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Self-aligning roller bearings are an integral part of the industrial machinery. The proper analysis and
prediction of the various faults that may happen to the bearing beforehand contributes to an increase
in the working life of the bearing. This study aims at developing a novel method for the analysis of
the various faults in self-aligning bearings as well as the automatic classification of faults using artificial
neural network (ANN) and deep neural network (DNN). The vibration data is collected for six different
faults as well as for the healthy bearing. Empirical mode decomposition (EMD) followed by Hilbert Huang
transform is used to extract instantaneous frequency peaks which are used for fault analysis. Time domain
and time-frequency domain features are then extracted which are used to implement the neural networks
through the pattern recognition tool in MATLAB. A comparative study of the outputs from the two
neural networks is also performed. From the confusion matrix, the efficiency of the ANN has been found
to be 95.7% and using DNN has been found to be 100%.
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1. Introduction

Self-aligning bearings consist of two ball rows at-
tached to a common raceway. They align themselves
in order to accommodate for any misalignment. Hence
their application mainly comes where misalignment oc-
curs due to problems in mounting or deflection in shaft.
They are commonly used in plummer block units, con-
veyor belts, and blowers.

Under the working condition of the bearing, the
friction generated in them is low and this enables them
to operate at cooler temperatures even at high speed
working conditions. Since the heat generation is low,
this makes temperature of bearing lower leading thus
to a longer bearing life.

As self-aligning bearings are a common part of ma-
chinery in industry, monitoring the condition of bear-
ing is a serious issue. The vibrations emitted by bearing
parts are key in analysis of the faults. Thus collection
of sensitive data is also important. The common faults
getting induced on bearing are cracks, wear defect, and
looseness of balls.

In this paper vibration analysis is done on six dif-
ferent faults induced on self-aligning bearing. The first
fault is a wear defect in the inner surface of the inner
race. This is generated usually due to improper fits or
due to excess load. The second fault is damage in the
circumference of the inner race. The third, fourth, and
fifth faults are due to looseness in one, two, and three
balls from the self-aligning bearing, respectively.

HuANG et al. (1998) investigated the empirical
mode decomposition and the Hilbert spectrum for
non-linear and non-stationary time series analysis.
The authors deal with decomposing any data set into
a number of intrinsic mode functions by the empirical
mode decomposition method, and these intrinsic mode
functions admit well-behaved Hilbert transforms. This
methodology has been adopted for analysing the vi-
bration data of self-aligning bearings.

WU et al. (2016) investigated the defect diagnosis
of journal bearings using instantaneous frequency nor-
malisation under fluctuant rotating speed. Here, the
empirical mode decomposition method as well as
the instantaneous frequency calculation are used to
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construct the time-frequency domain of the envelope
signals of the vibration data. The magnitude distri-
butions of the envelope spectrum at the corresponding
bearing defect related frequencies were extracted as the
feature vectors. The support vector machine was then
used to classify the extracted feature vectors of the dif-
ferent bearing fault cases. This study focuses on defect
analysis of self-aligning bearings at constant rotating
speeds and no load conditions.

FENG et al. (2016) investigated the amplitude-
frequency demodulation analysis for fault diagnosis
of planetary bearings. By first decomposing the sig-
nal into intrinsic mode functions (IMFs) using empiri-
cal mode decomposition (EMD), the mono-component
need of instantaneous frequency is satisfied. Further
frequency demodulation analysis is performed on a sen-
sitive component with instantaneous frequency within
the resonance frequency. The peaks are matched to
find the planet bearing fault. In the study, the authors
deal with various components of planetary bearings
and similar analysis needs to be worked out for self-
aligning bearings.

BoAsHASH (1992a; 1992b) investigated the meth-
ods of estimating and interpreting the instanta-
neous frequency of the signal. Decomposition of non-
stationary signals is difficult in sinusoidal components.
In such signals, the idea of frequency is not effective,
and there arises the need to use a term which ac-
counts for the time-varying nature of the process. In
this study, the instantaneous frequency of the decom-
posed signal is used for estimating the fault condition
of the self-aligning bearing.

