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The rigorous solution describing the sound radiation by an arbitrary surface source located at the
bottom of a cylindrical open cavity embedded in a flat baffle has been obtained. The open cavities of
different shapes can be found in some architectural structures as well as are components of sensors,
musical instruments and vehicles. The presented formulas have been expressed in the form of infinite
sums. To use them, the infinite sums have to be truncated to the finite number of terms. Therefore, in
practice, the results obtain based on the proposed solution are not exact and their accuracy is determined
by the truncation error. The use of presented formulas is an alternative method for the finite element
method (FEM). However, taking into account that the calculation efficiency of FEM rapidly decrease
when a volume of considered region increases, the obtained in this study solution can be more useful in
some practical cases.

The approximated formula of a high computational efficiency has been presented for the sound pressure
in the far field. The sound radiation has been analyzed for a rectangular piston as a sound source.
The influence of cavity depth ratio on the radiation efficiency has been investigated. The cases for which
the cavity radiation efficiency can be approximately calculated from the formula valid for a baffled sound
source have been determined.
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1. Introduction

At present, in an urban environment, the acoustic
properties of objects which can generate some acous-
tic waves play an important role. For existing real vi-
broacoustic systems, the active vibration control meth-
ods have been proposed to modify structures vibra-
tions and consequently their acoustic radiation. These
methods have been developed for plates, device casings
as well as more complicated objects (Wiciak, Tro-
janowski, 2015; Leniowska, Mazan, 2015; Jeong
et al., 2016; Mazur, Pawełczyk, 2016; Wrona,
Pawełczyk, 2016; Prakash et al., 2016).

In the case of designed objects, the theoretical in-
vestigations are used to predict and optimized their
acoustic properties at the stage of construction. How-
ever, to use this methodology, the theoretical formulas
are necessary. Therefore, there are a number of stud-
ies which provide some theoretical models, formula-
tions as well as numerical methods which can be ap-

plied to analyze an acoustic behavior of different ob-
jects. The sound radiation of surface sources such as
plates has often been examined based on theoretical
models and mathematical methods (Rdzanek, 2016;
Unruh et al., 2015; Choi et al., 2014; Zawieska,
Rdzanek, 2007). In practice, some radiators are often
located inside regions such as, for example, acoustic
rooms, waveguides, canyons as well as cavities. Acous-
tic waves generated in these cases interact with the
regions walls which considerably change the acoustic
radiation. Hence, the theoretical analysis performed
for such vibroacoustic systems has to take into ac-
count some interference effects which makes it more
complicated. Based on advanced mathematical meth-
ods and numerical techniques, the solutions describing
the sound radiation have been presented for the acous-
tic rooms and waveguides (Meissner, 2013; Bhuddi
et al., 2015; Karban et al., 2016; Jurkiewicz et al.,
2011; Snakowska et al., 2017). Additionally, the
diffraction effect at the opening of a soft cylindrical
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duct has been investigated (Snakowska, 2008). The
acoustic behavior of different acoustic canyons has also
been discussed (Pelat et al., 2009; Szemela, 2015;
Lee, Kang, 2015).

Some problems related to the acoustic radiation by
cavities have been solved and discussed. The optimiza-
tion of cavity shape taking into account its acoustic
properties has been presented (Troian et al., 2016).
The acoustic resonance frequencies of the 2D and 3D
open cavity have been determinated (González et al.,
2013; Ortiz et al., 2016). Making use of the statistical
energy analysis, the interior noise of elongated cavity
has been analyzed (Yang, Cheng, 2016). The acoustic
behavior of cavities coupled with plates has been dis-
cussed. The time variation of vibroacoustic response
has been examined for the system cavity – plate in the
case when the plate is subjected to an arbitrary tran-
sient external excitation (Hasheminejad et al., 2012).
The rigorous formulas describing the sound radiation
of cylindrical cavity with a circular plate embedded at
its opening and two pistons located inside have been
obtained (Rdzanek et al., 2016).

From a practical standpoint, some open cavities are
interesting vibroacoustic systems. They can be found
in some architectural structures as well as are com-
ponents of sensors, musical instruments and vehicles.
Moreover, outlets of different devices and machines can
be considered as open cavities. Hence, there are many
objects which acoustic properties can be determined
based on the open cavity model.

The sound radiation by cavities can be solved with
the use of the finite element method (FEM). However,
an accuracy of this method is strongly influenced by an
elements size used for FEM calculations. Moreover, the
calculation efficiency of FEM rapidly decrease when
a volume of considered region increases. Therefore, the
mathematical formulas describing acoustic behavior of
considered objects are useful in many practical cases
as an alternative solution for FEM.

Making use of the modal decomposition and the
continuity conditions, the theoretical analysis of the
sound radiation has been performed in the case of
the rigid-walled open rectangular cavity with a sound
source located at its bottom (Szemela, 2017). The
formulas for the sound pressure inside and outside
cavity as well as for the sound power have been ob-
tained. The influence of the vibration frequency and
the sound source location on the acoustic behavior of
the considered vibroacoustic system has been investi-
gated. The presented results show some acoustic prop-
erties of open cavities with a sound source located at
the bottom. However, to better know the acoustic be-
havior of open cavities, the analysis of sound radiation
should also be performed for cavities of other shapes.
Moreover, it is of practical importance to investigate
the influence of the cavity depth on its acoustic radia-
tion.

