated and permutations aligned (Sawada et al., 2004; Ikram, Mor-
gan, 2005). The advantage of the first strategy over the second one is that it is
less affected by adverse mixing conditions such as reverberation and sources be-
ing closely located. Thus, this paper focuses on solving the permutation problem
based on inter-frequency dependence. We will consider two issues: a metric to
measure the inter-frequency dependence, and a scheme to align the permutation
across the frequencies.

A classical method, proposed by Murata (2001), aligns permutation based
on an inter-frequency dependence measure: separated signal envelopes. The bin-
wise permutation alignment scheme in (Murata et al., 2001) is straightforward.
However, since the envelope dependence can only be clearly observed in a small
percentage of all frequencies, the method in (Murata et al., 2001) is limited when
dealing with many sources. Recently, a method proposed by Sawada (2007b) tries
to solve the permutation problem based on another measure: separated signal
power ratio, with which the inter-frequency dependence is more clearly exhibited.
However, the alignment scheme in (Sawada et al., 2007b) involves a K-mean
clustering step, which is unsupervised and it is difficult to control it. In addition,
the performance of (Sawada et al., 2007b) also degrades with increasing number
of sources.

Considering the advantages of both methods mentioned above, we propose an
improved solution which combines the inter-frequency dependence of power ratio
in (Sawada et al., 2007b) and the permutation alignment scheme in (Murata
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et al., 2001). Comparing with them, the proposed method is more effective and
easier to implement.

The rest of the paper is organized as follows. The principle of frequency-
domain blind source separation is introduced in Sec. 2. The proposed permutation
method is described in detail in Sec. 3. Experimental results are presented in
Sec. 4. Finally, Sec. 5 concludes the paper.

2. Frequency-domain blind source separation

Suppose that N source signals s(n) = [s1(n), . . . , sN (n)]T are mixed and
recorded by M sensors, the observed signals x(n) = [x1(n), . . . , xM (n)]T are
given by

xj(n) =
N∑

i=1

P∑

p=1

hji(p)si(n− p + 1), (j = 1, . . . , M), (1)

where hji is a P -point impulse response from source i to microphone j. With
blind source separation, the estimated source signals y(n) = [y1(n), . . . , yN (n)]T

are obtained:

yj(n) =
M∑

i=1

Q∑

q=1

wji(q)xi(n− q + 1), (j = 1, . . . , N), (2)

where wji is a Q-point unmixing filter.
The unmixing filters can be calculated using the frequency-domain method.

Figure 1 gives the system structure of frequency-domain BSS. First, x(n) is con-
verted into a time-frequency series X(m, f) by a blockwise L-point short-time
Fourier transform (STFT). Thus, the convolution in (1) becomes a multiplication:

X(m, f) = H(f)S(m, f), (3)

where m is the frame index, f ∈ [f0, . . . , fL/2] is the frequency.

X(m, f) = [X1(m, f), . . . , XM (m, f)]T

and
S(m, f) = [S1(m, f), . . . , SN (m, f)]T

are the STFT of x(n) and s(n), respectively; H(f) is the M ×N mixing matrix
at frequency f .

Moreover, separation is performed in each frequency bin f :

Y (m, f) = W (f)X(m, f), (4)

where Y (m, f) = [Y1(m, f), . . . , YN (m, f)]T is the STFT of y(n), W (f) is the
N ×M unmixing matrix at f . Complex-valued instantaneous BSS algorithms,
such as FastICA (Bingham, Hyvarien, 2000) and Informax (Bell, Sejnowski,
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Fig. 1. Workflow of frequency-domain blind source separation.

1995), can be used for the calculation of W . However, even if satisfactory sep-
aration may be obtained in each frequency bin, there are inherent scaling and
permutation ambiguities. This is expressed as

Y (m, f) = W (f)X(m, f) ≈ D(f)Π(f)S(m, f), (5)

where Π(f) is a permutation matrix and D(f) is a scaling matrix, all at fre-
quency f . These ambiguities should be corrected before transformation of the
frequency-domain signals back into the time domain.

