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Nonlinear excitation of slow modes by the planar magnetosonic perturbations in a plasma is discussed.
Plasma is an open system due to radiation and external heating. This may stipulate enhancement of
wave perturbations and hence the acoustical activity of plasma. Plasma is assumed to be a homogeneous
ideal gas with infinite electrical conductivity. The straight magnetic field is orthogonal to the velocity of
fluid’s elements. Nonlinear excitation of the non-wave modes (that is, the Alfvén and the entropy modes)
by periodic and aperiodic planar magnetoacoustic perturbations, is discussed. The sawtooth wave and
the small-magnitude harmonic wave are considered as examples of periodic in time perturbations. The
conclusions concern acoustically active and thermally unstable flows as well.
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1. Introduction

The recent interest in studies of magnetohydrody-
namic (MHD) perturbations in the solar atmosphere
is concentrated on their diagnostic applications and
role in heating and acceleration of atmospheric plasma
(Liu, Ofman, 2014). Plasma in general is an open
system with inflow of external energy and radiative
losses. There are also mechanical reasons for dump-
ing due to friction and compressibility of a gas, that
is, due to the shear and bulk viscosity. Modelling of
MHD perturbations and attendant phenomena gives
hope of getting information about parameters of the
solar plasma which can not be measured directly.

For a long time, theoretical studies have been fo-
cused on the linear dynamics of wave MHD pertur-
bations (De Moortel, Hood, 2004). That is rea-
soned by the low Mach numbers of the MHD per-
turbations. The well-known conclusion is that weakly
nonlinear phenomena in flows accumulate with time
(Rudenko, Soluyan, 1977). This may lead not only
to crucially new features of wave propagation (includ-
ing formation of shocks in weakly dispersive flows)
but to establishment of new equilibrium thermody-
namic parameters of the background and to the bulk
flows in a plasma. The understanding of that has given
rise to reinforced efforts in studying of nonlinear dy-

namics of MHD perturbations (Nakariakov et al.,
2000; Kelly, Nakariakov, 2004; Ruderman, 2013).
In this way, the nonlinear distortions of wave MHD
perturbations in the course of their propagation are
theoretically predicted in many important particular
cases.

The most intriguing factor which impacts on non-
linear dynamics, is the thermal and acoustic (isen-
tropic) instabilities of a plasma. These kinds of insta-
bility are observed in many applications concerning
the solar chromosphere, interstellar gases and plan-
etary nebulae including interstellar clouds and so-
lar prominence formation. They are also important
in fluid flows in tokamaks. Instability is conditioned
by the external heating of a plasma (Field, 1965;
Nakariakov et al., 2000). Magnetoacoustic pertur-
bations in acoustically active plasma enhance in the
course of propagation, if attenuation is weak. Relax-
ation of thermodynamic processes often leads to the
similar properties of sound in fluid flows with inflow
of energy. The examples are gases with excited vi-
brational degrees of molecules and chemically react-
ing gases (Osipov, Uvarov, 1992; Molevich, 2001).
The heating-cooling function which disturbs adiabatic-
ity of a flow, includes various terms responsible for
external heating and cooling due to radiation and
other reasons. The nonlinear dynamics of magnetoa-
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coustic waves in acoustically active and dissipative
plasma has been studied analytically by Chin et al.
(2010). They have concluded about possibility of self-
organisation of wave MHD disturbances. The magni-
tude of magnetoacoustic shock autowaves is completely
prescribed by the thermodynamic properties of equilib-
rium plasma. It is independent of the initial or bound-
ary conditions at a transducer (Kelly, Nakariakov,
2004).

