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Speech and music signals are multifractal phenomena. The time displacement profile of speech and
music signal show strikingly different scaling behaviour. However, a full complexity analysis of their
frequency and amplitude has not been made so far. We propose a novel complex network based approach
(Visibility Graph) to study the scaling behaviour of frequency wise amplitude variation of speech and
music signals over time and then extract their PSVG (Power of Scale freeness of Visibility Graph).
From this analysis it emerges that the scaling behaviour of amplitude-profile of music varies a lot from
frequency to frequency whereas it’s almost consistent for the speech signal. Our left auditory cortical
areas are proposed to be neurocognitively specialised in speech perception and right ones in music. Hence
we can conclude that human brain might have adapted to the distinctly different scaling behaviour of
speech and music signals and developed different decoding mechanisms, as if following the so called Fractal
Darwinism. Using this method, we can capture all non-stationary aspects of the acoustic properties of the
source signal to the deepest level, which has huge neurocognitive significance. Further, we propose a novel
non-invasive application to detect neurological illness (here autism spectrum disorder, ASD), using the
quantitative parameters deduced from the variation of scaling behaviour for speech and music.
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1. Introduction

Music and speech are the most cognitively com-
plex phenomena created by sound for human beings.
We can easily differentiate between speech and music
just by listening to the signals for a few seconds. Speech
contains a large variety of complex sounds with varying
temporal grain, periodic and aperiodic components,
noise, frequency, and amplitude modulations etc. On
the contrary music is much more difficult to be decoded
with respect to its acoustic features as it has richer fre-
quency content than speech. Spectral envelope, dura-
tion, fundamental frequency, etc. are the main acoustic
features of both speech and music, with respect to the
perception. The formants of the spectral envelope are
critical cues for speech, whereas spectral envelope itself
is the main feature identifying the timbre of musical
sound (Wolfe, 2002). As for analysis of the acous-
tic features from the neurocognitive perspective, it
has been established that relatively good speech com-
prehension could be acquired with even two spectral
channels, demonstrating that the temporal variation

contained within these two noise bands were enough
to allow the speech decoding mechanism to function
sufficiently (Shannon et al., 1995). Further research
has proved that various aspects of speech decoding
depend largely on the left auditory cortical regions
(Hickok, Poeppel, 2000). However, extracting sig-
nificant acoustic cues from music is difficult for human
beings, as music is much richer acoustically. Samson
and Zatorre (1994) have shown that musical timbre
perception depends on systems of neural structure in-
side the right temporal lobe. Patients with damages
of the right temporal cortex showed deficiency in dis-
criminating musical timbre. Unlike speech, music does
not have a fixed semantic system and it may convey
meaning through emotional appraisal and associative
memories (Trost et al., 2012). Zatorre et al. (1992;
1994) have confirmed that comparative specialisation
within the right auditory regions for tonal process-
ing is substantiated by functional imaging data from
a wide variety of melodies in musical compositions.
Most of the frequency domain features are extracted
from a sound spectrogram and as per Joos (1948).
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The Acoustic Uncertainty Principle specifies that one
cannot make a precise simultaneous measurement of
an auditory event in both the time and frequency
domains. So there always exists a spectral-temporal
approximation in a spectrogram of sound signal. Za-
torre et al. (2002) have argued that to address this
acoustic uncertainty, the auditory cortices in the two
hemispheres might have become comparatively spe-
cialised, such that temporal resolution is better in the
left auditory cortical areas and spectral resolution is
better in the right auditory cortical areas. They pro-
posed that these cortical asymmetries might have de-
veloped as a general solution to the requirement to op-
timise processing of the acoustic environment in both
temporal and frequency domains.