In the third step, the permutation matrix Π(f) is determined at each fre-
quency f so that separated frequency components Yi(m, f) are grouped together
for the same source. This issue will be addressed later in Sec. 3.

Next, the scaling ambiguity is corrected by using the Minimal Distortion
Principle (Matsuoka, Nakashima, 2001):

Ws(f) = diag(W−1
p (f)) ·Wp(f), (6)

where Wp(f) is W (f) after permutation alignment and Ws(f) is the one after
scaling correction; (·)−1 denotes inversion of a square matrix or persudo inversion
of a rectangular matrix, and diag(·) retains only the main diagonal components
of a matrix.

At the end of the flow, inverse STFT is applied to Ws(f) to get the time-
domain unmixing filters w(n), and the estimated source signals y(n) is obtained
by the unmixing filtering in (2). The whole procedure described above is depicted
in Fig. 1.

3. Permutation alignment

In this section, we describe the proposed permutation alignment method from
two aspects: inter-frequency dependence measure and permutation alignment
scheme.

3.1. Inter-frequency dependence measure

The inter-frequency dependence of speech sources can be exploited to align the
permutations across all frequency bins. An inter-frequency dependence measure
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proposed in (Sawada et al., 2007b), the separated signal power ratio, can exhibit
inter-frequency dependence among all frequencies effectively. Here we give the
definition of this measure.

The M ×N mixing network at frequency f can be estimated from the sepa-
ration network by

A(f) = W−1(f) = [a1(f), . . . , aN (f)], (7)

where ai(f) is the i-th column vector of A(f). The observed signal can be de-
composed by

X(m, f) =
N∑

i=1

ai(f)Yi(m, f), (8)

where Yi(m, f) is the i-th component of Y (m, f), i.e.

Y (m, f) = [Y1(m, f), . . . , YN (m, f)]T.

A power ratio measure is calculated to represent the activity of the i-th sep-
arated signal at frequency f . It is defined as

vf
i (m) =

‖ai(f)Yi(m, f)‖2

N∑
k=1

‖ai(f)Yi(m, f)‖2

, (9)

where the denominator is the total power of the observed signals X(m, f), and the
numerator is the power of the i-th separated signal. Being in the range [0, 1], (9)
is close to 1 when the i-th separated signal is dominant, and close to 0 when
other signals are dominant. Due to the sparseness of speech signals, power ratio
can exhibit the signal activity clearly.

The correlation coefficient of signal power ratios can be used for measuring
the inter-frequency dependence and aligning of the permutation. The normalized
bin-wise correlation coefficient between two power ratio sequences vf1

i (m) and
vf2
j (m) is defined as

ρ(vf1
i , vf2

j ) =
rij(f1, f2)− µi(f1)µj(f2)

σi(f1)σj(f2)
, (10)

where i and j denote two separated channels, f1 and f2 are two frequencies,

rij(f1, f2) = E{vf1
i vf2

j }, µi(f) = E{vf
i }, σi(f) =

√
E{(vf

i )2} − µ2
i (f) are, re-

spectively, the correlation, mean, and standard deviation at m. Note that E{·}
denotes expectation, where the time index m is omitted for clarity.

We expect the correlation coefficient ρ(vf1
i , vf2

j ) of two sequences vf1
i (m) and

vf2
j (m) to be high if they originate from the same source. The principle behind
this is that the active time of bin-wise separated signals are likely to coincide
among frequencies for the same source. This property will be used for aligning
the permutation.
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3.2. Proposed permutation alignment scheme

The permutation alignment scheme employed in (Murata et al., 2001) was
developed especially for the dependence measure of signal envelope. We made
some modifications to it to come up with a permutation alignment scheme based
on the signal power ratio measure. It is described in the 5 steps presented below.
Step 1. Calculate the power ratio vf

i (m) for all L/2 + 1 frequency bins and all
N separated signals by (9).

