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In order to enhance the acoustical performance of a traditional straight-path automobile muffler,
a multi-chamber muffler having reverse paths is presented. Here, the muffler is composed of two internally
parallel/extended tubes and one internally extended outlet. In addition, to prevent noise transmission
from the muffler’s casing, the muffler’s shell is also lined with sound absorbing material.

Because the geometry of an automotive muffler is complicated, using an analytic method to predict
a muffler’s acoustical performance is difficult; therefore, COMSOL, a finite element analysis software, is
adopted to estimate the automotive muffler’s sound transmission loss. However, optimizing the shape of
a complicated muffler using an optimizer linked to the Finite Element Method (FEM) is time-consuming.
Therefore, in order to facilitate the muffler’s optimization, a simplified mathematical model used as an
objective function (or fitness function) during the optimization process is presented. Here, the objective
function can be established by using Artificial Neural Networks (ANNs) in conjunction with the muffler’s
design parameters and related TLs (simulated by FEM). With this, the muffler’s optimization can proceed
by linking the objective function to an optimizer, a Genetic Algorithm (GA).

Consequently, the discharged muffler which is optimally shaped will improve the automotive exhaust
noise.

Keywords: acoustics; finite element method; genetic algorithm; muffler optimization; polynomial neural
network model.

Notations

This paper is constructed on the basis of the fol-
lowing notations:
B0, Bi, Bij , Bijk – the coefficient of the node function in the

ANN,
CPM – the product of the penalty function,
FSE – the deviation of mean square,
m – the number of the design parameters,
N – the number of training data,

NNp – the total possible searching number
(= 2m),

Ni – the i-th parameters of the polynomial neu-
ral network,

Q – he number of the network’s coefficients,
xi, xj , xk – the input data in the ANN,

yk – the output value in the ANN,

Ki – the geometric factor of the pressure drop for the i-th
intersection of the duct,

kp – the penalty function in the ANN,
ŷi – the required data in the ANN,
yi – the predicted data for the ANN,

σp2 – the error variation in the ANN,
D – the diameter of the first chamber’s inlet duct [m],
bit – bit length of chromosome,

itermax – maximum iteration during GA optimization,
L – the length of the extended duct in the second cham-

ber [m],
L1 – the length of the extended duct in the first cham-

ber [m],
Lin – the length of the second chamber’s inlet duct [m],
pc – crossover ratio,
pm – mutation ratio,
pop – number of population,
TL – transmission loss [dB].
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1. Introduction

Research on simply shaped mufflers has been ex-
amined using theoretical derivations (Chang et al.,
2004; Yeh et al., 2006). However, because of the com-
plicated geometry of commercial automobile mufflers,
an acoustical assessment using a theoretical analysis is
not accessible.

In 1994, Mo and Huh (1994) predicted the acous-
tic transmission loss of a muffler using NASTRAN,
a FEM (Finite Element Method) package. Panigrahi
and Munjal (2007) analyzed a perforated cross-flow
reactive muffler with CFD (Computational fluid dy-
namics). Later, a branch of fluid mechanics used nu-
merical analysis and algorithms to solve and analyze
problems that involved fluid flows. Mohiuddin et al.
(2007) analyzed the acoustical performance of a re-
active muffler using FLUENT software. Fang et al.
(2009) assessed the flow field and the total pressure
distribution inside a muffler using the CFD method.
Chen and Shi (2011) investigated the influence of the
internal flow on the performance of a muffler via Flu-
ent modeling. Kore et al. (2011) simulated the flow
field and the transmission loss of a reactive muffler us-
ing Fluent. Vasile and Gillich (2012) estimated the
transmission loss of a combustion engine with COM-
SOL. Reddy et al. (2012) developed reactive mufflers
using NASTRAN Software. Rajadurai and Ananth
(2014) designed reactive mufflers using CATIA Soft-
ware. Tajane et al. (2014) investigated automobile ex-
haust systems using ANSYS Software. Galphade and
Patil (2015) assessed a car’s muffler using CFD Soft-
ware. Somashekar et al. (2015) analyzed automobile
mufflers using NASTRAN Software. However, the op-
timization of the muffler’s shape in the above research
has been routinely neglected. To reach optimization,
Chang et al. (2009) and Chiu and Chang (2009) de-
veloped an optimization method for a muffler that had
a simple geometrical shape by using a neural network
and a genetic algorithm. Based on the analytic method,
Chiu (2013) also accessed optimal multi-chamber muf-
flers hybridized with extended tubes in a series. Nev-
ertheless, the muffler’s geometry was simple.