It has already been proved that the human brain is
a complex and chaotic system constructed over mul-
tiple scales of space and time and the signals gen-
erated from the various lobes of brain are nonlinear
and non-stationary (Babloyantz et al., 1985; Bull-
more, Bassett, 2011). All the organs of human body
behave nonlinearly due to their inherent complex dy-
namic nature. The processes of speech production and
cognition by human beings are complex phenomena
(Proctor, Van Zandt, 2008). Musical compositions
are also complex systems (Vaggione, 2001). The the-
ory of complexity is rooted in chaos theory (Poincaré,
1889) and has various parameters whose combined be-
haviour refers to the border between order and ran-
domness, termed as the edge of chaos (Horgan, 1995).
As per chaos theory, a chaotic system is extremely
sensitive to initial conditions, does not repeat itself,
however, it is deterministic. The chaos-based complex-
ity theory attempts to decode behaviour of dynamic
nonlinear systems (Gallagher, Appenzeller, 1999;
Mikulecky, 2001; Higgins, 2002). To provide order
or definite properties to a structural form inherent in
the chaotic system, fractal geometry has been evolved
(Peitgen et al., 2004). According to Mandelbrot
(1967; 1983), fractal is a geometric scheme which re-
peats itself at smaller or larger scales to generate self-
similar, irregular shapes, or surfaces that cannot be
represented by Euclidean geometry. Fractal systems
can extend to infinitely large values of their coordi-
nates, in all directions from the centre towards the
outside. The principal feature of fractals is their self-
similarity. It is a phenomenon where smaller and big-
ger fragments of a system look very alike to but not
necessarily exactly the same as the whole fractal sys-
tem. Power law (as per statistics, a power law is a func-
tional relationship between two quantities where one
quantity varies as a power of another) is applied to
represent the self-similarity of the large and small frag-
ments of a fractal system. This power law exponent is
defined as the scaling exponent of the self-similarity
or the fractal dimension of the system. Fractals are
of two types: monofractals and multifractals. Scaling

properties of the monofractals are the same in differ-
ent regions of the system, whereas scaling properties
of multifractals are different in different regions of the
systems (Chen et al., 2002).

If the time series is long range correlated, its DFA
function shows a power law relationship with its scale
parameter. If we denote the DFA function of the
time series by F (s) and its scale parameter by s,
F (s) will vary with a power of s as per the equa-
tion F (s) ∝ sH , where the exponent H is termed as
Hurst exponent. If DF is the fractal dimension, it is
related with H-Hurst exponent as per the equation
DF = 2 − H (Kantelhardt et al., 2001). MF-DFA
(Kantelhardt et al., 2002) method has the highest
precision in the scaling analysis. Results obtained by
DFA and MFDFA methods are proved to be more re-
liable compared to the methods like Wavelet Analysis,
Discrete Wavelet Transform, Wavelet Transform Mod-
ulus Maxima, Detrending Moving Average, Band Mov-
ing Average, Modified Detrended Fluctuation Analysis
etc. (Oświcimka et al., 2006; Serrano, Figliola,
2009; Huang et al., 2011). We have applied MF-DFA
method successfully for analysing various kinds of time
series formed from natural signals like speech signals
(Bhaduri et al., 2016) and biological signals like EEG
and ECG signals (Bhaduri, Ghosh, 2015; 2016a; Ni-
lanjana et al., 2016; Bhaduri et al., 2017).

The speech production process exhibits fractal
characteristics. The quasi-static oscillations of the vo-
cal folds and the adaptation process of the vocal
tract are both nonlinear processes (Levelt, 1999).
Multifractal nature of speech has been explored for
automatic speech recognition (Maragos, Potamia-
nos, 1991), speaker recognition (Gonzalez et al.,
2012), speech decomposition (Langi et al., 1997),
speech segmentation, representation, and characteri-
sation (Kinsner, Grieder, 2008). Music is tradition-
ally defined as an ordered arrangement of sounds of
varying acoustic frequencies (pitches, tones) in succes-
sion (melody), of sounds in combination (harmony),
and of sounds spaced in temporal succession (rhythm)
(Hsü, Hsü, 1990). Mandelbrot (1983) defined scal-
ing noise as a certain kind of sound whose quality
stays unaltered even with changing play speed. White
noise is the most simple scaling noise. The power spec-
tral density, say denoted by S(f), of a time series
produced in agreement with the temporal variation
of white noise varies with frequency content, say de-
noted by f , as per the equation S(f) ∝ fβ , where
β is the scaling exponent (Oświęcimka et al., 2011).
Voss and Clarke (1975) were the first to do frac-
tal analysis of music and showed that it is pink noise
or 1/f noise. Tricot (1988) implemented fractal the-
ories on self-affine functions, and found a power law
relationship between the power spectra and the frac-
tal dimension. Recently some work about multifractal
analysis of music was reported by Su and Wu (2006)
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and Jafari et al. (2007). Hence, fractality and mul-
tifractality of speech and music have already been es-
tablished.