The nonlinear effects of MHD waves, that is, ex-
citation of non-wave modes in their field, seems to
be still unexplored domain, though the nonlinear in-
teraction of different branches of magnetohydrody-
namic waves has been considered by numerous au-
thors (Petviashvili, Pokhotelov, 1992; Sagdeev,
Galeev, 1969; Shukla, Stenflo, 1999). This study
discovers some peculiarities of nonlinear interaction
of the magnetoacoustic perturbations with the non-
wave modes. We consider magnetoacoustic heating
in a plasma due to the heating-cooling function in
the general form. Acoustic heating is actually an en-
hancement of the entropy mode which is excited by
sound in a nonlinear flow with attenuation (Rudenko,
Soluyan, 1977; Hamilton, Morfey, 1998). It is
a slow non-wave fluid motion, hence, entropy pertur-
bations do not follow sound and form in fact a new
quasi-stationary equilibrium state of a plasma. They
are of major importance in the long-scale predictions
and may be an indicator of the energy which asso-
ciates with fast MHD perturbations. While quick per-
turbations carry energy which propagates with the
wave speed, the entropy mode develops slowly. The
entropy perturbations may be the only source of infor-
mation about the heating-cooling function and about
thermodynamic processes which occur in a plasma, as
well as about magnetoacoustic perturbations which ex-
cite them. One may expect that the magnetoacous-
tic heating occurs unusually in the acoustically ac-
tive plasma. That happens to all acoustically active
media (Osipov, Uvarov, 1992; Molevich, 2001).
We do not consider mechanical and shear viscosity of
a plasma, its thermal conductivity, and its finite elec-
trical conductivity. These effects contribute to attenua-
tion and dispersion in a fluid flow and are well studied.
Instantaneous magnetoacoustic streaming and heating
due to these mechanisms have been studied by the au-
thor (Perelomova, 2016a; 2016b). In this study, we
derive the instantaneous dynamic equations responsi-
ble for generation of the entropy and the Alfvén modes
by planar magnetoacoustic perturbations and discuss
them in the context of periodic excitation at a trans-
ducer.

2. Wave and non-wave modes in a planar flow

The system of MHD equations consists of the con-
servation equations in the differential form. They are:

continuity equation, momentum equation, electrody-
namic equations and energy balance equation:

∂ρ

∂t
+ div(ρv) = 0,

ρ
dv
dt

= −grad p+ µ0H× rotH,

∂H
∂t

= rot(v×H),

divH = 0,

dp
dt
− γ p

ρ

dρ
dt

= (γ − 1)L(p, ρ),

(1)

where v, p, ρ, H, are the plasma’s velocity, pressure,
density, the magnetic field strength, respectively, and
µ0 is the magnetic permeability of free space ( d

dt de-
notes the substantial derivative). The system relates
to an ideal gas with the caloric equation of state

e =
p

(γ − 1)ρ
,

where e is the internal energy of a gas, and γ is the adi-
abatic constant. L(p, ρ) is the heating-cooling function
which may disturb adiabaticity of fast perturbations
in a plasma. In general, it includes incoming and out-
coming parts. Following Nakariakov et al. (2000), it
is assumed to be a function of pressure and density.

The magnetic field H = Hz(x, t)k is orthogonal to
the velocity of gas particles v = vx(x, t)i which is di-
rected along axis x. The leading-order linear equations
follow from Eqs. (1):

∂ρ′

∂t
+ ρ0

∂v

∂x
= −ρ′ ∂v

∂x
− v ∂ρ

′

∂x
,

∂v

∂t
+

1

ρ0

∂p′

∂x
+

1

ρ0

∂h′

∂x
= −v ∂v

∂x
+
ρ′

ρ2
0

∂p′

∂x
+
ρ′

ρ2
0

∂h′

∂x
,

∂p′

∂t
+ c2ρ0

∂v

∂x
− (γ−1)(Lpp

′+Lρρ
′)