There have been many kinds of commercialized au-
tomotive mufflers developed in the past decade. The
acoustical elements of a resonating tube and a straight
perforated tube have been widely used. However, its
acoustical performance is reduced as the noise wave
propagates via a straight venting path. In order to
enhance the acoustical performance, a multi-chamber
muffler with a reverse path that increases noise reduc-
tion is introduced. Here, a complex-shaped muffler hy-
bridized with two internally parallel/extended tubes
and one internally extended outlet is suggested. In ad-
dition, to prevent noise transmission from the muffler’s
casing, the muffler’s shell is lined with sound absorbing
material. To facilitate muffler optimization, a simpli-

fied mathematical model that serves as an objective
(OBJ) function (or fitness function) linking the opti-
mizer is presented. Moreover, the objective function is
built by using Artificial Neural Networks (ANNs) in
conjunction with input data (the muffler’s design pa-
rameters) and output data (a related TL calculated
by FEM). Additionally, a genetic algorithm (GA) is
adopted as the optimizer.

2. Mathematical Model of the FEM
(Run on the COMSOL Package)

An automotive muffler composed of several ex-
tended tubes, an internally partitioned baffle, and an
internal sound absorbing material covered with a per-
forated plate is presented and shown in Fig. 1. The
boundary condition for the acoustical field of the non-
perforated tube (a solid boundary) used in the acous-
tical model with the COMSOL package is

n ·
{

1

ρc
(∇pt − q)

}
= 0, (1)

where q (a dipole sound source) is set at zero, c (the
sound speed) is set at 343 m/s, and ρ (air density) is
set at 1.293 kg/m3.

The boundary condition for the acoustical field of
the perforated tube (a solid boundary) used in the
acoustical model is

n ·
{

1

ρc
(∇pt − q)

}
= −(pt1 − pt2)

iω

Zi
, (2)

Zi = ρccc

[
1

σ

√
8µk

ρccc

(
1+

tp
dh

)
+θf+i

k

σ
(tp+δh)

]
, (3)

where tp is the thickness of the perforated tube, dh is
the diameter of the perforated hole, σ is the perforated
rate of the perforated tube, µ is the dynamic viscosity
of the air, θf is the flowing resistance, and δh is the
end correction factor; µ is set at 1.8 · 10−5 Pa · s.

The governing equation of the sound wave propa-
gating into the muffler yields

∇ · − 1

ρc
(∇pt − q)−

k2eqpt

ρc
= Q, (4)

where

pt = p+ pb, k2eq =

(
ω

cc

)2

,

cc = c, ρc = ρ.

Here, pb is the background pressure field.
The Sound Transmission Loss (TL) is calculated as

TL = 10 log
Win

Wout
, (5)

where Win is the inlet sound power, Wout is the outlet
sound power, and W0 is the referred sound power.
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b)

c)

Fig. 1. Mechanism of an automotive muffler: a) prototype of the automotive muffler, b) dimension of the automotive
muffler, c) pressure drops of the automotive muffler.