Considerable amount of work has been done to de-
vise automatic speech-music signal classification sys-
tem using the conventional acoustic features. Most
of these methods deal with time domain features
like Zero Crossing Rate (Panagiotakis, Tziritas,
2005), Short Time Energy (El-Maleh et al., 2000),
and frequency domain features like signal band-
width, spectral centroid, signal energy (Cohen et al.,
1995; Mckay, Fujinaga, 2004), fundamental fre-
quency (Wold et al., 1996), Mel-Frequency Cep-
stral Co-efficients (MFCC) (Harb, Chen, 2003). Most
of these conventional stationary techniques involve
Fourier spectral analysis which is based on linear
superpositions of trigonometric functions. Secondary
harmonic components, which are common in natu-
ral non-stationary time series, may generate a dis-
torted wave outline for these natural signals. These
distortions are the consequence of nonlinear contribu-
tions which are not normally extracted from the non-
stationary signals, when analysed using these station-
ary techniques.

We should define a speech-music classification sys-
tem by analysing speech and music as complex system
using state of the art methods in fractal domain,
in contrast to the conventional stationary techniques.
This way all aspects of speech and music signal can
be understood at the deepest level. In our earlier work
(Bhaduri, Ghosh, 2016b), we have applied MFDFA
method to the time-displacement profile of speech
(non-musical), drone (periodically musical), and In-
dian art music samples with different musicality and
showed that the value of the width of the multifractal
spectrum is substantially different for speech and mu-
sic signals. In another work (Bhaduri et al., 2016),
we have applied the same approach over speech signal
and proposed a quantitative parameter for categoris-
ing various emotions by analysing the non-stationary
details of the dynamics of speech signal, generated
out of differing emotions. A non-invasive system has
been proposed using this parameter for early detec-
tion of Alzheimer’s disease. However, both DFA and
MFDFA methods mandate that the data series in ques-
tion should be of infinite length, which is a difficult sce-
nario in most of the real-life situations, hence we have
adopted an absolutely different, meticulous method –
Visibility Graph analysis (Lacasa et al., 2008; 2009),
discussed in detail in Subsec. 2.1 in (Bhaduri et al.,
2016) and implemented a modified version of this
method to analyse time displacement profile of speech
signal generated out of contrasting emotions of anger
and sadness, effectively classified them according to
their emotional content and proposed the framework
for assessing suicidal tendency of the subjects of ex-
periment. However, these approaches do not explore

the frequency properties of speech and music audio
signals.

Considering the advantages and disadvantages of
our earlier attempts as well as the drawbacks of DFA,
MFDFA methods, we have approached both frequency
and power properties of the speech and music signal
from a totally different perspective of visibility net-
work analysis in this work. Sporns et al. (2005) have
suggested the concept of connectome to define the net-
work of anatomical connections linking the neuronal el-
ements of the human brain. Various approaches based
on graph theory have been developed to investigate
the human brain connectome, either in normal or dis-
eased state. Here, we have implemented the most rigor-
ous and state-of-the-art method of Visibility Graph to
analyse the audio signals of speech and music (drone)
and proposed finer-level acoustic cues for differentiat-
ing speech and music signals. These quantitative cues
eventually establish the models proposed many times
from the neurocognitive perspective that speech and
music are decoded differently in two hemispheres of
the human brain, as they are found to be completely
different in terms of their acoustic contents as well as
complexity, in this experiment. Our left auditory cor-
tical areas are comparatively specialised in speech per-
ception and right ones are in music (Zatorre et al.,
2002). Binnig et al. (2002) have proposed the concept
of Fractal Darwinism which states how fractality of
multiple complex systems adapt with each other ac-
cording to their degree of self-similarity. In this work,
we have attempted to establish how different percep-
tion mechanism of speech and music by human brain,
as proposed by Zatorre et al. (2002), might have
evolved from the different scaling pattern inherent in
speech and music signals, as if following the so called
Fractal Darwinism.