Step 2. Re-arrange the frequencies: {f0, . . . , fL/2} → {g0, . . . , gL/2}, in ascend-
ing order of similarity between individual components, which is defined by

sim(g) =
∑

i,j (i6=j)

ρ(vg
i , v

g
j ); (11)

therefore,
sim(g0) ≤ sim(g1) ≤ · · · ≤ sim(gL/2). (12)

It is noticed that sim(g) = ρ(vg
1 , v

g
2) = 0 holds for all frequencies when there

are only two sources. In this case, we use the envelope measure vg
i = |Yi(g)|

instead of (9) to calculate the similarity.
Step 3. For g0, keep the permutation as it is, and set k=1.
Step 4. For gk, find a permutation Πg that maximizes the correlation between

the power ratio of gk and the aggregated power ratio sequence from g0

through gk−1. This is achieved by maximizing the sum of correlation coef-
ficients

Πg ← arg max
Π

N∑

l=1

ρ(vg
i , ci)

∣∣
i=Πg(l),i′=Πc(l) (13)

and c is the centroid of the power ratio sequence from g0 through gk−1

cl(m) =
1
k

gk−1∑
g=g0

vg
i (m)

∣∣
i=Πg(l) , l = 1, . . . , N. (14)

Step 5. Set k = k+1 and go to step 4 until k = L/2.
It is believed that the more different are the independent components at one
frequency, the easier it is to get a correct permutation result. First, the method
in (Murata et al., 2001) sorts frequency bins in increasing order of similarity
among independent components; then align the permutation of the sorted fre-
quency bins one by one. However, the method assumes high correlations even
between frequencies that are far apart; this assumption is not always correct in
all frequencies, especially with an envelope measure. With the power ratio mea-
sure, the inter-frequency becomes clearer and the dependence assumption may
be satisfied in most frequencies. Thus the proposed method performs better than
the one in (Murata et al., 2001). Furthermore, as it can be seen from the steps
above, the permutation alignment scheme is rather straightforward and easy to
implement.
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4. Experiment results

The performance of the proposed method has been evaluated under light and
medium reverberant conditions. Generally, the number of microphones should
be larger than or equal to that of the sources, to ensure a complete solution
(Joho et al., 2000). Here we only consider identical number of sources and micro-
phones for convenience and simplicity. Data were obtained by simulated impulse
responses of a rectangular room, based on the image model method (Allen,
Berkley, 1979). The simulated environment is shown in Fig. 2. All sources
and microphones are placed 1.5 m high. The reverberation time was controlled
by varying the absorption coefficient of the wall. To generate the microphone
signals, we used 8-seconds long speech signals sampled at 8kHz, and they were
convolved with the impulse responses. The proposed method was compared with
the methods in (Murata et al., 2001) and (Sawada et al., 2007b). (For clar-
ity, we call them the Murata method and the Sawada method, respectively). In
addition, results of a “Benchmark” method are also included, which corrects per-
mutation ambiguities by using the known mixing filters; therefore, it represents
an ideal method (Ikram, Morgan, 2000).

Fig. 2. Simulated room environment.

The performance is measured by signal-to-interference (SIR) ratios in dB.
The input and output SIRs for the J-th channel are defined as, respectively,

SIRINJ = 10 log10

∑
n |

∑
l hJJ(l)sJ(n− l)|2∑

k 6=J

∑
n |

∑
l hJk(l)sk(n− l)|2 , (15)

SIROUTJ = 10 log10

∑
n

∣∣∑
l gJp(J)(l)sp(J)(n− l)

∣∣2
∑

k 6=p(J)

∑
n |

∑
l gJk(l)sk(n− l)|2 , (16)
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where n is the time index, J = 1, . . . , N , and p(J) is the index of the output where
the J-th source appears, hJk(n) is an element of H(n) (see (1)), and gJk(n) is
an element of the overall impulse response matrix G(n) = W (n) ∗H(n).