According to Bie et al. (1988), the mean pressure
drop (∆pT ) of the mufflers with extended tubes is

∆pT = ∆p1 + ∆p2(1) + ∆p2(2) + ∆p3(1) + ∆p3(2)

+ ∆p4 = K1 · ρV 2
1 /2 +K2(1) · ρV 2

2(1)/2

+K2(2) · ρV 2
2(2)/2 +K3(1) · ρV 2

3(1)/2

+K3(2) · ρV 2
3 /2 +K4 · ρV 2

4 /2, (6)

K1 ; 1.0; K2(1) = 1.0;

K2(2) = 1.0; K3(1) = 1.0;

K3(2) = 1.0; K4 ; 1.0,

where Ki is the geometric factor of the pressure drop
for the i-th intersection of the duct.

2.1. Model check

The automotive muffler shown in Fig. 1 is com-
posed of several extended tubes, an internally parti-
tioned baffle, and an internal sound absorbing material
covered with a perforated plate. Before performing an
acoustical simulation on an automotive muffler, an ac-
curacy check of the FEM mathematical model on the
fundamental elements (a straight expansion chamber

with an internally extended tube (shown in Fig. 2),
internally partitioned baffle (shown in Fig. 3), and an

Fig. 2. Accuracy check of an internal straight tube-
extended expansion chamber as compared to Lyu’s theory

(Lyu, 2005), FEM (Lyu, 2005), and COMSOL.
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Fig. 3. Accuracy check of an internally partitioned
baffle chamber as compared to Ih’s theory (Ih, 1992)

and COMSOL.

internally lined sound absorbing material covered with
a perforated plate (shown in Fig. 4)) is performed us-
ing analytical data from (Lyu, 2005; Ih, 1992), and
(Potente, Daniel, 2005). As illustrated in Figs. 2
and 3, both the FEM and the analytical data for
the muffler are in agreement. For Fig. 4, the differ-
ence between the two curves is obvious. This might
be because the parameter setting of wool’s acoustical
impedance with respect to FEM model and the analyt-
ical model is different; however, the tendencies of the
profiles are roughly in agreement. Consequently, the
simulation and optimization for the automotive muf-
fler within a fixed space are carried out in the following
section.

Fig. 5. The design parameters of an automotive muffler.

Fig. 4. Accuracy check of an internal sound absorbing
material covered with a perforated plate as compared
to Potente & Daniel’s theory (Potente, Daniel,

2005) and COMSOL.

3. Sensitivity analysis

In order to investigate the sensitivity of the
design parameters, the adjustments of the parameters
are shown in Fig. 5. The acoustical performances
with respect to frequencies using FEM are shown in
Figs. 6–9. Results in Fig. 6 reveal that the profiles of
the TL will be closely related to the length of L (the
extended length of the second chamber in the muffler).
Similarly, as indicated in Fig. 7, the TL curve will
increase when the length of L1 (the extended length of
the first chamber in the muffler) increases. In addition,
Fig. 8 indicates that the profiles of the TL will increase
if the length of D (the diameter of the inlet for the first
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Fig. 6. TL profiles with respect to various values
of parameter L.

Fig. 7. TL profiles with respect to various values
of parameter L1.

Fig. 8. TL profiles with respect to various values
of parameter D.

chamber of the muffler) decreases. Moreover, as can
be seen in Fig. 9, the profiles of the TL will also be
closely related to the length of Lin (the inlet length of
the second chamber in the muffler).

Fig. 9. TL profiles with respect to various values
of parameter X.

Because the tendency for TL with respect to the
other three parameters (L, L1, and Lin) is close but
uncertain, these design parameters (L, L1, and Lin)
are then selected as the design parameters during the
optimization process.

4. Artificial Neural Network (ANN) Model

The ANN may be used as universal approximators;
but the dependencies are implicit and hidden within
the neural network structure. To overcome this incon-
venience, an explicit function of a polynomial neural
network is considered. Here, the polynomial neural net-
work developed by Ivakhnenko (1971) is one kind of
predictor for fish populations in rivers. With this, the
interconnections between the layers of neurons can be
simplified, and then an automatic algorithm for the
structure design and weight adjustment can be estab-
lished. On the basis of the GMDH (Group Method of
Data Handling) feed-forward networks and short-term
polynomial transfer functions, the coefficients of the
polynomial transfer functions can be obtained via a re-
gression process. The regression process will be com-
bined by emulating the self-organizing activity which
guides the artificial neural network’s (ANN) structural
learning. The polynomial neural network shown in
Fig. 10 includes an input layer, a hidden layer, Σ (sum-
mation), and an output layer (product). Here, the hid-
den layer is the product of the input and weighted value
(Patrikar, Provence, 1996). zjk, the j-th output is

zjk =

n∑
i=0

WijXij . (7)

The total output of the neural network yields

yk =

h∏
j=1

zjk, (8)

where h is the unit’s number in a hidden layer.



