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Five models and methodology are discussed in this paper for constructing classifiers capable of rec-
ognizing in real time the type of fuel injected into a diesel engine cylinder to accuracy acceptable in
practical technical applications. Experimental research was carried out on the dynamic engine test facil-
ity. The signal of in-cylinder and in-injection line pressure in an internal combustion engine powered by
mineral fuel, biodiesel or blends of these two fuel types was evaluated using the vibro-acoustic method.
Computational intelligence methods such as classification trees, particle swarm optimization and random
forest were applied.
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1. Introduction

Proper engine performance control is directly re-
lated to the recognition of the fuel used, as the engine
power and the composition of exhaust gases depend on
fuel properties (Morón-Villarreyes, 2007). Diesel
fuel used in internal combustion (IC) engines is a mix-
ture of several dozen constituents, with 7% of biodiesel
as a blend component. Biofuels are produced from
different plant materials, such as rapeseed, soybean,
olives, corn, jatropha, coconuts, sunflowers, peanuts or
fish oil (Sakthivel, 2016) depending on their avail-
ability. While the required ranges for the fuel parame-
ters are generally available (Safety Data Sheets), accu-
rate values of physical and chemical properties are the
trade secrets of fuel manufacturers. There are a number
of factors that may affect fuel properties. These are im-
proper storage, transportation or unfair practices of in-
termediaries. The actual fuel composition may also be
altered by the left residue in the fuel tank mixed with
new fuel. Unstable properties of a combusted fuel im-
pede the control of engine operation, alter the exhaust
composition, and contribute to generating more noise.

Fuel type recognition in laboratories is conducted
through very accurate and expensive devices that anal-
yse fuel chemical composition and physical characteris-
tics. In the field, portable analysers (relatively costly)
are used, for example, ERASPEC fitted with an in-

terferometer operating within a wavelength range 630
to 4000 cm−1, which allow performing spectral analy-
ses and determining physical and chemical parameters
such as density, cetane number and aromatic content.
The long measurement time, about 60 seconds, can be
a limitation (Teixeira et al., 2008).

The authors of this article propose the vibro-
acoustic method for recognizing injected fuel types but
by making use of experimentally obtained indicator di-
agrams of pressure in the cylinder and in the injec-
tion line (Kekez, Radziszewski, 2011). The purpose
of this study is to construct models for the real time
recognition of fuel grade injected into a diesel engine,
with an accuracy of not less than 95%. The models will
use the descriptors of pressure in the combustion cham-
ber or injection piping and the algorithms based on ar-
tificial intelligence methods for implementing them in
8-bit microcontrollers. The fuel should be recognized
after refuelling, under stationary operation of the en-
gine and within not more than a few seconds.

2. Vibro-acoustic monitoring and diagnostics
of an internal combustion engine

Reciprocating machinery, such as the internal com-
bustion (IC) engine, generates disturbances that in-
duce vibration and noise. The key vibration and
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noise sources are classified as mechanical, aerody-
namic and fuel combustion process related. The dis-
turbances propagate through air, solids or both of
these media, and tend to interact. Vibration, stress
waves or noise measuring systems collect condition
monitoring and fault diagnostics data for analysis.
As a transducer is a part of the signal path, care
must be used when mounting it so that disturbance
measurands can be evaluated with the lowest possi-
ble uncertainty. Each mechanical system has its own,
characteristic vibro-acoustic signature which is a sig-
nal measured under defined operating conditions of
that system. The challenge is to decide which types
of failure and under which conditions can use vibro-
acoustic measurement as an indicator, and to select
the right transducer and adequate diagnostic technique
(Delvecchio et al., 2018). Structural resonance-based
monitoring and diagnostic methods use the informa-
tion generated by a range of impulsive sources, which
can include piston slap, engine knock, misfiring, chain-
sprocket, injector faults. Vibration signals are mea-
sured by accelerometers fixed on the engine block.
The typical frequency response range is 10 kHz. In
(Szymański, Tomaszewski, 2016), an experimental
diagnostic model is proposed that is based on reso-
nance vibration frequency data collected from IC en-
gine sub-assemblies during impact excitations. The
method uses eigenfrequency band bound with the re-
action forced by an impulse.