So far, the rigorous formulas for the sound pressure
and sound power which can be used instead of the finite
element method in the case of the cylindrical rigid-
walled cavity with an arbitrary surface sound source
located at the bottom have not been presented in the
literature. Therefore, this study is focused on obtaining
these formulations based on the modal decomposition
and the continuity conditions. Additionally, the influ-
ence of cavity depth ratio on the radiation efficiency
has been investigated. Moreover, the cases in which
the cavity radiation efficiency can be approximately
calculated from a less complicated formula valid for
a baffled sound source have been determined. This can
be used to improve the numerical calculations for shal-
low cavities.

2. Statement of the problem

A cylindrical open cavity with rigid walls and an
opening embedded in a flat rigid and infinite baffle is
considered. Acoustic waves propagate inside the two
connected regions: the cavity interior is the region I
and the half space above cavity is the region II. The
cavity radius and depth are equal to a and H, respec-
tively. It has been assumed that acoustic waves are
generated by an arbitrary surface sound source located
at the cavity bottom. To describe the sound radia-
tion, the cylindrical coordinate system (r, ϕ, z) with
the origin at the central point of the cavity bottom
has been used (see Fig. 1). Additionally, the Carte-
sian coordinate system of the same origin has been
introduced. The analysis has been performed for the
steady-state and time-harmonic processes of the time
dependence given by the following function exp(−iωt)
where ω = 2πf is the vibration angular frequency, f is
the vibration frequency and i is the imaginary unit.
Moreover, it has been assumed that the same lossless,
isotropic, homogeneous medium of the density ρ and
with the sound speed c is inside as well as outside the
cavity. Only acoustic waves of small amplitude have
been analyzed. Hence, according to the acoustic field
linear theory, the sound pressure inside and outside the
cavity satisfies the following Helmholtz equation(

∇2 + k2
)
pβ(r, ϕ, z) = 0, β = 1, 2, (1)

where ∇2 = ∂2/∂r2 + (1/r)∂/∂r + (1/r2)∂2/∂ϕ2 +
∂2/∂z2, k = ω/c is the wave number, p1(r, ϕ, z) and
p2(r, ϕ, z) are the sound pressure for the region I
and II, respectively. Moreover, at the cavity open-
ing, the continuity conditions for the sound pressure
have to be imposed (cf. (Pelat et al., 2009)). The
fluid particle velocity up can be expressed at any field
point by the acoustic pressure p as follows: up =
(iωρ)−1[∂p/∂r, (1/r)∂p/∂ϕ, ∂p/∂z]. For any fluid par-
ticle adjacent to vibrating surface, it has been assumed
that upn = v

(sur)
n , where n is the surface normal versor
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and v(sur)
n is the normal component of surface velocity.

Finally, the following conditions can be formulated

∂p1

∂r

∣∣∣∣
r=a

= 0, (2)

∂p1

∂z

∣∣∣∣
z=0

= iωρvb(r, ϕ)=

{
iωρvS(r, ϕ) for S,

0 otherwise,
(3)

∂p2

∂z

∣∣∣∣
z=H

= iωρvH(r, ϕ)=


∂p1

∂z

∣∣∣∣
z=H

for Sop,

0 otherwise,

(4)

p1(r, ϕ,H) = p2(r, ϕ,H) for Sop, (5)

where S is the surface of a sound source, Sop is the
surface of the cavity opening, vb(r, ϕ) is the vibration
velocity at the cavity bottom, vS(r, ϕ) describes the
vibration velocity of sound source points and vH(r, ϕ)
denotes the vibration velocity in the plane z = H.
Equations (2) and (3) mean that the cavity walls are
perfectly rigid. The continuity for the pressure and
the particle velocity at the cavity opening is expressed
by Eqs. (4) and (5). Additionally, the condition from
Eq. (4) means that the cavity opening is embedded in
a perfectly rigid baffle. Taking into account that in the
region II, acoustic waves can be propagated to infin-
ity, the following radiation conditions have to be also
satisfied (Sommerfeld, 1964)

lim
R→∞

p2 = 0,

lim
R→∞

[
R

(
∂p2

∂R
− ikp2

)]
= 0,

(6)

where R =
√
r2 + (z −H)2. The Helmholtz equation

from Eq. (1) and the conditions given by Eqs. (2)–
(6) define the sound radiation problem which will be
solved.

