
ARCHIVES OF ACOUSTICS DOI: 10.2478/v10168-010-0041-1
35, 4, 543–550 (2010)

Determination of the Probability Distribution
of the Mean Sound Level

Wojciech BATKO(1), Bartosz PRZYSUCHA(2)

(1)AGH – University of Science and Technology
Faculty of Mechanical Engineering and Robotics
Department of Mechanics and Vibroacoustics
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: batko@uci.agh.edu.pl

(2)Lublin University of Technology
Faculty of Management
Department of Quantitative Methods in Management of Economy
Nadbystrzycka 38, 20-618 Lublin, Poland
e-mail: b.przysucha@pollub.pl

(received July 1, 2009; accepted September 15, 2010 )

Assessment of several noise indicators are determined by the logarithmic mean

Lmean = Sn = 10 log

�
1

n

nP
i=1

100.1Li

�
, from the sum of independent random results

L1, L2, . . . , Ln of the sound level, being under testing. The estimation of uncertainty
of such averaging requires knowledge of probability distribution of the function form
of their calculations. The developed solution, leading to the recurrent determination
of the probability distribution function for the estimation of the mean value of noise
levels and its variance, is shown in this paper.

Keywords: acoustic measurements, statistic analysis of the obtained results, estima-
tion of the distribution, uncertainty.

1. Introduction

According to the requirements of the experimental practice (including stan-
dard: PN-EN ISO 10012 (2004)), each investigated vibroacoustic process should
have the uncertainty estimation of the analysed variable. Apart from the uncer-
tainty of measuring the equipment calibration, all components of uncertainty,
substantial in the given measuring process, should be taken into account in this
estimation. In the majority of cases, the problem of uncertainty estimation is
reduced to calculation of the standard deviation estimate of the examined vari-
able. It can be related not only to the measurement result but also to the es-
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timate of an arbitrary parameter of the probability distribution of the analysed
random variable. Such estimation is referred to as the standard uncertainty of
measurement U (Guide to the Expression. . . , 1995). It determines the limit of
the uncertainty interval, to which a certain confidence level can be attributed:

P = P{x0 ∈ (x− U ; x + U)}. (1)

It means a probability in which the actual value of the examined quantity can
be found.

The acoustic pressure level Li; i = 1, 2, . . . , n is the basic measurement vari-
able – in vibroacoustic investigations – determining a noise source emission and
the evaluation of the hazards of working environment, or in the surroundings
of environment of the tested source. This level determines the analysed acoustic
event in the given point of the measurement space for the determined time in-
stant. Its representation is the random variable.

Thus, for the estimation of each class of acoustic event determined by the
acoustic pressure levels LA i, i = 1, 2, . . . , n, it is necessary to calculate their
representations, in the logarithmic mean form of the value of the sound level
LAmean, given by the following relationship:

LAmean = 10 log

[
1
n

n∑

i=1

100.1LA i

]
. (2)

Usually, the estimations of LAmean are being done on the basis of limited mea-
surements, resulting from the assumed time schedule of control tests. The problem
of assessing their likelihood is related to their estimations. The following question
occurs: how to estimate unknown parameters of expected value E(LAmean) and
variance Var(LAmean) on the basis of random realizations of LA i; i = 1, 2, . . . , n.

In the estimations of the expected value E(LAmean) = µ (which is calculated
from their random n-independent estimations LAmean i; i = 1, . . . n, performed
at conditions of repeatability of measurements), the estimator of the arithmetic
mean is used.

Sufficient application of this estimator is determined by the assumption of the
estimator, including the independence and normality of evaluations of LAmean i;
i = 1, . . . n.

The normality condition which occurs in the applied solutions is difficult to
accept. Hence, correct solutions of this problem are being looked for. In (Batko,
Bal, 2008; 2010) we can find one possible way.

This solution makes the estimating process of expected value for the loga-
rithmic mean of acoustic pressure levels E(LAmean) and variance Var(LAmean),
independent of the normality of the distribution result of consecutive control
evaluations, or from independence of results in the next tests, by accepting some
kind of mechanism which describes the changes in consideration of control vari-
ables. It makes its identification and approximation by R.G. Brown’s Exponential
Smoothing adaptation model. The solution (Batko, Bal, 2008) protects the es-
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timation process of searched quantities, in conditioning more easy verification,
determining its realization of assumptions (Batko, Bal, 2010).