= −v ∂p
′

∂x
− γp′ ∂v

∂x

+ (γ−1)(0.5Lppp
′2+0.5Lρρρ

′2+Lpρp
′ρ′),

∂h′

∂t
+ 2h0

∂v

∂x
= −v ∂h

′

∂x
− 2h′

∂v

∂x
,

(2)

where h denotes the magnetic pressure,

h = µ0H
2/2,

and

Lp =
∂L

∂p
, Lρ =

∂L

∂ρ
, Lpp =

∂2L

∂p2
,

Lρρ =
∂2L

∂ρ2
, Lpρ =

∂2L

∂p∂ρ

are evaluated at equilibrium state (p0, ρ0). Hence, we
consider them as some constants. All variables repre-
sent a sum of unperturbed quantity, marked by sub-
script 0 (v0 = 0) and primed disturbance.
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The dispersion relations determine all possible
kinds of a fluid’s motion. They follow from the lin-
earised Eqs. (1). All perturbations are represented by
a sum of planar waves proportional to exp(iω(k)t −
ikx), where k designates the wave number of any indi-
vidual planar wave, and ω is its frequency:

f ′(x, t) =

∞∫
−∞

f̃(k) exp(iω(k)t− ikx) dk,

(f̃(k) exp(iω(k)t) = f̃(k, t) denotes the Fourier trans-

form of f ′(x, t), so as f̃(k, t) = 1
2π

∞∫
−∞

f(x, t)eikx dx).

The dispersion relations in a planar flow of a magnetic
fluid reflect the solvability of the linearised Eqs. (1).
They are

ω1,2 = ±cmk − icmB, ω3 = 0,

ω4 = i(2cmB − (γ − 1)Lp),
(3)

where

cm =
√
c2 + c2A, c =

√
γp

ρ
, cA =

√
2h

ρ

designate the magnetosonic speed, the sound speed
in an unmagnetised gas, and the Alfvén speed, all
evaluated at the equilibrium state (p0, ρ0). The first
two roots ω1, ω2 determine the magnetosonic waves of
different direction of propagation, that is, fast MHD
waves. The parameter

B =
(γ − 1)

2c3m

(
c2Lp + Lρ

)
is responsible for attenuation or enhancement of MHD
wave, if it differs from zero. It originates from the devi-
ation of quick perturbations from isentropic. We sup-
pose that attenuation or amplification of magnetoa-
coustic wave is small during its period,

|B| � ω/cm

and arrive at the conclusion that a gas is acoustically
active under the condition

c2Lp + Lρ > 0, (4)

which has been discovered in early studies of non-
isentropic flows (Field, 1965). In this case, fast MHD
perturbations in the linear flow enhance in the course
of propagation. The third root ω3 relates to the mag-
netic Alfvén mode, and the last one, ω4, corresponds
to the entropy mode. This last mode exists in all fluid
flows, not specifically magnetic. The dispersion rela-
tions in Eqs. (3) are evaluated with accuracy up to
terms proportional to the first powers of Lp,Lρ. The

second derivatives of L do not contribute to the dis-
persion relations in view of the fact that they stand by
quadratic nonlinear terms.

The total perturbation is represented by a sum of
specific disturbances which in fact are eigenvectors of
the correspondent matrix operator:


ρ′

v

p′

h′

 =



4∑
i=1

ρi

4∑
i=1

vi

4∑
i=1

pi

4∑
i=1

hi


,


ρ1

v1

p1

h1

 =



1

cm
ρ0
− cmB

ρ0

∫
dx

c2 − 2c2mB

∫
dx

c2m − c2


ρ1,


ρ2

v2

p2

h2

 =



1

−cm
ρ0
− cmB

ρ0

∫
dx

c2 + 2c2mB

∫
dx

c2m − c2


ρ2, (5)


ρ3

v3

p3

h3

 =



1
0

−Lρ
Lp
Lρ
Lp


ρ3,


ρ4

v4

p4

h4

 =



1(
2cmB

ρ0
− (γ − 1)Lp

ρ0

)∫
dx

c2 − c2m

c2m − c2


ρ4.