Neurocognitive disorders involve deterioration of
cognitive abilities like memory, problem solving, per-
ception, judgement, singing, speech, etc. These dis-
orders result from temporary or permanent damage
to the brain, degenerative processes like Alzheimer’s
or Parkinson’s disease, dementia, and also from affec-
tive disorders like depression, pathological anxiety, and
even bipolar disorder, autism, and dyslexia (Ganguli
et al., 2011). Based on the parametric cues found for
all aspects of speech and music signals in this work
and earlier ones (Bhaduri, Ghosh, 2016b; Bhaduri
et al., 2016a; 2016), we can model non-invasive appli-
cations for assessment of various neurocognitive disor-
ders. During the last decade, there is increasing interest
in applying music as a therapeutic tool in neurocogni-
tive rehabilitation. Varnet et al. (2015) have analy-
sed various effects of music over brain and how mu-
sical training imparts better cognitive abilities. Using
our parametric cues, we can also implement a quanti-
tative basis for existing music-therapeutic approaches
for neurocognitive disorders.
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Here, we have experimented with various kinds of
speech signals generated from both male and female
voiced speech and the drone signal which can be gener-
ated by effortlessly playing drone, as drone signal is the
most basic and the simplest form of music signal (Van
der Merwe, 1989). Based on findings of our analysis
we have proposed the roadmap of an exemplary and
novel, non-invasive and real-time application for early
detection and monitoring of autism spectrum disorder
or ASD.

The rest of the paper is organised as follows. The
method of Visibility Graph technique, the details of
data, our analysis, and the inferences from the test
results are presented in Sec. 2. The inferences are dis-
cussed and an example of application for detecting and
monitoring autism spectrum disorder has been elabo-
rated in Sec. 3.

2. Methods

2.1. Visibility Graph Algorithm

Lacasa et al. (2008; 2009) have used fractional
Brownian motion (fBm) and fractional Gaussian noises
(fGn) series as their theoretical framework to study
real time series in various scientific fields. They showed
how a conventional method of complex network analy-
sis can be implemented to measure long-range depen-
dence and fractality of a time series.

The algorithm is a one-to-one mapping from the
domain of time series X to its Visibility Graph. Let Xi

be the i-th point of the time series. This way all the
input data points are mapped to their corresponding
nodes or vertices (according to their value or magni-
tude). In this node series, two nodes, say Xm and Xn,
corresponding to m-th and n-th points in the time se-
ries, are said to be connected via a bidirectional edge
if and only if Eq. (1) is valid. This way, the Visibility
Graph is constructed out of a time series X

Xm+j <Xn + (
n − (m + j)

n −m
) ⋅ (Xm −Xn), (1)

where ∀j ∈ Z+ and j < (n −m).
As shown in Fig. 1, the nodes Xm and Xn, with

m = i and n = i+ 6, can see each other, if Eq. (1) is sa-
tisfied for them. With this logic two sequential points

Fig. 1. Visibility Graph for time series X.

of the time series can always see each other hence all
sequential nodes are connected together. The time se-
ries should be converted to positive planes as the above
algorithm is valid only for positive X values in the time
series.