IBRAHIM et al. (2008) devised methods to estimate
the instantaneous frequency for diagnosis of faults in
induction machines. In the paper, the idea of instanta-
neous frequency is exploited to find information related
to the defect. The authors deal with defects in induc-
tion machines and similar principles were adopted in
the current study also.

HUANG et al. (1999) utilised the Hilbert spec-
trum for the analysis of non-linear water waves. It
highlighted the advantages of Hilbert spectrum over
fast Fourier transform and wavelet spectral analysis.
Through Hilbert spectral analysis, the variation of
signal with time can be calculated. As compared to
wavelet, it is able to give improved resolution of time-
frequency.

YANG (2008) published a paper on the methods
of interpretation of data signals using an improved
Hilbert-Huang transform. Most of the intrinsic mode
functions are multi-harmonic functions which give
irregular frequencies. The improved Hilbert Huang
transform can make up for this irregularity. These con-
cepts are used in the study of the analysis of different
faults in self-aligning bearing.

RATO et al. (2008) investigated some of the prob-
lems of HHT and their solution. This paper analyses

various drawbacks of EMD and the methods to over-
come it. Various sifting stopping criteria have been
tested to get the best IMFs. The paper incorporates
certain parameters like energy ratio which can suitably
modify the final obtained output.

SAMANTA et al. (2003) compared artificial neural
networks with support vector machines for bearing
fault classification. Here, time-domain vibration sig-
nals were used for feature extraction, which was used
to train the network. The method highlighted on the
efficiency of artificial neural networks for feature ex-
traction with neural networks.

ALI et al. (2015) investigated the automatic fault
diagnosis of bearings and classification of faults using
vibration signals based on the empirical mode decom-
position and Artificial neural networks. This feature
extraction method uses empirical mode decomposition
and mathematical analysis of the measured data in or-
der to select the most significant intrinsic mode func-
tions. The feature extraction method was used to ex-
tract eighteen different features which were used for
pattern recognition in ANN and DNN.

GAN, WANG (2001) constructed a hierarchical di-
agnosis network based on deep learning and its appli-
cation in the fault recognition pattern of journal bear-
ings. The network uses two similar ones constructed by
support vector machine and back propagation neural
network. The study highlights on the efficiency of the
hierarchical deep network.

VYAS, SATISHKUMAR. (2001) used artificial neural
networks for fault identification and classification in
a rotor-bearing system. Statistical moments were cal-
culated for the vibration signals which were used to
train the network. The current study focuses on train-
ing the network using data obtained from feature ex-
traction which enabled producing more accurate re-
sults.

SARIDAKIS et al. (2008) used artificial neural net-
works for measurements of various journal bearing per-
formance parameters. A fault diagnosis model was cre-
ated that uses ANN to identify the effects of increase
in wear depth and increment of the misalignment an-
gle in journal bearings. The methodology was utilised
in analysing the various faults in self-aligning bearings
studied in the current research.

KM, VALDES (2003) developed a non-linear model
for forecasting droughts by combining wavelet trans-
forms and neural networks. The work highlights the
efficiency of the method for correct predictions for non-
linear and non-stationary data. However, in the current
study, empirical mode decomposition was used for fea-
ture extraction of journal bearing vibration data.

CHEN et al. (2017) investigated the rolling bear-
ing fault diagnosis using deep neural networks. In the
study, three different deep neural network models were
employed for fault analysis of roller bearing. The ac-
curacy in DNN method over ANN was studied.
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J1A et al. (2016) investigated the intelligent fault di-
agnosis of rotating machinery with massive data. This
paper points on the advantages of using deep neural
networks over shallow networks. The effectiveness of
this method is further validated using data from rolling
element bearing and planetary gearboxes. This idea
has been used for self-aligning bearings in the present
study.

2. Experimental procedure

The vibration data of self-aligning bearing was col-
lected using a whirling shaft apparatus. The 8 mm di-
ameter shaft was operated at a speed of 1100 rpm. The
apparatus used is shown in Fig. 1 below.

Fig. 2. Attachment of sensor to bearing housing.