To analyse the combustion processes, the trans-
ducer (piezoelectric crystal sensor or an optical sen-
sor) is placed inside the combustion chamber (Payri
et al., 2010). Piezoelectric properties of materials (e.g.
SiO2, LiNbO3, or LiTAO3) are strongly temperature-
dependent – they decline with the rising temperature.
A rapid decrease in piezoelectric properties of silicon is
observed at a temperature of 523 K while at 846 K the
piezoelectric properties disappear. Gallium orthophos-
phate is stable up to the temperature of 1206 K and its
sensitivity remains constant up to 773 K. By the rea-
son of the above, particular attention should be paid
to maintaining low (below the Curie point) and stable
working temperature of the piezoelectric transducer.
A variety of piezoelectric transducer designs are used
to indicate a diesel engine, typically cooled with wa-
ter. Cooling with a liquid prevents the transducer from
overheating, reduces thermal drift, prevents the reduc-
tion in insulation resistance, and enables installation
of the transducer directly in the combustion chamber.
In-cylinder pressure signals are indicative of the rate of
pressure rise, indicated mean effective pressure, com-
bustion phasing, heat release and ignition delay for dif-
ferent working conditions (Maurya et al., 2013).

Most promising approaches to IC engine condition
monitoring include the techniques relying on sound
pressure (SP) and acoustic emission (AE) signals. AE
measurement techniques involve the detection of elas-

tic waves, usually within a range of 0.1 to 1 MHz
(Ranachowski, Bejger, 2005). AE methods are
used for detection of exhaust valve faults, misfire, in-
jector faults, and diesel knock (Lowe et al., 2011).
SP signals measured remotely without contact within
the broad frequency range of 20 Hz–20 kHz (Deptuła
et al., 2016) are mainly used to identify engine noise
sources (combustion/mechanical), decompose pure air-
borne signals into their sources (alternator, tur-
bocharger, ventilation fan) and detect major sources
of engine noise, i.e. piston slap, advanced/delay of in-
jection (Albarbar et al., 2010). Problems can occur
due to the high level of masking effect from background
noise in the locations where SP signals are measured.
Continuous Wavelet Transform or Discrete Wavelet
Transform and independent Component Analysis can
be adopted to extract the informative content from
the real noise sources, but as the surrounding noise is
neither white, nor harmonic, nor stationary, the sepa-
ration techniques may be problematic (Figlus et al.,
2014). In enclosed spaces, the characteristics of the
sound source are influenced by reflection or inference
from other signals. Time domain analyses are more dif-
ficult to interpret than the results of frequency domain
analyses. No criterion for the number and position of
microphones capturing SP signals has been well de-
fined. The most common technique for monitoring and
diagnosing IC engine condition using SP signals is the
time-frequency analysis, the results of which are repre-
sented as a three-dimensional graph. The use of three-
dimensional graphs may be inefficient in the case of de-
riving simple features and complex decision algorithms
need to be used in analysis (Delvecchio et al., 2018).

A non-intrusive methodology based on vibration
and pressure levels measured on cylinder heads is pro-
posed in (Barelli et al., 2009). Both signals are
strictly related to the phenomena inside the cylinder,
depending on the combustion frequency. Close rela-
tionships between the combustion process and the vi-
bration and noise in the engine were also demonstrated
in (Chiatti et al., 2015).