2.1.1. Power of scale-freeness of VG-PSVG

As per the graph theory, the definition of the degree
of a node is the number of connections or edges that the
node has with other nodes. The degree distribution,
say P (k), of a network formed from the time series is
defined as the fraction of nodes with degree k in the
network. Thus, if there are n nodes in total in a net-
work and nk of them have degree k, then P (k) = nk/n.

The scale-freeness property of Visibility Graph
states that the degree distribution of its nodes satis-
fies a power-law, i.e. P (k) ∼ k−λp , where λp is a con-
stant and it is known as Power of the Scale-freeness
in Visibility Graph – PSVG, which is denoted by λp
and is calculated as the gradient of log2[P (k)] ver-
sus log2[1/k] plot. λp corresponds to the amount of
complexity and fractal nature of the time series indi-
cating the Fractal Dimension of the signal (Lacasa
et al., 2008; 2009; Ahmadlou et al., 2012). It is also
proved that there exists a linear relationship between
PSVG-λp and Hurst exponent-H of the associated time
series (Lacasa et al., 2009). This method has recently
been applied widely over time series with finite num-
ber of data points, even with 400 data points (Jiang
et al., 2013), and achieved authentic results in various
domains of science.

2.2. Data description

Audio clips used in our previous work (Bhaduri,
Ghosh, 2016b) are used in this experiment. The
speech, drone music samples of duration of 160 se-
conds, are in .wav format. Sampling frequency for
the data is 44.1 KHz. Samples are encoded by 16 bit-
stream and of type mono. The amplitude waveform is
taken for the testing. We have used the empirical mode
decomposition method as per Huang et al. (1998) for
noise removal from the original signal. Speech signals
consist of both male and female voices, the language
spoken in the samples is English. The drone signal
used here is purely instrumental, of classical genre, and
played by multiple classical artists. Here we have taken
drone signal as the music signal because it is the most
basic and the simplest form of music signal (Van der
Merwe, 1989).

2.3. Data analysis

Following are the steps of our method.

1) First we calculate the power spectrum for each of
the audio clip. As per Wiener-Khinchin theorem,
power spectrum of a signal is the Fourier trans-
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form of its autocorrelation function. For deter-
ministic signals, the power spectrum is the magni-
tude squared of its Fourier transform. If we denote
power spectrum by S(f), then S(f) = ∣X(f)∣2,
where X(f) is the Fourier transform of the time-
displacement profile of the signal x(t) as per the
below equation

X(f) =

∞

∫
−∞

x(t) e−2πift dt. (2)

For each of the samples of speech and drone sig-
nals, power spectral components for the range
of frequencies 0.02–20 kHz, which is the audible
range of frequencies for human beings (Rosen,
Howell, 2010), are extracted.

2) After this we extract first 20 high strength fre-
quencies according to their power in the power
spectrum, for both speech and drone audio sam-
ples. Then spectrogram is generated for each audio
sample, by computing 1024 point FFT with 50%
overlap and using a Hamming window (Fulop,
Fitz, 2006). As we know, the spectrogram is based
on the Short-Time Fourier Transform, where the
input signal is broken into chunks and on each
chunk Fourier Transform is applied. If we extract
the information for a particular frequency from
the spectrogram over time, we get its magnitude
in each chunk over time. Here we assume that in
a particular chunk in the spectrogram, the ampli-
tude of the specific frequency is constant.

3) For each of the speech and drone audio files,
we extract the amplitude variation of the first

a) b)

c) d)

Fig. 2. a) Amplitude variation over time for speech signal for a particular frequency, b) amplitude variation over time for
drone signal for a particular frequency, c) trend of λp values for first 20 dominant frequencies for a speech audio sample,

d) trend of λp values for first 20 dominant frequencies for a drone audio sample.

20 strongest frequencies extracted from its power
spectrum, over time of progression of the audio
file. The amplitude variation for each of these 20
frequencies is extracted from the spectrogram gen-
erated from the corresponding audio file. Figu-
res 2a and 2b show the variation of amplitude over
time for particular frequency for speech and drone
signals, respectively.