522 Archives of Acoustics – Volume 43, Number 3, 2018

Fig. 10. Structure of an artificial neural network.

Fig. 11. Acoustical optimization in case I.

Fig. 12. Acoustical optimization in case II.

Plugging Eq. (7) into (8) yields

yk = B0 +

n∑
i=1

Bixi +

n∑
i=1

n∑
j=1

Bijxixj

+

n∑
i=1

n∑
j=1

n∑
k=1

Bijkxixjxk + ..., (9)

where yk is the output value, xi, xj , xk are the input
data, and B0, Bi, Bij , and Bijk are the coefficients of
the node function.

Two kinds of acoustical optimizations (case I and
case II) shown in Figs. 11 and 12 are exemplified.

Using the muffler’s design parameters (case I: L1

and Lin; case II: L1 and L) as the input data and theo-
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retical TL (simulated by the FEM) as the output data
(TL) in the proposed ANN model (the fitness function
or the objective function), a trained ANN model can
be achieved using both the training data bank and the
polynomial calculation in conjunction with the PSE
standard (deviation of mean square) where PSE is in
form of

PSE = FSE + kp, (10)

FSE =
1

N

N∑
i=1

(ŷi − yi)2, (11)

kp = CPM
2σp2Q

N
. (12)

Here, FSE is the deviation of the mean square, kp is
the penalty function, N is the number of training data,
ŷi is the required data, yi is the predicted data for the
ANN model, CPM is the product of the penalty func-
tion, σp2 is the error variation, and Q is the number
of the network coefficients.

The flow diagram of the ANN model is depicted in
Fig. 13. The predicted TL can be obtained by inputting
arbitrary design data into the ANN model, a simplified
OBJ function. With this, the optimal process of the
mufflers can be performed by using the ANN model
and the GA method.

Fig. 13. Steps in the ANN model.

5. Genetic Algorithm

Holland (1975) first formalized Genetic Algo-
rithms (GA) and later Jong (1975) developed and ap-
plied them in functional optimization. Based on the
concept of Darwinian natural selection, GA’s search
strategies involve population size, selection strategy,
mutation ratio, crossover ratio, maximum iteration,
parameter numbers, length of the chromosome, the
gene population, and the searching range of the pa-
rameters. Each new candidate’s parent will be chosen

by the coding/decoding transformation and the fitness
(i.e., objective function) calculation. The precision [m]
of the parameter search is

M =
Pmax − Pmin

NNp − 1
, (13)

where NNp (= 2m) is the total possible searching num-
ber, m is the number of the design parameters, Pmax

is the maximum range of the parameter, and Pmin is
the minimum range of the parameter. The tournament
selection is adopted as the elitism mechanism in the
GA optimization. In addition, the uniform crossover
is used in the optimization process. In order to gen-
erate a better offspring, the variety of chromosomes
will be widened via a mutation scheme. The GA oper-
ations are illustrated in Fig. 14. Here, the process was
terminated when the number of generations reached
a pre-selected itermax.

Fig. 14. GA optimization flow diagram.