3. Sound pressure

The sound pressure in the region I, similarly as in
the case of the cylindrical duct (cf. (Morse, Ingard,
1968)), can be presented in the following form

p1(r, ϕ, z) =

∞∑
m=0

∞∑
n=1

[
χ(c)
m,n(z) cos(mϕ)

+ χ(s)
m,n(z) sin(mϕ)

]
Jm(km,nr), (7)

where Jm is the Bessel function of order m, km,na =
gm,n, km,n is the wave number of the cavity mode
(m,n), gm,n is the eigenvalue related to the cavity

mode (m,n) calculated from the following eigenequa-
tion

mJm(gm,n) = gm,nJm+1(gm,n), (8)

and χ(c)
m,n(z) and χ(s)

m,n(z) are the functions to be found.
The proposed solution from Eq. (7) satisfies the bound-
ary condition given by Eq. (2). Then, inserting Eq. (7)
into Eq. (1) results in

∂2χ
(u)
m,n(z)

∂z2
+ γ2

m,nχ
(u)
m,n(z) = 0, (9)

where u ∈ {c, s}, γ2
m,n = k2 − k2

m,n. The solution of
the above equation can be formulated as

χ(u)
m,n(z) = A(u)

m,ne
iγm,nz +B(u)

m,ne
−iγm,nz, (10)

where the constants A(u)
m,n and B(u)

m,n are unknown. The
vibration velocity at the cavity bottom can be written
in the following form

vb(r, ϕ) =

∞∑
m=0

∞∑
n=1

[
ϑ(c)
m,n cos(mϕ)

+ ϑ(s)
m,n sin(mϕ)

]
Jm(km,nr), (11)

where

ϑ(c)
m,n=

εm
2πNm,n

∫
S

vS(r, ϕ) cos(mϕ)Jm(km,nr) dS,

ϑ(s)
m,n=

1

πNm,n

∫
S

vS(r, ϕ) sin(mϕ)Jm(km,nr) dS,

(12)

S is the sound source surface, εm = 1 for m = 0 and
εm = 2 when m > 0, and

Nm,n =
a2

2

(
1− m2

g2
m,n

)
J2
m(gm,n). (13)

Using Eqs. (7) and (11) and employing the boundary
condition from Eq. (3) leads to

B(u)
m,n = A(u)

m,n −
ωρϑ

(u)
m,n

γm,n
,

and

χ(u)
m,n(z) = 2A(u)

m,n cos(γm,nz)−
ωρϑ

(u)
m,ne−iγm,nz

γm,n
. (14)

Taking into account that the value of the sound pres-
sure has to be finite, it is necessary to assume that

γm,n =
√
k2 − k2

m,n for k > km,n and γm,n =

−i
√
k2
m,n − k2 when k < km,n.
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Making use of the Fourier series and the Hankel
transform (Debnath, Bhatta, 2015), the sound pres-
sure in the region II can be written as follows

p2(r, ϕ, z) =

∞∑
m=0

[
G(c)
m (r, z) cos(mϕ)

+ G(s)
m (r, z) sin(mϕ)

]
, (15)

where

G(u)
m (r, z) =

∞∫
0

K(u)
m (τ, z)Jm(τr)τ dτ, (16)

and the functions K(u)
m (τ) are to be determined. In-

serting the above solution into the Helmholtz equation
given by Eq. (1) yields

∂2K
(u)
m (τ, z)

∂z2
+ µ2K(u)

m (τ, z) = 0, (17)

where µ2 = k2 − τ2 with the following convention in-
troduced µ =

√
k2 − τ2 for k > τ and µ = i

√
τ2 − k2

for k < τ . The solution of Eq. (17), for which the value
of p2 is finite when z →∞, can be expressed as

K(u)
m (τ, z) = C(u)

m (τ)eiµz, (18)

where the functions C(u)
m (τ) are unknown. Using the

Fourier series and the Hankel transform, and based on
Eqs. (4), (7) and Eq. (14), the vibration velocity in the
plane z = H can be written in the following form

vH(r, ϕ) =

∞∑
m=0

[
T (c)
m (r) cos(mϕ)

+ T (s)
m (r) sin(mϕ)

]
, (19)

where

T (u)
m (r) =

∞∑
n=1

U (u)
m,n

∞∫
0

Vm,n(τ)Jm(τr)τ dτ, (20)

and

Vm,n(τ) =

a∫
0

Jm(km,nr)Jm(τr)r dr

=
a2

g2
m,n − (τa)2

[gm,nJm(τa)Jm+1(gm,n)

− τaJm(gm,n)Jm+1(τa)] , (21)

and

U (u)
m,n=

−2γm,nA
(u)
m,n sin(γm,nH)

iωρ
+ϑ(u)

m,ne
−iγm,nH . (22)

Combining Eqs. (15), (18), (19) and (20) and taking
into account the conditions from Eq. (4) yields

C(u)
m (τ) = ωρ

∞∑
n=1

U
(u)
m,nVm,n(τ)e−iµH

µ
. (23)

Finally, using Eqs. (15), (18) and (23), the sound pres-
sure outside the cavity can be written in the following
form

p2(r, ϕ, z) = ωρ

∞∑
m=0

∞∑
n=1

[
U (c)
m,n cos(mϕ)

+ U (s)
m,n sin(mϕ)

]
Lm,n(r, z), (24)

where

Lm,n(r, z) =

∞∫
0

Vm,n(τ)

µ
eiµ(z−H)Jm(τr)τ dτ. (25)