Vibro-acoustic methods have been used for fuel
recognition. Authors in (Hardenberg, Hase, 1979)
demonstrated that the change in the fuel cetane num-
ber affected the angle of self- ignition delay and com-
bustion process. In (Elghamry et al., 1998), the au-
thors measured acoustic emission, vibration and pres-
sure in a gaseous fuel Perkins engine to find that
AE signal parameters could be used to evaluate mix-
ture quality, and the vibration and in-cylinder pres-
sure data could be used for fuel type identification.
In (Valencia, Armas, 2005), the fuel type was rec-
ognized based on the cetane number determined via
the analysis of in-cylinder pressure in a marine engine.
Flekiewicz (2007) used the vibro-acoustic method
based on the measurement of cylinder block vibra-
tions in a petrol- and gas-fuelled engine. The contin-
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uous wavelet transform was used to analyse acceler-
ation. The relationship between the time derivative
of the wavelet coefficient and the type of fuel was
demonstrated. Attempts to identify fuel in a spark ig-
nition engine through vibration analysis were made by
(Gravalos et al., 2013), who used RMS values of fil-
tered acceleration signals to identify unleaded petrol
from blends of ethanol or methanol, however, the per-
centage of the blends could not be identified. An al-
gorithm for identifying the type of fuel used in spark
ignition engine was proposed. The object of the study
in (Grajales et al., 2017) was to assess the influence
of different blends of petrol and ethanol (E8, E20 and
E30) on the spectral composition of vibration signals
collected from the engine operating under simulated
misfire. Accelerometers were installed at three points,
and the measurement time was 2 seconds. Normal FFT
and high frequency (Envelope, Spike Energy and Peak
Value) analysis of the signals indicated no significant
differences between blends. Fuel blend classification
was possible after evaluation of the statistical features
mean, RMS and energy in the spectrum from the Peak
Value, using the filters: high-pass at 5 kHz, band-pass
at 5–7 kHz and 5–10 kHz. Since the vibration and AE
measurements and their analyses are difficult to con-
duct during typical vehicle operation, the use of this
method is limited.

3. Test facility

The test facility used in the experiments consisted
of a medium-speed aspirated, compression ignition en-
gine with direct injection, a water brake and a con-
trol unit for controlling the facility and displaying en-
gine and brake operation parameters. A Perkins three
cylinder AD3.152 UR engine was used in the tests.
The design of the test facility and the schematic of the
measurement paths are reported in (Ambrozik et al.,
2014). The experiments on the test bench (Kekez,
Radziszewski, 2011) included the measurement of
fuel injection line pressure, in-cylinder pressure and
injector needle lift. The in-cylinder pressure measure-
ments were made using the water-cooled piezoelec-
tric sensor AVL QC34D, mounted in the cylinder
head. Large changes in in-cylinder temperature and
the strains on the membrane of the pressure transducer
made the relative error of maximum pressure measure-
ment amount to about 1%. The pressure in the fuel
injection pipes was measured using the CL31 ZEPWN
Marki transducer. The parameters of the piezoelectric
transducers used for pressure measurements are com-
piled in Table 1.

All parameters were measured as a function of
crank angle, with a resolution of 1.4◦, which provided
512 measuring points per one engine duty cycle.

The results used in this paper were from the tests of
the engine operating at full load and at the crankshaft

Table 1. Selected specification data of the transducers used
for measuring pressure in the cylinder and injection pipes

(Bąkowski, Radziszewski, 2015).