Index i denotes the ordering number of a specific
mode. The rows which distinguish excess densities cor-
responding to third and fourth roots,

P3


ρ′

v

p′

h′

 = ρ3, P4


ρ′

v

p′

h′

 = ρ4,
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take the forms:

P3 =



1 +
Lρ

(c2m − c2)Lp

0

0

− 1

c2m − c2
− Lρ

(c2m − c2)2Lp



T

,

P4 =



− Lρ
(c2m − c2)Lp

−2Bρ0

cm

∫
dx

− 1

c2m

c2

c2m(c2m − c2)
+

Lρ
(c2m − c2)2Lp



T

.

(6)

Projectors are evaluated with accuracy up to terms
proportional to the first powers of Lp and Lρ, as well
as links given by Eqs. (5). The lower limit of integration
in Eqs. (5) and (6) depends on the physical context of
a flow, and the upper limit equals x. When P3, P4 apply
at the linearised Eqs. (2), they reduce all therms con-
taining non-specific perturbations and yield the linear
dynamic equations which describe the dynamics of ρ3

and ρ4, respectively. These equations contain the first
order partial derivatives with respect to time. In the
following sections, we consider the non-linear dynam-
ics of wave MHD perturbations and their interaction
with the non-wave modes in a planar flow.

Equations (5) and (6) in their parts which refer
to the third mode, are valid in the case Lp 6= 0. We
consider only this case. It may be readily established
that in the case Lp = 0 the links which specify the
third mode take the forms:

v3(x, t) = ρ3(x, t) = 0, h3(x, t) = −p3(x, t).

That has impact on all evaluations which follow but is
of minor interest.

3. Nonlinear dynamics of wave MHD
perturbations

Application of P3 and P4 at the system (2), which
includes quadratic nonlinear terms, yields weakly non-
linear evolutionary equations for the excess densities
specifying the correspondent mode. Quadratic nonlin-
ear terms become distributed between individual dy-
namic equations in the proper manner. The pure mag-
netoacoustic terms are of major importance in acoustic
applications. This case implies large perturbations in
MHD waves as compared with those of the non-wave
modes at some temporal and spacial domains. For defi-
niteness, we will consider the first MHD mode which

propagates in the positive direction of axis Ox. It is
determined by ω1 from Eqs. (3). Since the acoustic
source consists in the leading order of quadratic MHD
perturbations, the linear relations for sound should
be corrected. They should be supplemented by terms
which make MHD wave isentropic in the leading or-
der (Perelomova, 2016b). The corrected links are as
follows:

ρ1

p1

h1

 =



ρ0

cm

(
1 +B

∫
dx
)

ρ0

cm

(
c2 + (c2 − 2c2m)B

∫
dx
)

ρ0(c2m − c2)

cm

(
1 +B

∫
dx
)


v1

+



c2m − c2(γ − 2)

4c4m
ρ0

c2(c2m(2γ − 1)− c2(γ − 2))

4c4m
ρ0

(c2m − c2)(3c2m − c2(γ − 2))

4c2m
ρ0


v2

1 . (7)

The nonlinear corrections do not depend on attenu-
ation or amplification of MHD wave. These correc-
tions represent the well-known terms which make the
progressive Riemann’s wave isentropic when cm = c
(Rudenko, Soluyan, 1977). The equation governing
velocity in the first magnetoacoustic planar wave, takes
the form:

∂v1

∂t
+ cm

∂v1

∂x
− cmBv1 + εv1

∂v1

∂x
= 0, (8)

where

ε =
3c2m + c2(γ − 2)