On the basis of Eqs. (7) and (24), it should be noted
that the continuity condition given by Eq. (5) is satis-
fied when
∞∑
q=1

χ(u)
m,q(H)Jm(km,qr) = ωρ

∞∑
q=1

U (u)
m,qLm,q(r,H) (26)

for 0 ≤ r ≤ a.
Then, multiplying the above equation by

Jm(km,nr)r, integrating over r from 0 to a, and
making use of the following orthogonality property

a∫
0

Jm(km,nr)Jm(km,qr)r dr = Nm,nδn,q,

where δn,q is the Kronecker delta, results in

χ(u)
m,n(H) =

ωρ

Nm,n

∞∑
q=1

U (u)
m,qξm,n,q, (27)

where

ξm,n,q =

∞∫
0

Vm,n(τ)Vm,q(τ)τ dτ
µ

. (28)

Inserting Eqs. (14) and (22) into Eq. (27) leads to the
following set of equations

2A(u)
m,n cos(γm,nH)− 2i

Nm,n

·
∞∑
q=1

γm,qA
(u)
m,q sin(γm,qH)ξm,n,q = ωρQm,n, (29)

where m = 0, 1, 2, ..., n = 1, 2, 3, ..., and

Qm,n =
ϑ

(u)
m,n

γm,n
e−iγm,nH

+
1

Nm,n

∞∑
q=1

(
ϑ(u)
m,qe

−iγm,qHξm,n,q

)
. (30)
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Based on the set of equations from Eq. (29), the con-
stants A(u)

m,n can be calculated. Then, the sound pres-
sure inside the cavity can be determined with the use
of the formulas given by Eqs. (7) and (14), and the
sound pressure outside the cavity can be obtained by
using Eq. (24).

4. Approximated formula for the sound pressure
in the far field

To determine the sound pressure outside the cav-
ity based on Eq. (24), it is necessary to calculate the
integrals given by Eq. (25) which is time consuming es-
pecially when a large number of cavity modes is used.
Hence, it is of great practical importance to obtain an
approximated formula for the quantity p2. It is possi-
ble for the field points located at a great distance from
the cavity opening. Introducing the spherical coordi-
nate system (rs, θs, ϕs) with the origin at the central
point of the cavity opening, i.e. at the point (0, 0, H)
of the Cartesian coordinate system, the sound pres-
sure in the region II can be formulated as follows (see
(Szemela, 2017))

p2(rs, θs, ϕs) = − iωρ
2π

a∫
0

2π∫
0

vop(r0, ϕ0)

·e
ikR

R
dϕ0r0 dr0, (31)

where vop(r0, ϕ0) is the distribution of vibration veloc-
ity at the cavity opening in polar coordinates, and

R =
√
r2
s + r2

0 − 2rsr0 sin θs cos(ϕs − ϕ0), (32)

is the distance between the fixed point of the cavity
opening and the fixed field point. Taking into account
that vop = − i

ωρ
∂p1
∂z

∣∣∣
z=H

and using Eqs. (7) and (14)

results in

vop(r0, ϕ0) =

∞∑
m=0

∞∑
n=1

[
U (c)
m,n cos(mϕ0)

+ U (s)
m,n sin(mϕ0)

]
Jm(km,nr0). (33)

In the case of the far field, i.e., when rs � a, the follow-
ing approximation can be used (cf. (Morse, Ingard,
1968))

eikR

R
≈ eik(rs−r0 sin θs cos(ϕs−ϕ0))

rs
. (34)

Then, inserting Eqs. (33) and (34) into Eq. (31) and
performing integration with the use of the following
series (McLachlan, 1955)

cos(w cosα) =

∞∑
s=0

εs(−1)sJ2s(w) cos(2sα),

sin(w cosα) = 2

∞∑
s=0

(−1)sJ2s+1(w) cos [(2s+ 1)α],

(35)

yields

p
(a)
2 (rs, θs, ϕs) =

(−i)m+1ωρ eikrs

rs

·
∞∑
m=0

∞∑
n=1

[
U (c)
m,n cos(mϕs)

+ U (s)
m,n sin(mϕs)

]
Vm,n(k sin θs), (36)

where p(a)
2 is the approximated value of the sound pres-

sure in the far field. Using Eq. (36) the calculations
time for the quantity p2 can be significantly reduced
in the case of field points located at a great distance
from the cavity opening.

5. Sound power

The time-averaged sound power radiated by the con-
sidered vibroacoustic system can be expressed as (cf.
(Rdzanek et al., 2016))

Π =
1

2

∫
S

p1(r, ϕ, 0)v∗S(r, ϕ) dS, (37)

where the symbol ∗ denotes the conjugate of a complex
quantity. Making use of Eq. (7) and (14), the above
formula can be written in the following form

Π=Πa + iΠr=π

∞∑
m=0

∞∑
n=1

Nm,n

[
F

(c)
m,n

εm
+
F

(s)
m,n

2

]
, (38)

where Πa and Πr denote the active and reactive sound
power, respectively, and

F (u)
m,n =

(
2A(u)

m,n −
ωρϑ

(u)
m,n

γm,n

)
ϑ(u)∗
m,n . (39)

The formula in Eq. (38) can be used for the sound
power calculations. However, for this purpose, the coef-
ficients ξm,n,q from Eq. (28) have to be calculated. This
allows the values of the constants A(u)

m,n to be deter-
mined by using the set of equations given by Eq. (29).