The Tukey window is used in short time Fourier transform, with the STFT
frame size of 2048 and a shift size of 512. The instantaneous BSS is implemented
by means of the Scaled Informax (Douglas, Gupta, 2007), which can converge
to the optimal solution within 100 iterations. In this paper, we set the iteration
number as 100. The scaling ambiguity is solved by using Minimum Distortion
Principle (6). The smoothing method proposed in (Sawada et al., 2003) is applied
in order to reduce spikes due to the circularity effect of the FFT. The processing
bandwidth is between 100 and 3750 Hz (sampling rate being 8 kHz).

4.1. Performance evaluation in light reverberation

The proposed method is applied in a number of conditions. The reverberation
time RT60 = 130 ms. Various 2 × 2 (2 sources (1F, 1M)(1) and 2 microphones
(B, C)), 3 × 3 (3 sources (1F, 2M) and 3 microphones (A, B, C)) and 4 × 4
(4 sources (2F, 2M) and 4 microphones) simulation cases are carried out. Different
combinations of source locations are tested for each case. The average input SIR
is about 0 dB for 2×2, −2 dB for 3×3, and −5 dB for 4×4 cases. The separation
results with the four methods for the three cases are presented in Figs. 3, 4, and 5,
respectively, where the horizontal axis is the source location and the vertical axis
is the average output SIR.
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Fig. 3. Separation results for 2 speakers and 2 microphones (RT60 = 130 ms).

(1) Here ‘F’ means female and ‘M’ means male.
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Fig. 4. Separation results for 3 speakers and 3 microphones (RT60 = 130 ms).
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Fig. 5. Separation results for 4 speakers and 4 microphones (RT60 = 130 ms).

Compared to the benchmark, all the three “non-ideal” methods show nearly
ideal separation in 2×2 cases. In 3×3 cases, the Sawada method performs better
than the Murata method, and the proposed method performs even better – with
an almost ideal separation. In 4×4 cases, the performance of the three methods all
degrades evidently; however, the proposed one is the closest to the benchmark.
In a word, combining the power ratio measure and the Murata permutation
alignment scheme, the proposed method is superior to the other two under various
simulation conditions.
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The separation result depends mainly on two factors: instantaneous BSS and
permutation alignment. It is easier to separate two sources when they are far
apart and hence have different transfer functions to sensors. For example, better
separation is observed for the 2×2 cases ‘1, 9’, ‘2, 7’ than for other ones. Similarly,
although sources ‘3, 4’ are placed on one straight line, they have different transfer
functions to the sensors B and C, thus it is possible to get better separation results
than for closely spaced sources ‘5, 7’.

4.2. Performance evaluation in medium reverberation

The proposed method is evaluated in medium reverberation with RT60 =
300 ms. The room layout is identical to the one in the previous experiment.
We separate 3 × 3 mixtures with the four methods respectively: the proposed
method, the Murata method, the Sawada method, and the Benchmark method.
The separation results are depicted in Fig. 6. Comparing Fig. 6 with Fig. 4, it can
be seen that the performance of the four methods all degrade evidently due to
the longer mixing filters in medium reverberation. Again, the proposed method
shows better performance than the Sawada method and the Murata method. In
most cases, its performance is close to the ideal result.
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Fig. 6. Separation results for 3 speakers and 3 microphones (RT60 = 300 ms).

5. Conclusion

Studying the frequency-domain convolutive blind source separation, this pa-
per proposes a new permutation alignment method which employs an inter-
frequency measure: the power ratio of separated signals, and the Murata align-
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ment scheme. The power ratio measure can exploit the inter-frequency depen-
dence more clearly than the conventional metrics; the permutation alignment
scheme is simple but effective. Thus, the proposed method performs better than
other ones evaluated. Besides, it is easy to implement. Experimental results
showed the effectiveness of the proposed method.
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