6. Case study

A diesel engine with a power rate of 150 HP and
a venting volume of 2000 cm3 per cycle has a venting
flow rate (Q) of 0.08325 m3/s (Chiu et al., 2016). Ac-
cording to Bie et al. (1988), the overall sound power
level (SWL) emitted from a diesel engine at the ex-
haust outlet tube calculated by Eq. (14) is 128.7 dB(A)

SWL = 120 + 10 log10 kw − (lex/1.2), (14)

where kw (kilo watt) is the diesel engine’s power rate
and lex (= 0.3 M) is the length of the exhaust outlet
tube. Two primary peaks of the diesel engine’s vent-
ing noise at 1000 Hz and 3000 Hz are found; therefore,
two kinds of acoustical optimization (case I in Fig. 11
and case II in Fig. 12) are considered for reducing the
targeted tones of 1000 Hz and 3000 Hz, respectively.
To assure the existing back pressure of the muffler,
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the diameters of the internal tubes will be fixed dur-
ing the optimization process. As indicated in Fig. 11
(case I), two design parameters (L1 and Lin) are cho-
sen, where L1 is the length of the extended inlet tube
inside the first chamber and Lin is the length of the
inlet for the second chamber. Similarly, as indicated in
Fig. 12 (case II), L1 and L are chosen as the optimiza-
tion parameters. Here, L is the length of the extended
inlet tube inside the first chamber.

6.1. Case I

To optimize the acoustical performance within
a limited space, two kinds of design parameters – L1

and Lin – are chosen as the tuned variables. The range
and schedule levels of the parameters are depicted in
Table 1. Therefore, using the FEM run on the COM-
SOL package, the TL with respect to sixteen training
data sets shown in Table 2 is calculated. Taking L1

and Lin as the input data and the resulting TL as the
output data in the ANN model and inputting a series
of training data into the ANN model system, the fit-
ness functions of the targeted frequencies of 1000 Hz
and 3000 Hz are established and shown below.

Table 1. The range and schedule levels of the parameters
(case I).

Design
parameters

Min [cm] Max [cm] 4 Level [cm]

Lin 0.0 6.0 0.0 2.0 4.0 6.0

L1 4.5 9.0 4.5 6.0 7.5 9.0

Table 2. Sixteen training data sets (case I).

No. of experiment Lin [cm] L1 [cm]

1 0 4.5

2 0 6.0

3 0 7.5

4 0 9.0

5 2 4.5

6 2 6.0

7 2 7.5

8 2 9.0

9 4 4.5

10 4 6.0

11 4 7.5

12 4 9.0

13 6 4.5

14 6 6.0

15 6 7.5

16 6 9.0

6.1.1. Target frequency – 1000 Hz

N11000 = −1.29904 + 0.433013 · L1,

N21000 = −3.89711 + 0.57735 · Lin,

N31000 = −0.696222 + 1.21617 ·N11000

+ 0.742637 ·N121000 − 0.769889 ·N131000,

N41000 = 0.592081 ·N21000 + N31000 (15)

− 0.92679 ·N11000 ·N21000

+ 0.759725 ·N11000 ·N21000 ·N31000

− 0.224864 ·N231000,

TL1000 = 60.2717 + 6.22451 ·N41000.

6.1.2. Target frequency – 3000 Hz

N13000 = −1.29904 + 0.433013 · L1,

N23000 = −3.89711 + 0.57735 · Lin,

N33000 = −0.471739 ·N13000,

N43000 = −1.54685 ·N33000

− 2.0172 ·N13000 + 0.464778 ·N123000

− 0.419782 ·N223000 (16)

− 0.831301 ·N13000 ·N23000 ·N33000

− 5.05405 ·N333000 − 0.353539 ·N233000,

N53000 = −0.33531 + 0.718058 ·N43000

+ 0.538419 ·N423000 + 0.230478 ·N433000,

TL3000 = 40.78 + 12.22 ·N53000.

6.2. Case II

Similarly, to optimize the acoustical performance
within a limited space, two kinds of design parame-
ters – L1 and L – are chosen as the tuned variables.
The range and schedule levels of the parameters are
depicted in Table 3. Therefore, using the FEM run on
the COMSOL package, the TL with respect to sixteen

Table 3. The range and schedule levels of the parameters
(case II).