6. Sound radiation by a rectangular piston

As an example, the presented formulas have been
used to predict an acoustic behavior of the considered
vibroacoustic system with a vibrating rectangular pis-
ton located at the cavity bottom. The location of sound
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source central point is determined by the two coordi-
nates dx and dy of the Cartesian coordinate system
(see Fig. 1). The lengths of piston sides are equal to lx
and ly, and the side with the length lx is parallel to the
x axis. The sound source vibrations are time harmonic
with the amplitude v0. In order to use the presented
formulas for the sound pressure and sound power, it
is necessary to truncate the infinite sums which means
that only some cavity modes (m,n) can be taken into
account in the numerical calculations. This leads to
the truncation error. It has been assumed that all the
cavity modes of the modal numbers m,n ≤ W , where
W is the truncation constant, have been employed in
the numerical simulations. The truncation error can be
estimated as follows

E =
|V2q − Vq|
|V2q|

· 100%, (40)

where Vq is the value of quantity calculated when all
the cavity modes (m,n) with modal numbers m,n ≤ q
have been used in the calculations. The appropriate
value of W can be found by analyzing the value of the
truncation error.

a)

b)

Fig. 1. The considered vibroacoustic system: a) connected
regions: open cavity and the half space, b) cavity cross-
section with the rectangular piston located at the bottom
and the cylindrical coordinates r and ϕ of the field point P .

To analyze the sound radiation in the case of the
considered open cavity, it is necessary to calculate the
coefficients ξm,n,q from Eq. (28) and then to solve the
set of equations given by Eq. (29). The calculations of
ξm,n,q can be improved by using the following relation
ξm,n,q = ξm,q,n. The normalized sound pressure p/p0

and the normalized sound power Π/Π0, where p de-
notes p1 or p2, p0 = cρv0 and Π0 = cρSv2

0/2, can be
expressed by the following dimensionless parameters:

lx/a, ly/a, dx/a, dy/a, cavity depth ratio H/a and the
normalized angular frequency ka. In this study, the nu-
merical analysis has been performed for the normalized
sound pressure modulus and the radiation efficiency
σ = Πa/Π0. The three selected piston locations have
been analyzed: the location I – dx/a = dy/a = 0, the
location II – dx/a = 0.5 and dy/a = 0, and the loca-
tion III – dx/a = dy/a = 0.5.

6.1. Sound pressure

On the basis of Eqs. (7), (14) and (24), the norma-
lized sound pressure modulus has been analyzed in the
case when lx/a = 0.1, ly/a = 0.05 and H/a = 2.
Taking into account that the lowest eigenvalues of
the considered cavity equal g0,1 = 0, g1,1 = 1.84,
g2,1 = 3.05, g0,2 = 3.83 and g3,1 = 4.20, the numeri-
cal calculations have been performed for ka = 1.3, 2.6
and 9.1 so that the sound radiation can be investigated
in the cases when: only mode (0, 1) is cut on mode, only
modes (0, 1) and (1, 1) are propagated and a greater
number of cut on modes occur. In Figs. 2–6, the distri-
butions of the normalized sound pressure modulus have
been presented for the surfaces z = H/2 and z = 3H/2.
To determine the appropriate value of truncation con-

a)

b)

Fig. 2. The distribution of normalized sound pres-
sure modulus: a) |p1|/p0 inside the cavity for z =
H/2 (Eavg = 0.23%), b) |p2|/p0 outside the cavity
for z = 3H/2 (Eavg = 0.04%). It has been assumed
that ka = 1.3, W = 3 and the piston location III.
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a)

b)

Fig. 3. The distribution of normalized sound pres-
sure modulus: a) |p1|/p0 inside the cavity for z =
H/2 (Eavg = 0.09%), b) |p2|/p0 outside the cavity
for z = 3H/2 (Eavg = 0.11%). It has been assumed

that ka = 2.6, W = 5 and the piston location I.

a)

b)

Fig. 4. The distribution of normalized sound pres-
sure modulus: a) |p1|/p0 inside the cavity for z =
H/2 (Eavg = 0.24%), b) |p2|/p0 outside the cavity
for z = 3H/2 (Eavg = 0.44%). It has been assumed
that ka = 2.6, W = 5 and the piston location III.

a)

b)

Fig. 5. The distribution of normalized sound pres-
sure modulus: a) |p1|/p0 inside the cavity for z =
H/2 (Eavg = 0.41%), b) |p2|/p0 outside the cavity
for z = 3H/2 (Eavg = 0.36%). It has been assumed

that ka = 9.1, W = 8 and the piston location I.
a)

b)

Fig. 6. The distribution of normalized sound pres-
sure modulus: a) |p1|/p0 inside the cavity for z =
H/2 (Eavg = 0.20%), b) |p2|/p0 outside the cavity
for z = 3H/2 (Eavg = 0.28%). It has been assumed
that ka = 9.1, W = 8 and the piston location II.
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stant W , the following average truncation error has
been analyzed

Eavg =

N∑
j=1

Ej/N, (41)

where Ej denote the value of truncation error from
Eq. (40) calculated for a fixed field point and N is the
number of considered field points.