4) Then for each of these amplitude profiles, we have
constructed Visibility Graphs as per the method
described in Subsec. 2.1. Then the values of k ver-
sus P (k) are calculated for the Visibility Graphs
corresponding to each of the 40 time series (20 for
the speech + 20 for the drone). The k versus P (k)
plots for the time series for a sample, each from
speech and drone signals, are shown in Figs. 3a
and 3b, and the power law relationship is evident
here.

5) Power of Scale freeness in Visibility Graph
(PSVG) – λp value is calculated from the slope
of log2[1/k] versus log2[P (k)] for each audio file,
as per the method in Subsec. 2.1. Plot of log2[1/k]
versus log2[P (k)] for the same k versus P (k)
series is shown in Fig. 3c for the speech with
λp = 3.23 and Fig. 3d for the drone with λp = 2.92.

2.4. Results

After calculation of all the PSVG-λp values for
40 samples (20 for the speech + 20 for the drone),
we have plotted their trend over the 20 high-strength
frequencies, as shown in Figs. 2c and 2d for the speech
and drone, respectively. It is very interesting to observe
that the scaling exponent of the dominant frequencies
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a) b)

c) d)

Fig. 3. a) k versus P (k) trend for the Visibility Graph of amplitude profile for the speech signal for a particular frequen-
cy, b) k versus P (k) trend for the Visibility Graph of amplitude profile for the drone signal for a particular frequency,
c) log2[1/k] versus log2[P (k)] calculated for the amplitude profile for the same frequency of the speech signal, d) log2[1/k]

versus log2[P (k)] calculated for the amplitude profile for the same frequency of the drone signal.

vary within a comparatively smaller range of values for
the speech signal than that of drone or the most basic
music signal. It is evident from the figures that speech
and music can be clearly segregated by the variance of
their scaling behaviour from frequency to frequency.

3. Discussion

It is evident from Figs. 2a and 2b that the ampli-
tude profile for a dominant frequency in the speech
signal is steadily irregular over time. Whereas, for
the drone signal, the amplitude varies almost pseudo-
periodically over time. This observation is almost con-
sistent for all 20 dominant or high-strength frequencies
for both speech and music samples.

Good scaling behaviour is evident from power law
fitting for the k versus P (k) plots calculated for the
Visibility Graphs, for the time series of both speech
and drone signals, are shown in Figs. 3a and 3b. The
same is also seen from the straight line fitting calcu-
lated in log2[1/k] versus log2[P (k)] series in Figs. 3c
and 3d. Hence, we can confirm that for each dominant
frequency, the amplitude variation over time obeys the
scaling law, for both speech and music.

Finally, in Figs. 2c for the speech and 2d for the
drone, we can see that for the drone signal, the scaling
behaviour of amplitude varies a lot from frequency to
frequency, whereas it’s almost consistent for the speech
signal. Hence, we can conclude that the human brain
might have been adapted to the different scaling be-
haviour of the acoustic signal of speech and music, as if
by following the theory of Fractal Darwinism (Binnig

et al., 2002) and developed different decoding mech-
anisms for speech and music – left auditory cortical
areas for specialised speech perception and right ones
for music (Zatorre et al., 2002).

From the above observations it can be summarised
that if a naturally generated audio signal shows a lot of
variation in scaling behaviour from one dominant fre-
quency to the next one, and if this variation is greater
than certain threshold (say, denoted by δ), then we can
confirm that the signal is of music and not speech. In
other words, an audio signal needs to have this vari-
ation greater than δ to be qualified as music or to be
converted to music. This threshold (δ) should be de-
fined by analysing the multifractal properties of time
displacement profile using the method in (Bhaduri,
Ghosh, 2016b) as well as variation of scaling pat-
tern of amplitude (frequency wise) using the proposed
method, for large number of speech and drone sam-
ples. Using this threshold (δ), various neurocognitive
applications for detecting neurological illness, autism
spectrum disorder, disorder of consciousness etc., can
be devised. As an example, we have broadly outlined
a framework for one such application for detection of
autism spectrum disorder in the Subsec. 3.1.