Design
parameters

Min [cm] Max [cm] 4 Level [cm]

L1 7.0 19.0 7.0 11.0 15.0 19.0

L 4.5 9.0 4.5 6.0 7.5 9.0
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training data sets shown in Table 4 is calculated. Tak-
ing L1 and L as the input data and the resulting TL as
the output data in the ANN model and inputting a se-
ries of training data into the ANN model system, the
fitness functions of the targeted frequencies of 1000 Hz
and 3000 Hz are established and shown below.

Table 4. Sixteen training data sets (case II).

No. of experiment Lout1 [cm] Lout2 [cm]

1 7 4.5

2 7 6.0

3 7 7.5

4 7 9.0

5 11 4.5

6 11 6.0

7 11 7.5

8 11 9.0

9 15 4.5

10 15 6.0

11 15 7.5

12 15 9.0

13 19 4.5

14 19 6.0

15 19 7.5

16 19 9.0

6.2.1. Target frequency – 1000 Hz

N11000 = −2.81458 + 0.216506 · L1,

N21000 = −3.89711 + 0.57735 · L,

N31000 = 0.55662 ·N11000 (17)

+ 0.757491 ·N21000,

TL1000 = 68.1207 + 7.36078 ·N31000.

6.2.2. Target frequency – 3000 Hz

N13000 = −2.81458 + 0.216506 · L1,

N23000 = −3.89711 + 0.57735 · L,

N33000 = 0.606632− 0.316795 ·N13000

− 1.80383 ·N23000 − 0.109147 ·N123000 (18)

− 0.537927 ·N223000 + 0.293702 ·N133000

+ 0.628958 ·N233000,

TL3000 = 46.2844 + 11.1145 ·N33000.

7. Results and discussion

7.1. Results

7.1.1. Case I

By using the trained ANN model in conjunction
with the GA optimizer, an optimized design at the tar-
geted frequencies of 1000 Hz and 3000 Hz are obtained
and shown in Tables 5 and 6. Plugging the original
data and the optimal design data into COMSOL, the
TL profiles before and after optimization is performed
are plotted in Figs. 15 and 16. The range of GA’s con-
trol parameters of pop, bit, itermax, pc, and pm are [40,
60, 80, 100], [5, 10, 20], [100, 200, 500, 1000], [0.2, 0.4,
0.6, 0.8], and [0.1, 0.3, 0.5, 0.7]. By varying the GA’s
control parameters step by step, the best GA set is ob-
tained as (pop, bit, itermax, pc, pm) = (100, 20, 1000,
0.6, 0.5). As can be seen in Fig. 15, the TLs at the
targeted frequency of 1000 Hz before and after per-
forming an optimization are 33.96 dB and 67.87 dB.
Similarly, as illustrated in Fig. 16, the TLs at the tar-
geted frequency of 3000 Hz before and after performing
an optimization are 47.57 dB and 59.96 dB. Moreover,
because of the fixed diameters of the inlet tube, the

Table 5. The range and level of the design parameters
(case I).

Lin [cm] L1 [cm]

Original dimension 2.0 4.5

Optimal dimension
(targeted tone: 1000 Hz)

0.5 8.9

Table 6. The range and level of the design parameters
(case I).

Lin [cm] L1 [cm]

Original dimension 2.0 4.5

Optimal dimension
(targeted tone: 3000 Hz)

0.5 7.3

Fig. 15. TL before and after optimization at the targeted
tone of 1000 Hz (case I).
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Fig. 16. TL before and after optimization at the targeted
tone of 3000 Hz (case I).

internal tube, and the outlet tube, the flowing veloci-
ties remain the same. Using the back pressure formula
shown in Eq. (6), the related back pressures of the muf-
fler in the above simulation are calculated as 1331.6 Pa
before and after the optimization.