2c2m

is the parameter of nonlinearity in the MHD flow.
Equation (8) coincides with that derived by Chin et al.
(2010). It represents the particular case of Eq. (15)
from (Chin et al., 2010) with θ = π/2 (that is, perpen-
dicular magnetic strength and velocity of a plasma),
zero thermal conduction and zero nonlinear term which
associates with the heating-cooling function. Equa-
tion (8) recalls dynamic equations which describe wave
perturbations in other flows which may be acoustically
active (Osipov, Uvarov, 1992). Equation (8) was first
derived and analysed in the context of propagation of
a sawtooth MHD impulse by Sharma and co-authors
(Sharma et al., 1987) for the case B = 0. Equation (8)
may be readily transformed into the leading-order pure
nonlinear equation, if B 6= 0:

∂V1

∂X
− ε

c2m
V1
∂V1

∂τ
= 0, (9)
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by means of new quantities

V1 = v1 exp (−Bx) , X =
exp (Bx)− 1

B
,

τ = t− x/cm.

X is positive at positive distances from a transducer,
x, for any non-zero B. By the way, Eq. (9) may be
solved by the method of characteristics. Its graphic so-
lution for a sawtooth impulse at a transducer is shown
in Fig. 1. T denotes the period of an impulse. A trans-
ducer is situated at the plane x = 0, that is, X = 0. It
may be concluded from the Fig. 1 that the magnitude
of a sawtooth impulse equals

vm = Vm exp (Bx) = V0
exp (Bx)

1 +K(exp (Bx)− 1)
, (10)

where

K =
2εV0

BTc2m
.

Fig. 1. Propagation of a sawtooth impulse.

Hence, a sawtooth impulse may enhance or weaken
in dependence on K. The case 0 < K < 1 reflects
dominance of the energy inflow over nonlinear attenu-
ation. In the case of K > 1, the nonlinear dissipation
at the front of the shock wave is strong and the magni-
tude of an impulse gets smaller at larger distances from
a transducer. The particular caseK = 1 corresponds to
the equilibrium between nonlinear attenuation and en-
ergy inflow. In this case, the magnitude of a sawtooth
wave is constant and its shape is stable. Negative K
reflects the case when damping on the shock front en-
hances damping due to loss in energy. The magnitude
of an impulse quickly decreases.

In the case of very weak nonlinearity (i.e. con-
ditioned by low magnitudes of MHD perturbations),
a periodic solution of the linearised version of Eq. (8)
takes the form

v1(x, t) = V0 exp(Bx) sin(ω(t− x/cm)). (11)

The magnitude of velocity increases or decreases in the
course of wave propagation in dependence on the sign
of B.

a)

b)

Fig. 2. Magnitude of a sawtooth impulse in the course of
propagation as a function of dimensionless distance from
a transducer. Cases of positive (a) and negative (b) B. The
dimensionless quantity K = 2εV0

BTc2m
which relates to every

line stands by the corespondent curve.

4. Nonlinear excitation of modes by intense
magnetosonic wave

Equations (1) split into equations which describe
dynamics of non-wave perturbations ρ3 or ρ4. That
may be implemented by means of projecting rows P3

and P4. The nonlinear terms, that is, cross products of
perturbations of different modes, represent the forces
which excite the non-wave modes. Only magnetoacous-
tic terms belonging to the first mode will be kept
among them. In turn, velocity of a fluid’s elements in
MHD wave should satisfy Eq. (8).

4.1. Excitation of the Alfvén mode

The equation which governs an excess density in
the Alfvén mode, is the result of application of P3:

∂ρ3

∂t
=

ρ0

c2m − c2

(
cmB −

(γ − 1)c4Lp
2c4m

)

·
(
v2

1 +
∂v1

∂x

∫
v1 dx

)
. (12)
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For a periodic in time function with a period T (in
the case of perturbation in the form of Eq. (11), T =
2π/ω) in the form φ(t− x/cm, Bx) = φ(τ,Bx), where
|B|cm/ω � 1, one arrives at

∂φ

∂x

∫
φ dx =

1

T

t−x/cm+T∫
t−x/cm

∂φ
∂τ

τ∫
φ(τ ′, Bx) dτ ′

dτ+O(B2)