3.1. Proposed exemplary application

As already mentioned in the Sec. 1, neurocogni-
tive disorders involve cognitive impairment restrict-
ing proper emotional expression in speech and singing,
memory problems, issues involving problem solving,
perception, judgment etc. and these disorders result
from temporary or permanent damage to the brain,
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degenerative processes like Alzheimer’s or Parkinson’s
disease, dementia, as well as from affective disorders
like depression, pathological anxiety, and even from
bipolar disorder, autism, and dyslexia (Ganguli et al.,
2011).

In this work, we propose a quantitative framework
to capture the change in intricate dynamics of speech
produced by a normal subject or drone played by the
same subject and the same signals analysed for a sub-
ject suffering from autism spectrum disorder (ASD).
Here for music signal, the drone is chosen as a mu-
sical instrument as it’s the most effortlessly played
instrument that generates a very basic form of mu-
sic signal (Van der Merwe, 1989). According to the
steps elaborated below, three types of threshold (δ)
values are calculated. One is for normal subjects, the
second type for subjects who have already been diag-
nosed with ASD, and the third one is for any subject
to be diagnosed for ASD. Then, depending upon the
proximity of the third one to the first and second ones,
proneness or onset of ASD can be decided.

• First, speech and drone signals generated by
a large number of normal subjects, are to be col-
lected. Then, after doing the multifractal analy-
sis of time displacement profile using the method
in (Bhaduri, Ghosh, 2016b) and analysis of
the scaling pattern of amplitude profile for high
strength frequencies as per proposed here method,
for both speech and drone signals, the threshold
δ for normal subjects, say denoted by δnorm, can
be base-lined. δnorm reflects the degree to which
the speech and music signals generated by normal
subjects can be discriminated. This would be the
first control element for this application for detec-
tion and monitoring of ASD.

• Similarly, audio clips of the speech and drone sig-
nals generated by the subjects already diagnosed
with ASD, are to be recorded. People with ASD
process information differently than normal peo-
ple in their brain. It’s already been shown in
Sec. 1 that human brain acts as a complex sys-
tem and that music and speech are complex phe-
nomena. Also they all have fractal characteristics.
Hence, the speech produced and the simplest mu-
sic generated by an autistic subject would def-
initely display different scaling behaviour in all
acoustic aspects, than those of normal subjects.
Hence, using the same method of Step 1, the sec-
ond control element, say denoted by δASD, for dis-
eased subjects having ASD, can be base lined.

Different ranges of parameters between δnorm

and δASD may be defined, to reflect the proneness
or the severity of ASD. One sample set of ranges
is given below.

1) One range for deciding whether the subject
to be diagnosed is at all prone to ASD or not.

2) Second range for deciding the onset of ASD.

3) Third for prognosis of ASD.

• Finally, the speech and the drone sample gener-
ated by the subject to be assessed for ASD, would
be collected, and then similar scaling analysis for
both kinds of signal as elaborated in Step 1, is to
be done. This way, the threshold for the subject of
the experiment, say denoted by δexp, is calculated.
As per the range (defined in Step 2), the prox-
imity of δexp towards δnorm and δASD would be
checked. According to the range where δexp falls,
the absence, onset, or the severity of ASD can be
assessed, also in a non-invasive manner.

We can frame an uncomplicated, lightweight ap-
plication for routine check-up, where we can locally
save the control elements and calculate δexp on a real
time basis. As we propose this to be a routine check-up
model, this procedure will be an ongoing one which can
set an alarm parameter for any deviation of δexp from
its predefined normal range and we can monitor and
accordingly forecast the onset of ASD at early stages.
Eventually we propose to validate the conjectures us-
ing a larger database of speech and drone signals col-
lected from normal as well as diseased subjects and de-
vise a simple android application for routine check-up
for non-invasive self-assessment as well as monitoring
of ASD or other neurocognitive disorders.
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