For all the presented in Figs. 2–6 distributions of
sound pressure modulus, the average truncation error
Eavg < 0.5% which proves that the obtained results
are accurate enough to be discussed. The values of
Eavg and truncation constant W have been given in
the figure descriptions. Figures 3 and 5 show that the
distribution of acoustic field inside as well as outside
the cavity is almost axisymmetric for the piston loca-
tion I. This means that a sound source with an arbi-
trary shape located at the central point of cavity bot-
tom can emit a nearly axisymmetric acoustic radiation.
For the piston location II and III, the distributions of
the quantities |p1| and |p2| are more complicated. Fig-
ure 2 shows that when ka = 1.3, the distribution of
the sound pressure modulus inside the cavity is asym-
metric with one maximum and one minimum, while the
distribution of this quantity outside the cavity is nearly
axisymmetric. This demonstrates that the sound radi-
ation inside the cavity is strongly influenced by the
asymmetric cut off modes. However, above the cavity
opening, the fundamental mode (0, 1) gives the great-
est contribution to the acoustic field. For the higher
frequencies, a greater number maxima and minima of
the sound pressure modulus are observed at some field
points (see Figs. 4 and 6). This effect is due to the in-
terference of short acoustic waves radiated directly by
the sound source and those reflected from the cavity
wall.

Based on the approximated formula from Eq. (36),
the distribution of sound pressure modulus in the far
field can be determined. To compare the exact value
of |p2| with its approximated value |p(a)

2 |, the following
relative error

Ea =

∣∣∣|p2| − |p(a)
2 |
∣∣∣

|p2|
· 100%, (42)

can be used. In Fig. 7, the quantity |p(a)
2 | and the cor-

responding relative error Ea have been presented as the
functions of the spherical coordinate θs. The approxi-
mated values of the sound pressure modulus have not
been illustrated at the field points with θs = π/2 which
is due to some great values of Ea. The numerical anal-
ysis has been performed for some selected values of the
spherical coordinate rs. The truncation error E given
by Eq. (40) estimated at all the analyzed field points
is less than 0.3% for ka = 1.3 and does not exceed
1.1% when ka = 2.6. This proves that the value of W

a)

b)

Fig. 7. The normalized sound pressure modulus in the far
field |p(a)2 |/p0 as a function of the spherical coordinate θs
for ϕs = 0 and the piston location III. The line keys: solid
– ka = 1.3, W = 3 and rs = 5a (t

(avg)
r = 230), dashed

– ka = 1.3, W = 3 and rs = 10a (t
(avg)
r = 390), dashed-

dotted – ka = 1.3, W = 3 and rs = 20a (t
(avg)
r = 430), and

dotted – ka = 2.6, W = 8 and rs/a = 30 (t
(avg)
r = 440).

has been correctly chosen. In the case of ka = 1.3,
the sound pressure modulus in the far field slightly
varies with the value of θs (see Fig. 7a). The quantity
|p(a)

2 | is significantly influenced by the value of θs when
ka = 2.6 and rs = 30a. In this case, the minimal value
of the sound pressure modulus occurs when θs is equal
to about π/8. Some greater values of |p(a)

2 | are observed
when θs is close to zero which can be due to acoustic
waves propagated directly by a sound source located at
the cavity bottom. Moreover, the value of sound pres-
sure modulus increases as θs tends to π/2 which can
be caused by the additional contribution of acoustic
waves reflected from the flat baffle in which the cavity
is embedded. Figure 7b proves that the approximated
formula from Eq. (36) is accurate enough to be useful
for the calculations of sound pressure modulus in the
far field. The increase in the value of rs causes that the
approximated value |p(a)

2 | becomes more accurate. This
effect has been illustrated in Fig. 7b for ka = 1.3. The
value of Ea is less than 1.7% for rs = 5a, Ea < 0.6%
if rs = 10a and Ea does not exceed about 0.3% when
rs = 20a. Moreover, the formula from Eq. (36) can also
be employed for higher frequencies. For example, it is
possible to obtain the approximated value of |p2| for
ka = 2.6. The relative error Ea is less than 4% when
rs = 30a. The exception is the narrow range of θs in
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which the value of sound pressure modulus is close to
zero.