=
1

T

φ τ∫
φ(τ ′, Bx) dτ ′−

τ∫
φ2 dτ ′

∣∣∣∣∣∣
t−x/cm+T

t−x/cm

,

where top line denotes the temporal average over pe-
riod of acoustic wave. For zero on average φ, the first
term in the last line equals zero and we obtain the
leading-order equality

φ2 +
∂φ

∂x

∫
φdx = O(B2),

which does not depend on the kind of periodic (or
nearly periodic) function φ. This is valid for v1 in the
forms of sawtooth and harmonic waves, Eq. (11). The
sawtooth solution is not continuous but may be ap-
proximated with any accuracy by the continuous peri-
odic function which is zero on average. We make use
of the periodic magnetoacoustic velocity in the form
Eq. (11) and of the averaged term:

v2
1 +

∂v1

∂x

∫
v1 dx =

B2c2mV
2
0 e

2Bx

B2c2m + ω2
≈ B2c2m

ω2
V 2

0 e
2Bx.

In the case of negative B, the acoustic source of the
Alfvén mode is of order B3 and we may conclude that
the nonlinear coupling is very weak. As for the posi-
tive B, the acoustic force constantly enlarges with the
distance from the transducer. Therefore, in spite of
the factor of order B3 standing by exp(2Bx), it might
achieve significant values at large distances. This forms
a new background for propagation of the MHD per-
turbations. Enhancement of the Alfvén mode may be
slowed down due to other nonlinear interactions. The
sign of acoustic force coincides with the sign of spe-
cific excess density ρ3 (for initial zero ρ3) and is deter-

mined by the sign of B2
(
cmB − (γ−1)c4Lp

2c4m

)
. Thus ρ3

may take negative values for positive B and vice versa,
depending on Lp. Anyway, |ρ3| decreases with distance
from the transducer if B < 0 and increases otherwise.

4.2. Magnetoacoustic heating

The magnetoacoustic heating is the most impor-
tant among all possible nonlinear interactions. When
P4 applies at the system Eqs. (2), we arrive at the equa-
tion which describes magnetoacoustic heating. We re-
produce its averaged over the sound period form in the

case of periodic (or nearly periodic) magnetoacoustic
perturbations:

∂ρ4

∂t
+ (2cmB − (γ − 1)Lp) ρ4 =

ρ0(γ − 1)

4c6m

·
[
c4(3(γ − 2)Lp − 2c2mρ0Lpp)

+ c2m(Lρ + 4γLρ − 2ρ0Lρρ)

+ c2(3(γ−2)Lρ+c2m(3Lp+2γLp−4ρ0Lpρ))
]
v2

1 , (13)

which rearranges in the case of weak magnetic strength
(i.e., approximately equal cm and c) into the following
equation:

∂ρ4

∂t
+ 2cB̃ρ4 = Dv2

1 , (14)

where

B̃ = B − (γ − 1)Lp/2cm ≈ (γ − 1)Lρ/c
3,

D =
ρ0(γ − 1)

4c4
[
c2(5γ − 3)Lp + (7γ − 5)Lρ

− 2c4ρ0Lpp − 4c2ρ0Lpρ − 2ρ0Lρρ
]
.

It is readily integrated with the result (if B̃ 6= 0)

ρ4 =
D

2cB̃

(
1− exp(−2cB̃t)

)
v2

1 .

If B̃ = 0, the result is

ρ4 = Dv2
1t.