In self-aligning bearings, six different fault condi-
tions have been induced. Vibration data have been col-
lected for each of these six faults as well as the healthy
bearing shown in Fig. 3a. For the first fault, a stone-
grinder was employed to create a wear defect in the
inner surface of the inner race, as shown in Fig. 3b.
For the second fault, the circumference of the cage was
damaged using the stone grinder as shown in Fig. 3c.
The third, fourth, and fifth faults were induced by re-

a)

Fig. 3. a) Healthy self-aligning bearing, b) self-aligning

bearing with fault 1 induced, c) self-aligning bearing with

fault 2 induced, d) self-aligning bearing with fault 3 in-
duced.

spectively removing one, two, and three balls from the
self-aligning bearing. The sixth fault was induced by
making a wear defect on the inner surface of the outer
race, as shown in Fig. 3d.

3. Methodology
3.1. Empirical mode decomposition (EMD)

The EMD method is performed on the obtained
vibration data using the intrinsic mode functions
(IMFs). EMD is a self-adaptive signal processing
method that may be used for the analysis of both non-
linear and non-stationary data. The EMD method is
based on the local characteristic time scale of the signal
and is capable of breaking down the signal into a finite
number of intrinsic mode functions. The following algo-
rithm was employed for performing the empirical mode
decomposition of the experimentally obtained data:

(i) Original signal for five seconds is taken as x(t).

(ii) All maxima and minima of the original signal are
determined and joined using cubic interpolation.
This produces an upper and a lower envelope.

(iii) The average of theses upper and lower envelopes
is calculated for each data point.

(iv) This average is then subtracted from the original
signal to obtain a new signal say, x1(t).

(v) Then, x1(t) is checked for the two IMF condi-
tions — (a) the difference between the number of
maxima/minima and number of zero crossings
must be either zero or one and (b) the local av-
erage of the envelopes must be zero.
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(vi) If z1(t) meets the above condition, z(t) is
replaced with the residual, IMF{1}(¢), where
IMF{1}(t) = «(t) — z1(t).

(vii) If the above condition is not satisfied, x(t) is re-
placed by x1 ().

(viii) The above conditions are repeated until we recei-
ve a monotonic residual.

3.2. Application of Hilbert Huang transform (HHT)

Once the intrinsic mode function components are
obtained, the Hilbert transform is applied to each
component to calculate the instantaneous frequency.
Hilbert spectral analysis is used for obtaining the peaks
for instantaneous frequency. Faults can be analysed by
matching these peaks with the known data. The fol-
lowing algorithm is performed to incorporate HHT.

(i) The signal is taken as x(¢).
(if) IMF{1} to IMF{4} is determined (for calculation
purpose).
(iii) Let a = IMF{1} for the complete array of values.

(iv) Hilbert transform on a yields a complex number
— a + b where b is the Hilbert transform of a.

(v) Phase )

¢ =tan"* (a) . (1)
(vi) Instantaneous amplitude

A=a+ 2 (2)

(vii) Instantaneous frequency

_ dy
YT ®)

3.8. Automatic fault classification using ANN

Automatic classification of the faults in self-
aligning bearing is done using artificial neural net-
works. They make it possible to continuously monitor
the bearing condition and evaluate the severity of the
defect online. ANN is widely considered as an effective
tool for assessing the performance degradation of the
bearing without human involvement.

The vibration signal data of the self-aligning bear-
ing in the healthy condition and for each of the three
different fault conditions for 120 seconds are collected.
The initial 20% data for each second are collected and
stored as a two-dimensional array. The initial step com-
prises extracting the time domain and time-frequency
domain features. Feature extraction is mainly em-
ployed to assess the bearing performance degradation
over time. An increase in bearing degradation is indi-
cated by an increase in the magnitude of time domain
features. Time domain features include eight classical
features — RMS, kurtosis, skewness, peak to peak, crest
factor, shape factor, impulse factor, margin factor —

and two new features — add factor 1 and add factor 2.
These two new features are used to link different fea-
tures together. All these ten factors are summarised in
Egs. (4) to (13). In the equations, the value of init is
calculated as the average of RMS of the healthy self-
aligning bearing.