The approximated formulas are used to reduce cal-
culations time. Hence, it is of practical importance to
compare the computational efficiency of the approx-
imated formula with the computational efficiency of
the exact one. For this purpose, the following average
relative calculations time has been defined

t(avg)r =
1

N

N∑
j=1

t
(j)
e

t
(j)
a

, (43)

where N is the number of analyzed field points and
t
(j)
e and t

(j)
a are calculations times of the sound pres-

sure modulus at the fixed field point with the use of
the approximated and exact formula, respectively. Es-
timating the times t(j)e and t

(j)
a , it has been assumed

that the necessary values of constants A(u)
m,n are calcu-

lated and can be used for the calculations of quantity
|p2| and |p(a)

2 |. The average relative calculations time
t
(avg)
r has been determined for all the curves presented

in Fig. 7a and its values have been given in the de-
scription of this figure. It has been estimated that the
approximated formula given by Eq. (36) allows the cal-
culations time to be reduced even more than 400 times
for ka = 1.3 as well as ka = 2.6. This shows a high
computational efficiency of the obtained approximated
formula.

6.2. Radiation efficiency

The formula from Eq. (38) can be used to cal-
culate the radiation efficiency σ as well as the nor-
malized reactive sound power Πr/Π0. Taking into ac-
count that the radiation efficiency can be measured,
this quantity is interesting from a practical point of
view. The series given by Eq. (38) is fast convergent
for the real part and slowly convergent for the imagi-
nary one. This causes that the numerical calculations
of Πr are troublesome and time consuming. Therefore,
only the radiation efficiency has been analyzed in this
study.

The formula given by Eq. (38) is valid for the cav-
ity of any depth H including also the specific case of
H = 0, i.e., when a sound source is embedded in a flat
rigid baffle. The radiation efficiency of a baffled rectan-
gular piston σb can be obtained based on (Zawieska,
Rdzanek, 2007) and expressed as follows

σb =
1

4π2k2lxly

1∫
0

2π∫
0

M(τ, α)M∗(τ, α)√
1− τ2

τ dτ dα, (44)

where

M(τ, α) =
2
(
1− e−iklxτ cosα

) (
1− e−iklyτ sinα

)
τ2 sin 2α

. (45)

The formula for σ is more complicated and has a lower
computational efficiency than the formula obtained for
a baffled sound source. Moreover, it is obvious that the
radiation efficiency of the cavity with a sound source
located at its bottom assumes similar value as the radi-
ation efficiency of the same source embedded in a rigid
baffle when the cavity depth H is small enough. Hence,
it is of practical importance to determine the value
of depth ratio H/a for which the radiation efficiency
of the analyzed vibroacoustic system can be approx-
imately calculated from the less complicated formula
valid for baffled piston. In particular, the formula from
(44) can also be used to check the validity of the pre-
sented solution for H = 0. To conveniently perform
a further analysis, the following relative error Eb has
been defined

Eb =
|σb − σ|
σb

· 100%. (46)

The above quantity has been analyzed as a function of
the normalized angular frequency ka within the lim-
its ka ∈ (0, 13) for pistons with different lengths of
sides assuming that ly = lx/2. Moreover, some selected
sound source locations have been considered. To check
the validity of the formula form Eq. (38), the relative
error Eb has been analyzed whenH = 0. The investiga-
tions have been performed for the truncation constant
W = 30 and lx/a = 0.05, 0.1, 0.2, and 0.4. The calcu-
lated values of Eb are less than 0.05% for all the an-
alyzed cases. This shows that the results obtained for
the piston located at the bottom of cavity with H = 0
agree with those obtained for the baffled piston. Some
small differences between the calculated values can be
caused by the use of finite number of cavity modes as
well as by some numerical errors. In Figs. 8 and 9, the
quantity Eb has been presented as a function of ka for
H/a = 0.01 and 0.05. The behavior of Eb for two se-
lected pistons has been illustrated in Fig. 8 while Fig. 9
shows the values of Eb in the case of two different pis-

Fig. 8. The relative error Eb given by Eq. (46) as
a function of the normalized angular frequency ka for
the piston location III, ly = lx/2 and W = 15. The
line keys: solid – H = 0.01a and lx = 0.1a, dashed –
H = 0.01a and lx = 0.4a, dashed-dotted – H = 0.05a
and lx = 0.1a, and dotted – H = 0.05a and lx = 0.4a.
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Fig. 9. The relative error Eb given by Eq. (46) as
a function of the normalized angular frequency ka for
lx/a = 0.1, ly/a = 0.05 and W = 15. The line keys:
solid – the piston location I and H/a = 0.01, dashed –
the piston location II and H/a = 0.01, dashed-dotted
– the piston location I and H/a = 0.05 and dotted –

the piston location II and H/a = 0.05.

ton locations. It can be concluded that the radiation
efficiency of cavity when its depth ratio H/a ≤ 0.01,
can be calculated from the less complicated formula
given by Eq. (44) with the relative error Eb less than
about 1.4%. The value of σ can also be estimated based
on the formula valid for baffled piston with the rela-
tive error Eb less than about 8% when H/a = 0.05 (see
Figs. 8 and 9). However, placing the sound source at
the bottom of cylindrical resonator instead of in a flat
baffle significantly modifies its radiation efficiency in
the case of H/a > 0.05.