These solutions correspond to zero initial ρ4. In the
case of the periodic solution (11),

v2
1 =

V 2
0

2
exp(2Bx), (15)

and in the case of the sawtooth waveform,

v2
1 =

1

3
v2
m =

V 2
0 exp(2Bx)

3 [1 +K(exp(Bx)− 1)]
2 . (16)

The module of excess density |ρ4| varies differently
with the distance from the transducer: it enlarges if
B > 0 and decreases if B < 0. As for the temporal
behaviour, it depends on B̃, not on B, and grows in-
finitely in time if B̃ < 0. This reflects the fact that con-
ditions of thermal and acoustic instability do not over-
lap (Field, 1965). The particular case K = 1 provides
the stable shock waveform with constant magnitude
independent of distance from the transducer. In this
case, v2

1 is constant but ρ4 varies with time depending
on the sign of B̃ due to inflow of energy into the system.
The external energy is expended on the nonlinear at-
tenuation at the shock front which counterbalance en-
hancement of magnetosonic perturbations and on vari-
ation of thermodynamic perturbations which specify
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the entropy mode. The entropy mode is not isobaric in
a flow of magnetic fluid in accordance to links Eqs. (5).
The positive variation in density gives rise the negative
variation in pressure since cm > c. This means that the
correspondent variation in temperature

T4

T0
=
p4

p0
− ρ4

ρ0
= −ρ4

ρ0

(
1 + γ

c2m − c2

c2

)
(17)

is negative if ρ4 is positive and it is positive otherwise,
where T0 denotes the equilibrium temperature of a gas.

5. Nonlinear interactions
when the heating-cooling function

depends exclusively on temperature

The meaningful particular case is the heating-
cooling function which depends exclusively on temper-
ature, L(T ). Its partial derivatives with respect to pres-
sure and density may be expressed in partial deriva-
tives with respect to temperature, assessed at the equi-
librium temperature,

LT =
dL
dT

, LTT =
d2L

dT 2
.

If LT > 0, a gas is acoustically active. That follows
from the acoustic dispersion relations, Eqs. (3):

ω1,2 = ±cmk − icmB = ±cmk −
i(γ − 1)c2

2CV γρ0c2m
LT ,

where CV is the specific heat at constant volume. One
may rearrange Eq. (12) into the dynamic equation

∂ρ3

∂t
= −c

2(−c2m(γ−1)+γc2)LT
2γc4m(c2m−c2)CV

(
v2

1 +
∂v1

∂x

∫
v1 dx

)
,

(18)
which equals approximately zero on average for nearly
periodic sound. Variation in temperature T3 which
specifies the Alfvén mode equals zero:

T3

T0
=
p3

p0
− ρ3

ρ0
= 0

in accordance to relations of ρ3 and p3 established by
Eqs. (5).

As for equation which governs the entropy mode,
it follows from making use of P4. We reproduce its
averaged form for the periodic fast MHD perturbations
and weak magnetic strength, cm ≈ c:

∂ρ4

∂t
− LT
γc2CV ρ0

ρ4 = D̃v2
1 , (19)

where

D̃ =
γ − 1

4γ2c2C2
V

(
CV (5γ − 1)γLT − 2c2LTT

)
.

The second-order derivative is not of importance, if

|LTT | �
(5γ − 1)γCV

2c2
|LT | =

γ2(5γ − 1)

2(γ − 1)T0
|LT |.

If so, D̃ and LT are of the same sign. Equation (19) is
integrated with the result

ρ4 =
D̃γc2CV ρ0

LT

(
exp

(
LT

γc2CV ρ0
t

)
− 1

)
v2

1 ,

if LT 6= 0, and with the result

ρ4 = D̃v2
1t,

if LT = 0. These solutions correspond to zero initial ρ4.
The conditions of acoustical activity and thermal in-
stability coincide (LT > 0). In acoustically active gas,
ρ4 is positive and enlarges with time and with distance
from the transducer. An excess density and tempera-
ture are related in accordance to Eq. (17): T4 equals
approximately −T0

ρ4
ρ0

in the case of weak magnetic
strength. Hence, production of negative excess tem-
perature specifying the entropy mode occurs in acous-
tically active gases.