L 1/2
RMS = <N2x3> , (4)
i=1
N 4
1 i —
Kurtosis = v Z (;vaizlx), (5)
i=1
N 3
1 PR
Skewness = N Z (33207396)7 (6)
i=1
Peak to peak = Tmax — Tmin, (7)
Crest Factor = mliXTkSUH’ (8)
RMS
Shape Factor = TN (9)
N &
Impulse Factor = ina;{/iw, (10)
Margin Factor = . rrjlvax|x¢| 2 (11)
(3 & to)
N =
RMS
Add Factor 1 = log <Kurtosis + Toit ) , (12)
i

Add Factor 2 = log (Kurtosis(CreSt Factor)

() ) w

Other than the ten time domain features obtained
above, EMD is used to extract a set of new features
called time-frequency domain values to make up for
a more reliable database of features. Here, the bear-
ing vibration signal is decomposed into characteristic
IMFs. In the study, only the first seven IMFs are con-
sidered. The total energy of all the IMFs are calcu-
lated as:

n
E=) Ei. (14)
i=1
A feature vector is calculated as:

[Ent, El/E, EQ/E, ceey E7/E]
= [Ent, EntIMF1, EntIMF2, ..., EntIMF7], (15)
where

Ent = Y P;log P;. (16)
i=1
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Taking 120 samples from each of the six different
available cases, the output is linked to a 4 x 720 ma-
trix. This output is modelled using the pattern recog-
nition tool in MATLAB — nprtool — which uses the
18 extracted features as inputs and 10 hidden neu-
rons to give the output by scaled conjugate gradient
method of training. 70% of the available data were
employed for training, 15% data for validation, and
15% data were used for testing the neural network.
The neural network performance was analysed using
the cross entropy technique. The error histogram, con-
fusion matrix, and receiver operating characteristics
(ROC) plots have been used to analyse the perfor-
mance of the created neural network.

3.4. Automatic fault classification using DNN

A deep learning network may be described as
a group of artificial neural networks stacked together
one after the other. In this research, an autoencoder
has been used for realisation of deep neural networks.
Also referred to as a Diabolo network, it is a feed-
forward, non-recurrent network having an input layer,
an output layer, and one or more hidden layers con-
necting them. Here, for the vibrational data, an au-
toencoder with a hidden layer size of 10 and a linear
transfer function is trained for the decoder. The fea-
tures are extracted in the hidden layer for the first au-
toencoder, and these features are used to train a second
autoencoder. Features are again extracted in the hid-
den layer for the second autoencoder. These features
are then used to train a softmax layer for classifica-
tion. The deep neural network is formed by stacking
the encoders together with the softmax layer. The deep
network is trained based on these obtained data and
the network performance is measured with the aid of
a confusion matrix.

4. Results and discussion

4.1. Collection of vibration data
and empirical mode decomposition

The vibration data collected from the experimen-
tal setup of the self-aligning bearing have been utilised
to perform the empirical mode decomposition and
Hilbert-Huang transform to obtain the Hilbert-Huang
spectrum as in the case of the journal bearings. The
intrinsic mode functions are obtained, and the various
peaks obtained are used to compare the various faults.

In the current study, a self-aligning roller bearing
with bearing number 2205 was used. Substituting the
values in the frequencies, we get:

e natural frequency of vibration = 1100/60 = 18.33 Hz,

e fundamental train frequency,

FTF = E 1-— & cos® | = 7.5153 Hz,
2 Py

e inner ring ball pass frequency,
N, B
BPFI = —2 (1+ =% cos @ | = 140.2245 Hz,
2 Py
e outer ring ball pass frequency,
Ny By
BPFO = —S |1+ — cos® | = 98.0655 Hz,
2 Py
e ball spin frequency,
Py Ba\? 2
BSF= —S |1— [ = 3 D
2B, (Pd> (cos @)

where S means revolutions per second =18.33 Hz, By
is the ball diameter = 7.13 mm, N} is the number of
balls = 13, P, is the pitch diameter = 38.98 mm, @ is
the contact angle =15°.

The fault induced on each part of the self-aligning
bearing produces a corresponding frequency spike on
the same frequency as the natural frequency of the part
where the fault was induced.