The damping effects have been neglected in this
study. However, they play an essential role in the case
of the resonance frequencies and therefore, the quan-
tity σ has not been calculated for ka = gm,n. In Fig. 10,
the radiation efficiency of baffled piston and the radia-
tion efficiency σ for the depth ratio H/a = 0.2, 0.5, and
2 have been presented as the functions of ka. The quan-

Fig. 10. The radiation efficiency of the rectangular pis-
ton σb and the radiation efficiency of the cylindrical
cavity σ as the functions of the normalized angular
frequency ka for the piston location III, lx/a = 0.1,
ly/a = 0.05 and W = 15. The line keys: solid – σb,
dashed – σ for H/a = 0.2, dashed-dotted – σ for

H/a = 0.5 and dotted – σ for H/a = 2.

tity σ has been calculated with the acceptable value of
the truncation error E which does not exceed 0.46%.
Figure 10 exhibits that the acoustic behavior of consid-
ered cavity strongly depends on its depth. In the case
when H/a ≥ 0.5, the resonator in the form of open
cavity causes that the maxima of radiation efficiency
occur for some values of ka. This effect, similarly as
in the case of the baffled piston, is not observed for
the shallow cavity with H/a ≤ 0.2 (see Fig. 10). At
low frequencies, when ka < 0.25, the quantities σ and
σb assume some similar values even in the case of the
deep cavity with depth ratio H/a = 2.

The quantity σ as a function of ka has been pre-
sented in Fig. 11 for some selected piston locations
with the truncation error E < 0.44%. It is notewor-
thy that the influence of piston location on the value
of σ is significant only when ka > 1.6 (see Fig. 11).
This acoustic behavior can be explained by the fact
that in the case when ka < g1,1 only the cavity mode
(0, 1) is the cut on mode. Hence, only acoustic waves
related to this mode are propagated. Thus, it can been
concluded that the acoustic energy propagated by the
fundamental mode at low frequencies does not consid-
erably depend on the piston location and the acoustic
power emitted by the higher evanescent modes is neg-
ligible small. When ka > g1,1, the influence of piston
location on the radiation efficiency can be significant.
For example, when 2 < ka < 3.5, the quantity σ as-
sumes greater values for the piston locations II and III
than for the piston location I.

Fig. 11. The radiation efficiency σ as a function of the
normalized angular frequency ka for H/a = 1, lx/a =
0.1, ly/a = 0.05 and W = 15. The line keys: solid – the
piston location I, dashed – the piston location II and

dotted – the piston location III.

7. Conclusions

Making use of the modal decomposition and the
continuity conditions, the rigorous solution describing
the sound radiation of the cylindrical open cavity em-
bedded in the rigid infinite baffle has been obtained for
the general case of an arbitrary surface sound source
located at the cavity bottom. The use of the proposed
formulas is an alternative methodology to the finite ele-
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ment method. The accuracy of results obtained based
on the presented solution depends on the truncation
error which is due to the fact that, in practice, only
finite number of cavity modes can be used in the nu-
merical calculations.

Additionally, to improve the numerical calculations
of the sound pressure outside the cavity, the approxi-
mated formula of a high computational efficiency and
valid for the far field has been formulated. In order
to investigate some general acoustic properties of the
considered vibroacoustic system, the numerical anal-
ysis has been performed in the case when the sound
source is a rectangular piston. The distribution of the
sound pressure modulus has been illustrated for some
selected piston locations as well as for different values
of the normalized angular frequency. The performed
numerical simulations have shown that the use of the
obtained approximated formula allows the calculations
time of the sound pressure modulus to be reduced even
more than 400 times.

In order to check the validity of the obtained so-
lution, the radiation efficiency of the piston located at
the bottom of cavity with depth equal to zero has been
compared with the radiation efficiency of the baffled
rectangular piston. An excellent agreement has been
achieved. Based on the numerical analysis, it can be
concluded that placing the sound source at the bottom
of the shallow cavity with depth ratio less than or equal
to 0.01 instead of in a flat baffle does not considerably
change its radiation efficiency. Hence, the radiation
efficiency of shallow cavities can be calculated from
the less complicated formula valid for baffled sound
source which allows the calculations time to be signif-
icantly reduced. The performed numerical investiga-
tions demonstrate that the radiation efficiency of the
considered cavity is strongly influenced by its depth.
For the cavity with depth ratio less than or equal to 0.2,
the maxima of radiation efficiency, similarly as in the
case of the baffled piston, are not observed for any fre-
quency. They occur in the case of the cavity with depth
ratio greater than or equal to 0.5. When the normalized
angular frequency is less than 0.25, the radiation effi-
ciencies of cavities with different depths assume similar
values as the radiation efficiency of the baffled sound
source. The piston location does not considerably influ-
ences the radiation efficiency when the normalized an-
gular frequency is smaller than about 1.6. This acoustic
behavior is due to the fact that, at low frequencies, the
greatest contribution to the radiation efficiency has the
fundamental cavity mode and the acoustic energy ra-
diated by this mode is not significantly dependent on
the piston location.

Although the numerical analysis has been per-
formed assuming that the sound source is the rectangu-
lar piston, the formulated herein conclusions show the
nature and some general properties of the considered
vibroacoustic system.
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