The most universal solution of the problem and calculations of expected value
E(LAmean) and variance Var(LAmean), is determining of the form of probability
distribution for the function which describes the mean sound level. This problem
has not been solved yet in literature of the subject. The aim of this work is to
solve the above problem. The algorithm determining the analytic form of this
function is given in this article.

2. Procedure of determining the probability distribution for the logarithmic
mean of the sound level measurement results

Determination of distribution of random variable

Lmean = Sn = 10 log

(
1
n

n∑

i=1

100.1Li

)
,

defined by values of L1, L2, . . . , Ln of tested sound levels, which are independent
random variables with equal distribution ρ(x) and distribution function Ψ(x),
x ∈ 〈0, +∞), can be defined by the following relations.

We need to determine the recurrent formula for probability distribution for the
logarithmic mean of the sound level. We have to divide our reasoning into a few
parts. First let L1, L2, . . . , Ln be independent random results of the tested sound
level with equal distribution ρ(x) and distribution function Ψ(x), x ∈ 〈0, +∞).

Related to them exposures Xi = 100.1Li , i = 1, . . . , n are also independent
random variables Xi, i = 1, . . . n due to the independence of variables Li. Let the
distribution of random variable Xi be determined by ρXi(·) and a distribution
function by ΨXi(·).

ΨXi(y) = P (Xi < y) = P (100.1Li < y) = P (0.1Li < log y)

= P (Li < 10 log y) = Ψ(10 log y);

as a deduction
ΨXi(y) = Ψ(10 log y), y ∈ 〈1, +∞),

therefore
ρXi(y) = ρ(x) =

10
ln 10

ρ(10 log y)
y

, y ∈ 〈1, +∞). (3)

Let us assume
Y1 = X1,

Y2 = X1 + X2,

Y3 = X1 + X2 + X3,

· · ·
Yn = X1 + X2 + . . . + Xn.
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Distribution of the random variable Yi is determined by ρYi(z) (Billingsley,
1986; Gersternkorn, Śródka, 1983) from (3)

ρY1(z) = ρX1(z) =
10

ln 10
ρ(10 log z)

z
,

for z ∈ 〈1, +∞), therefore

ρY2(z) =

z−1∫

1

ρY1(x)ρX2(z − x) dx

=
(

10
ln 10

)2
z−1∫

1

ρ(10 log x)
x

ρ(10 log(z − x))
z − x

dx, (4)

for z ∈ 〈2, +∞),

ρY3(z) =

z−1∫

2

ρY2(x1)ρX3(z − x1) dx1

=
(

10
ln 10

)3
z−1∫

2




x1−1∫

1

ρ(10 log x)
x

ρ(10 log(x1 − x))
x1 − x

dx


ρ(10 log(z − x1))

z − x1
dx1, (5)

for z ∈ 〈3, +∞),
. . .

ρYn(z)=

z−1∫

n−1

ρYn−1(xn−2)ρXn(z − xn−2) dxn−2

=
(

10
ln 10

)n
z−1∫

n−1

xn−2−1∫

n−2

. . .

x2−1∫

2




x1−1∫

1

(
ρ(10 log x)

x

ρ(10 log(x1 − x))
x1 − x

)
dx

· ρ(10 log(x2 − x1))
x2 − x1


 dx1 . . .

ρ(10 log(xn−1 − xn−2))
xn−1 − xn−2

dxn−2, (6)

for z ∈ 〈n,+∞).
Now from Eqs. (4), (5) and (6) we will receive explicit equations for probability

distribution Sn.
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Determining:
S1 = 10 log(Y1),

S2 = 10 log
(

1
2
Y2

)
,

· · ·
Sn = 10 log

(
1
n

Yn

)
,

for which Si distribution is defined ρSi(s)

S1 = 10 log Y1 = 10 log X1 = L1,

ρS1(s) = ρL1(s) = ρ(s), (7)

S2 = 10 log
1
2
Y2 ⇐⇒ Y2 = 2 · 100.1S2 . (8)

From (4) and (8), the variable S2 has a distribution which can be presented
as follows:

ρS2(s) = 2 · 0.1 · ln 10 · 100.1sρY2(2 · 100.1s)

= 2 · 10
ln 10

· 100.1s

2·100.1s−1∫

1

ρ(10 log x)
x

ρ(10 log(2 · 100.1s − x))
2 · 100.1s − x

dx. (9)

Assuming:

S3 = 10 log
1
3
Y3 ⇐⇒ Y3 = 3 · 100.1S3 . (10)

from Eq. (5) and (10), the probability distribution for his variable S3 is defined
as follows:

ρS3(s) = 3 · 0.1 ln 10 · 100.1sρY3(3 · 100.1s)

= 3 ·
(

10
ln 10

)2

· 100.1s

3·100.1s−1∫

2

x1−1∫

1

ρ(10 log x)
x

ρ(10 log(x1 − x))
x1 − x

dx

· ρ(10 log(3 · 100.1s − x1))
3 · 100.1s − x1

dx1, (11)

where s ∈ 〈0, +∞)
· · ·

Sn = 10 log
1
n

Yn ⇐⇒ Yn = n · 100.1Sn . (12)
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Using Eqs. (4) and (10), we receive the probability distribution of sum of the
independent random variable. Sn is defined by the following relation:

ρSn(s) = n · 0.1 ln 10 · 100.1sρYn(n · 100.1s) = n ·
(

10
ln 10

)n−1

· 100.1s

·
n·100.1s−1∫

n−1

xn−2−1∫

n−2

. . .




x1−1∫

1

ρ(10 log x)
x

ρ(10 log(x1 − x))
x1 − x

dx




· ρ(10 log(x2 − x1))
x2 − x1

dx1 . . .
ρ(10 log(n · 100.1s − xn−3)

n · 100.1s − xn−3
dxn−2, (13)

where s ∈ 〈0, +∞).
To get the recurrent formula for distribution of Sn, we will use partial cal-

culation and explicit formula for the probability, described by Eqs. (7), (9), (11)
and (13).

Putting to (9) correlations (3) and (7), we obtain:

ρS2(s) = 2·
(

10
ln 10

)
· 100.1s

2·100.1s−1∫

1

ρS1(10 log x)
ρ(10 log(2 · 100.1s − x))

x(2 · 100.1s − x)
dx. (14)

Distribution of random variable S2 is defined by (9), substituting

s = 10 log
1
2
x1

we obtain

ρY2(x1) =
ρS2(10 log 1

2
x1)

0.1 · ln 10 · x1
. (15)

Therefore to Eq. (11) we put (3) and (15). We receive distribution of S3:

ρS3(s) = 3·
(

10
ln 10

)
· 100.1s

3·100.1s∫

2

ρS2(10 log 1
2
x1)

ρ(10 log(3 · 100.1s−x1))
x1(3 · 100.1s−x1)

dx1. (16)

For the distribution of the random variable Sn−1 we have (13). Substituting

s = 10 log
1

n− 1
xn−1

we receive:

ρYn−1(xn−2) =
ρSn−1(10 log 1

n−1
xn−2)

0.1 · ln 10 · xn−2
; (17)
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putting to (13) Eqs. (3) and (17) we obtain:

ρSn(s) = n ·
(

10
ln 10

)
· 100.1s

n100.1s∫

n−1

ρSn−1(10 log 1
n−1

xn−2)

· ρ(n · 100.1s − xn−2)
xn−2(n · 100.1s − xn−2)

dxn−2. (18)

Equations (7) and (18), giving the recurrent formula for distribution of Sn,
were the expected value and variance is given by (19), (20) and (21)

ESn =

+∞∫

0

sρSn(s)ds, (19)

ES2
n =

+∞∫

0

s2ρSn(s) ds, (20)

VarSn = ES2
n − (ESn)2. (21)

3. Conclusion

Determination the probability distribution for the basic vibroacoustic oper-
ation, which is the calculation of the logarithmic mean of the sound level mea-
surement results – presented in this paper, constitutes broadening of the actually
used assessment methods of uncertainty of the acoustic measurements results.
It is free from the arbitral and difficult to be accepted assumptions (Kirpluk,
2008).

The knowledge of the form of probability distribution of the controlled mea-
surement results was assumed at defining the realisation of the derivation of the
solution proposed in the paper. Broadening of the presented solution by means of
their detailed specifications will enable the transformation of the general formulas
– given in the paper – into the tabular forms of the probability distribution of the
mean sound level values. Thereby, their wider practical application in procedures
of uncertainty assessments of mean value calculations will become possible. This
problem will constitute the next stage of investigations and further developments
of the topic.

The derivation given in the present paper seems to be a good illustration and
contains important directions for searching for estimation formulas of uncertainty
of other noise indicators.
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