= 48.5745 Hz,

4.2. Self-aligning bearing at healthy condition

This corresponds to the mnormal operation of
a healthy self-aligning bearing shown in Fig. 3a. The
shaft rotates in the healthy bearing with sufficient lu-
brication and hence the vibrations produced would be
much fewer. From Fig. 4c, in this case, a peak ampli-
tude of 0.01471 m/s? and frequency of 18.47 are ob-
tained.

4.8. Self-aligning bearing at fault 1 condition

This corresponds to the operation of a self-aligning
bearing at fault 1 condition, as shown in Fig. 3b. In
this case, the inner surface of the inner race of the bear-
ing has been subjected to wear damage using a stone
grinder, thereby increasing the friction between the
bearing and the shaft. From Fig. 5c, in this case, a peak
amplitude of 0.2473 m/s? and a frequency of 140.3 Hz
are obtained.

4.4. Self-aligning bearing at fault 2 condition

This corresponds to the operation of a self-aligning
bearing at fault 2 condition, as shown in Fig. 3c. In this
case, the circumference of the cage of the bearing has
been subjected to wear damage using a stone grinder,
thereby causing improper fit of the shaft in the bear-
ing. From Fig. 6¢, in this case, a peak amplitude of
0.4217 m/s? and frequency of 140.2 Hz are obtained.

4.5. Self-aligning bearing at fault 8 condition

This corresponds to the operation of a self-aligning
bearing at fault 3. In this case, a single ball is removed
from the cage of the ball bearing, and the bearing
is made to run while the vibration measurements are
taken. From Fig. 7, in this case, a peak amplitude of
0.0610 m/s? and frequency of 8.223 Hz are obtained.
The fundamental train frequency has been noted in
this case.
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4.6. Self-aligning bearing at fault 4 condition

This corresponds to the operation of a self-aligning
bearing at fault 4. In this case, two balls are removed
from the cage of the ball bearing and the bearing is
made to run while the vibration measurements are
taken. From Fig. 8c, in this case, a peak amplitude of
0.1331 m/s? and frequency of 48.09 Hz are obtained.

4.7. Self-aligning bearing at fault 5 condition

This corresponds to the operation of a self-aligning
bearing at fault 5. In this case, three balls are removed
from the cage of the ball bearing and the bearing is
made to run while the vibration measurements are
taken. From Fig. 9c, in this case, a peak amplitude of
0.4551 m/s? and frequency of 48.03 Hz are obtained.

4.8. Self-aligning bearing at fault 6 condition

This corresponds to the operation of a self-aligning
bearing at fault 6 condition as shown in Fig. 3d. In this
case, the inner surface of the outer race of the bear-
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ing has been subjected to wear damage using a stone
grinder, thereby reducing the proper fit between the
housing and the bearing. From Fig. 10c, in this case,
a peak amplitude of 0.5699 m/s? and frequency of
97.94 Hz are obtained.

4.9. Automatic fault classification using artificial
neural networks (ANN)

ANN implementation has been performed on the
no load condition of various fault conditions with dif-
ferent criteria. Scaled conjugate gradient method has
been used for training with 10 hidden neurons. 70%
of the available data have been used for training, 15%
of the data have been used for validation, and the re-
maining 15% have been used for testing. The confusion
matrix, receiver operating characteristics plot, perfor-
mance diagram, and training state performance have
been plotted for the same. From the confusion matrix,
the efficiency of the neural network has been found to
be 95.7%. 18 different features, six different faults, and
the healthy bearing are given as inputs.
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Fig. 10. a) Original signal with IMFs, b) Hilbert-Huang spectrum, c¢) marginal Hilbert spectrum for fault 6 condition.
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Table 1. Summary of results of Hilbert-Huang spectrum for
self-aligning bearing.

Condition of bearing | Amplitude [m/s?] | Frequency [Hz]
Healthy bearing 0.037 23.51
Fault 1 0.2473 140.3
Fault 2 0.4217 140.2
Fault 3 0.0610 8.223
Fault 4 0.1331 48.09
Fault 5 0.4551 48.03
Fault 6 0.5699 97.94

Neural Network

Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Perf < € py (crossentropy)

Calculations:  MEX
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Time:
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Fig. 11. ANN data.