6. Concluding remarks

We considered excitation of the non-wave modes in
the field of intense sound in a magnetic fluid in the
particular case when the vector of magnetic strength
is perpendicular to the velocity of a gas. The system
is open, that is, there exist inflow or/and loss of en-
ergy, which is described by the heating-cooling func-
tion L. It depends in general on pressure and density
of a gas. Newtonian attenuation and thermal conduc-
tion of a gas are left of account, since their influence
on the nonlinear motion of a gas is well-studied.

The linear features of flows in open systems
are well-understood. This concerns different physi-
cal conditions of flows which become acoustically ac-
tive or/and thermally unstable under some conditions
which depend on the kind of L. Wave perturbations in
acoustically active media may enhance in the course of
propagation. Also, the nonlinear interactions may oc-
cur unusually in open systems. Magnetoacoustic heat-
ing or cooling leads to the non-uniformity of the back-
ground parameters of a plasma, that is, thermal lenses
and bulk flows which follow attenuation or amplifica-
tion of sound. This has impact on the sound propaga-
tion and may be of especial interest in the plasma’s ap-
plications. By the way, waveguides and thermal lenses
may play a crucial role.

We have considered nonlinear excitation of the non-
wave modes in the particular cases of the heating-
cooling function:
1) L is a function of p and ρ

(
Lp = ∂L(p,ρ)

∂p 6= 0
)

;

2) L depends exclusively on temperature.
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Weakly nonlinear dynamic equations which govern
excitation of the non-wave modes in the field of in-
tense fast MHD perturbations are derived. They are
valid for periodic and aperiodic magnetoacoustic dis-
turbances independently on their spectrum. They are
instantaneous as well. Equations (12) and (13) are
the main results of the study. They determine dy-
namics of an excess density in the Alfvén and en-
tropy modes. As for the Alfvén mode, its perturba-
tions are fairly small, at least when excited by periodic
or nearly periodic magnetoacoustic disturbances on a
transducer.

Acoustical activity implies c2Lp +Lρ > 0, whereas
condition of thermal instability implies Lρ < 0 at weak
magnetic strengths. These conditions, responsible for
the temporal behavior of perturbations, do not cer-
tainly overlap (Field, 1965). If we consider the power
dependence of L on p and ρ, proportional to pβρ−α,
where α and β are positive, the conformity of acous-
tic and thermal instabilities implies γβ > α. This is,
among other, the case α = β = 1 which corresponds
to L(T ). The particular case L(T ) is considered in
Sec. 5.

There are no restrictions concerning the strength
of the magnetic field in this study. The only limita-
tions are: weak nonlinearity of a flow, that is, smallness
of the Mach number, and smallness of attenuation or
amplification of wave perturbations during its period.
The results of this study may be addressed to a hot
atomic plasma with temperature greater than 104 K
and a cold molecular gas with temperature less than
103 K and to different kinds of the function L(p, ρ).
The radiation function may also contribute in L. Vari-
ous heating models for the coronal radiative losses and
deposition of mechanical energy in the solar corona, are
discussed in (Rosner, Tucker, 1978). This is in fact
a comprehensive review of many models which were
confirmed experimentally. Among them, there are no
examples of L which depends exclusively on ρ, that
is, Lp = 0. That’s why this particular case is of mi-
nor importance. In the case of heating due to coronal
current dissipation, L is proportional to p and does
not depend on ρ (Nakariakov et al., 2000). This
is the case of acoustical activity of a plasma, since
Lp > 0 for a small magnetic strength. This case cor-
responds to zero B̃, that is, to zero diffusion coeffi-
cient in Eq. (13). Molevich et al. (2011) consider
the heating-cooling function which depends on tem-
perature and density and make use of astrophysical
examples of heating due to photoelectric emission and
the radiative cooling rate due to transitions between
the electron levels. The results of the study may be
helpful in the inverse problems. They point a way to
establish the kind of heating-cooling function and in-
tensity of the fast MHD perturbations in a plasma
by means of remote measurements of slow perturba-
tions.
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