The accuracy checks of the ANN model at the tar-
geted frequencies of 1000 Hz and 3000 Hz have been
verified by using the COMSOL package. The results
for the targeted frequencies of 1000 Hz and 3000 Hz
are depicted in Table 7 and Table 8, respectively. As
indicated in Table 7, the accuracy of the ANN model at
the targeted frequency of 1000 Hz reaches 3.22%. Like-
wise, as illustrated in Table 8, the accuracy of the ANN
model at the targeted frequency of 3000 Hz reaches
2.7%.

Table 7. The accuracy check of the ANN model
(case I).

TL [dB] Error [%]

Optimal TL(ANN)
at 1000 Hz

70.1
3.22

Optimal TL(COMSOL)
at 1000 Hz

67.9

Error =
TL(COMSOL)− TL(ANN)

TL(ANN)
· 100%

Table 8. The accuracy check of the ANN model
(case I).

TL [dB] Error [%]

Optimal TL(ANN)
at 3000 Hz

67.8
2.7

Optimal TL(COMSOL)
at 3000 Hz

60.0

Error =
TL(COMSOL)− TL(ANN)

TL(ANN)
· 100%

7.1.2. Case II

By using the trained ANN model in conjunction
with the GA optimizer, an optimized design at the
targeted frequencies of 1000 Hz and 3000 Hz are ob-
tained and shown in Tables 9 and 10. Plugging the
original data and the optimal design data into COM-
SOL, the TL profiles before and after optimization is
performed are plotted in Figs. 17 and 18. Similarly, by

Table 9. The range and level of the design parameters
(case II).

L1 [mm] L [mm]

Original dimension 13.4 4.5

Optimal dimension
(targeted tone: 1000 Hz)

19.0 9.0

Table 10. The range and level of the design parameters
(case II).

L1 [mm] L [mm]

Original dimension 13.4 4.5

Optimal dimension
(targeted tone: 3000 Hz)

10.7 5.5

Fig. 17. TL before and after optimization at the targeted
tone of 10 000 Hz (case II).

Fig. 18. TL before and after optimization at the targeted
tone of 3000 Hz (case II).
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varying the GA’s control parameters step by step, the
best GA set is obtained as (pop, bit, itermax, pc, pm)
= (100, 20, 1000, 0.6, 0.5). As can be seen in Fig. 17,
the TLs at the targeted frequency of 1000 Hz before
and after performing an optimization are 33.96 dB and
79.26 dB. Similarly, as illustrated in Fig. 18, the TLs
at the targeted frequency of 3000 Hz before and after
performing an optimization are 47.57 dB and 60.06 dB.
Furthermore, the related back pressures of the muffler
in the above simulation remain 1331.6 Pa.

The accuracy checks of the ANN model at the tar-
geted frequencies of 1000 Hz and 3000 Hz have been
verified by using the COMSOL package. The results
for the targeted frequencies of 1000 Hz and 3000 Hz
are depicted in Tables 11 and 12, respectively. As in-
dicated in Table 11, the accuracy of the ANN model
at the targeted frequency of 1000 Hz reaches 1.69%.
Likewise, as illustrated in Table 12, the accuracy of
the ANN model at the targeted frequency of 3000 Hz
reaches 4.38%.

Table 11. The accuracy check of the ANN model
(case II).

TL [dB] Error [%]

Optimal TL(ANN)
at 1000 Hz

80.6
1.69

Optimal TL(COMSOL)
at 1000 Hz

79.3

Error =
TL(COMSOL)− TL(ANN)

TL(ANN)
· 100%

Table 12. The accuracy check of the ANN model
(case II).

TL [dB] Error [%]

Optimal TL(ANN)
at 3000 Hz

62.8
4.38

Optimal TL(COMSOL)
at 3000 Hz

60.1

Error =
TL(COMSOL)− TL(ANN)

TL(ANN)
· 100%

7.2. Discussion

In order to simplify the numerical assessment of an
automotive muffler with a complicated shape, a finite
element model (FEM) used in predicting the muffler’s
TL is adopted. Moreover, to find an optimally shaped
muffler, a simplified objective function (OBJ) with re-
spect to the muffler at specified tones is established
by linking the finite element model (FEM) with the
artificial neural network (ANN) model.