The various ANN parameters obtained were as fol-
lows.

. Best Validation Performance is 0.032576 at epoch 29
10 |
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Fig. 12. Performance diagram.

Performance diagram shows how the network er-
ror drops. Here cross-entropy error function is used for
validation. Blue line shows decreasing error in train-
ing data. The green line shows validation error. Train-
ing stops when validation error decreases. The red line
shows error in the test data. From the graph it is evi-
dent that the best validation error is at epoch 29.

Gradient = 0.020226, at epoch 35
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Fig. 13. Training state performance.

From the graph it is evident that the learning algo-
rithm sees the whole data set for 35 times. A total of 6
validation checks are done by the neural network. The
graph shows the validation failure at various epochs.

Confusion Matrix

-

Output Class
(9]

»

3 4 5 6 7
Target Class

Fig. 14. Confusion matrix summary.

Receiver operating characteristic (ROC) shows the
performance of neural network. For a good perfor-
mance, area under true positive rate should be bigger
and it should not cross the false positive rate. Thus,
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from the above figure, the method employed can be
concluded as good.
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Fig. 15. ROC plots.
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Fig. 16. Error histogram.

The error histogram is done by dividing it into 20
bins. In the graph the errors are near to zero. This also
implies the success of the neural network.

4.10. Automatic fault classification
using deep neural networks (DNN)

A deep neural network was realised for various fault
cases of the taper roller bearing using autoencoders.
Two autoencoders and a softmax layer were stacked
one after the other to get the neural network. All the
performance characteristics were plotted for this neural
network. As the number of hidden neuron layers was
increased in the deep network, the efficiency increased
from 90.8% to 100%. This is highlighted by the confu-
sion matrix. The ROC plot for the neural network also

matched with the ideal plot. The DNN parameters as
well as various performance plots are shown below.

Due to the increased complexity of the DNN
method, an increased number of iterations have been
performed on the data. Scaled conjugate gradient al-
gorithm was used for network training while cross en-
tropy technique was used for measurement the perfor-
mance. In the confusion matrix, the output class refers
to the actual output produced, while the target class
refers to the ideal output that was expected. Here, an
accuracy of 100% was obtained, which meant all the
defects were correctly classified. This is due to the abil-
ity of DNN to correctly distinguish even the smallest
of changes in the feature pattern. The receiver oper-
ating characteristics graph also gives an ideal plot in
this case.
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Algorithms
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Fig. 17. DNN parameters.
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Fig. 18. Training state performance.
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Fig. 20. Confusion matrix.
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Fig. 21. ROC plot.

5. Conclusion

In this study, empirical mode decomposition has
been implemented along with Hilbert Huang transform
on the collected vibration data for self-aligning roller
bearing. Each instantaneous mode frequency obtained
was subjected to Hilbert Huang transform to obtain
the corresponding instantaneous frequencies. This is
followed by the marginal Hilbert spectrum which pro-
duces the frequency spikes at various fault conditions.
This method is able to give more precise results as com-
pared to the conventional fast Fourier transform and
wavelet transforms. One advantage lies in the ability of
this method to process non-linear and non stationary
signals. Another advantage is the capability to mon-
itor real time data from bearing which helps to pre-
dict defects before failure, hence improving the running
time of machines. The major advantage of the empir-
ical mode decomposition lies in the fact that various
frequency ranges can be analysed by this method to
pin point the fault. This proves helpful in various in-
dustries where a large amount of vibration data, maybe
for days, needs to be analysed.

The study also highlights the advantages of using
deep neural networks over Artificial neural networks.
Deep neural networks are widely utilised in image clas-
sification and, therefore, the method can scrutinise
even minor changes that occur in feature extraction
and still produce near accurate results. So, in an in-
dustry where the number of faults under consideration
is huge, it is preferable to use a deep network which
can accurately predict the fault, no matter how minute
the difference in vibration data is. However, it is to be
noted that the number of iterations involved in deep
learning algorithms is very high compared to the arti-
ficial neural networks resulting in a higher processing
time for the data.
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