As described in Sec. 3, the influence of the TL with
respect to parameters D, L1, Lin, and L shown in

Figs. 6–9 is substantial. Here, the tendencies of TL
and D are clear. TL will increase when D decreases.
The other three parameters (L, L1, and Lin) are closely
related to the TL. However, the tendency for TL with
respect to L1, Lin, and L is uncertain. Therefore, L1,
Lin, and L are selected as the design parameters dur-
ing the optimization process. Two kinds of parame-
ter sets – (Lin, L) and (L1, L) – are adopted in the
optimization process. The numerical results of case I
using the parameter set Lin, L are shown in Figs. 15
and 16. Results reveal that the optimized TLs are pre-
cisely located at the targeted frequencies of 1000 Hz
and 3000 Hz. The noise reduction at the target tones of
1000 Hz and 3000 Hz can be improved by 33.91 dB and
12.39 dB after optimization is performed. Moreover,
numerical results of case II using the parameter set Lin,
L is shown in Figs. 17 and 18. Figures 17 and 18 indi-
cate that the optimized TLs are also precisely located
at the targeted frequencies of 1000 Hz and 3000 Hz.
Similarly, the noise reduction at the targeted tones
of 1000 Hz and 3000 Hz can be improved by 45.3 dB
and 12.49 dB after optimization is performed. Further-
more, as indicated in Tables 7 and 8, case I’s accuracy
check of the ANN model and the FEM is between 2.7–
3.22%. Case II’s accuracy check of the ANN model
and the FEM shown in Tables 11 and 12 is between
1.69–4.38%.Therefore, the assessment of an optimally
shaped muffler in case I and case II is valid.

8. Conclusion

The traditional automobile muffler using a multi-
chamber equipped with a straight resonating tube
and a straight perforated tube in series will not only
cause an increase in muffler length but also decrease
the acoustical performance due to a straight venting
path. In order to overcome these drawbacks, a multi-
chamber muffler (hybridized with two internally par-
allel/extended tubes and one internally extended out-
let) that has excellent noise reduction using a reverse
path is presented. To design an optimal muffler within
a space-constrained situation, the optimization of the
muffler is also necessary. In addition, to reduce the
noise transmission from the muffler’s casing, a muf-
fler’s shell lined with a sound absorbing material is
also adopted.

Sensitivity analysis reveals that the design pa-
rameters of D (diameter of the inlet tube in the first
chamber), L1 (length of the extended tube in the
first chamber), Lin (length of the inlet tube for the se-
cond chamber), and L (length of the extended tube in
the second chamber) are important in the shape opti-
mization process. As can be seen in Sec. 2, the pres-
sure drop of the muffler’s interacting parts is closely
related to both the geometric factors and the passing
velocities. Based on the same geometric factors and the
passing velocities of the fixed diameters of the internal
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tubes, the muffler’s pressure drop will remain the same
during the optimization process. Also, the lengths of
the tubes (L1, Lin, and L) are selected as the design
parameters.

To speed up the optimization for an automobile
muffler that has a complicated shape, a simplified OBJ
function using a FEM model (run on COMSOL) in
conjunction with a neural network (ANN) model is
built. After training and testing for the ANN model,
the optimization process will be performed by linking
the ANN model with the GA optimizer. Results reveal
that in case I or case II, a muffler can be precisely op-
timized at targeted frequencies using the ANN model
in concert with the GA method by adjusting the muf-
flers’ shape under certain space constraints. As can be
seen in the automobile muffler, it is one kind of re-
active muffler. The muffler’s TL curve will be shifted
only when the optimization is performed by varying
the lengths of the tubes. Prospectively, the primary
peak of the TL curve will be adjusted to the desired
frequency; however, the TLs at other frequencies will
possibly be decreased.

Consequently, this paper provides a quick way to
design an optimally shaped hybrid muffler that has
a compact mechanism and an improved acoustical per-
formance for an automotive venting system.
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