Parameter QC34D AVL CL31 ZEPWN
Marki

Measuring range 0–25 MPa 0–100 MPa

Sensitivity 190 pC/MPa 126 pC/MPa

Nonlinearity ≤ 0.2% ≤ 0.5%

Resonance frequency 69 kHz 50 kHz

Capacitance 10 pF 8 pF

Operating temperature 293–353 K 253–323 K

speeds ranging from 1000 to 2000 rpm. Five different
fuels were used: diesel, RME (rapeseed oil methyl
esters) and blends of these two fuels, B10, B20 and
B30, containing 10, 20 and 30% of RME, respectively.
The values for the 50 full duty cycles were recorded
per kind of operation conditions. Indicator diagrams,
acquired in this way, were averaged thereafter. Of the
measured signals, the indicator graphs of pressure in
the cylinder and in the injection line are the most
important when identifying the fuel type. Figure 1
shows a graph of cylinder pressure dependence on
a crank angle (CA) for a diesel engine powered by
diesel fuel or RME for an example of selected three
crankshaft speeds. These graphs have common char-
acteristics, independent of the type of fuel, and others
that distinguish them. For the full load operation of
an engine running on diesel fuel, as shown in Figure
1a, the intense pressure increase starts in the range
of 3.5 MPa to 4 MPa for CA from 353◦ to 359◦. The
position of the point representing maximum pressure
is different at each rotational speed and does not go
beyond 8 MPa to 8.8 MPa. For the full load operation
of an engine running on RME, as shown in Fig. 1b, the
intense pressure increase starts in the range of 3.3 MPa
to 3.9 MPa for CA from 351◦ to 357◦. The position of
the point representing maximum pressure is different
for each rotational speed and does not exceed within
8 MPa to 8.5 MPa. With the engine fueled with B10,
B20, B30, the above differences for individual fuels
were the easiest to observe at 1200 rpm. – then the
intense increase in pressure caused by spontaneous
combustion starts in the range of 2.8 MPa to 3.2 MPa
and at 352◦CA. The position of the point representing
maximum pressure is different for each fuel and stays
within 8.3 MPa to 8.6 MPa. It should be noted that
the parameters indicated may be different for each
engine type. This necessitates experimental research
for each type of engine of interest. The CA range
between 337.5◦ and 375.5◦ was taken into account to
find the maximum and minimum pressure points in
the cylinder. The minimum value was at 337.5◦CA.
The CA range was chosen so that the valves were
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closed and the amount of data for the calculations did
not exceed the capacity of the 8-bit microcontroller.

a)

b)

Fig. 1. In-cylinder pressure pc waveform for selected ro-
tational speeds of the engine operating at full load and

powered with (a) diesel fuel or (b) RME.

4. Selected descriptors of pressure changes

Random disturbances in the operation of cyclic mo-
tors cause varied characteristics of the subsequent duty
cycles even in the steady state. Parameters describing
the IC engine unique operating characteristics can be
divided into four groups related to: in-cylinder pressure

distribution, the process of heat release, the develop-
ment of the flame front, the removal of exhaust gas.

In the group of parameters related to the in-
cylinder pressure, we can distinguish: maximum pres-
sure, the CA at which maximum pressure or maximum
pressure increase occurs, maximum pressure increase,
and mean indicated pressure. Parameters containing
the most information about the history of the com-
bustion heat release are: maximum combustion heat
release rate, maximum fuel mass burning rate, igni-
tion delay angle, combustion duration angle, interval
of crankshaft rotation from the ignition angle to the
angle at which a portion of fuel mass is burned. The
parameters defining the in-cylinder pressure are most
commonly used, mainly because of the ease of per-
forming experiments. The combustion-related parame-
ters are determined after analyzing the pressure graphs
and using the thermodynamic heat release model. The
values of those signals are used to control the engine
operation and for diagnostic purposes (Maurya et al.,
2013; Yoon et al., 2007).

Known in-cylinder pressure changes and adequate
thermodynamic models allow the calculation of the pa-
rameters needed to control the engine operation: maxi-
mum in-cylinder pressure pcmax, indicated mean effec-
tive pressure, and the crank angle at which 50% com-
bustion heat was released (αq50). To determine αq50
with due uncertainty, adequate thermodynamic mod-
els have to be used, which makes this method difficult
and time consuming. For the same reasons, other de-
scriptors are also applied, such as the CA at which
pcmax appears, the maximum value of the slope of the
tangent line to the pressure curve. The first and sec-
ond derivative of the pressure curve with respect to
the crankshaft rotation angle allows determining the
start of self-ignition or the coefficient of variation of
the pressure signal.

Statistical and metrological analyses showed that
the maximum values of pc signal recorded in consecu-
tive duty cycles could be considered to be stationary
under all operating conditions. The verification of the
maximum values of the pc signal with the normal dis-
tribution did not provide any grounds to reject the
null hypothesis at the 5% significance level. Standard
uncertainty of the in-cylinder pressure calculated for
a type B evaluation was uB = 0.046 MPa for uniform
distribution. This analysis allowed determining pres-
sure mean values for all CAs at which pressure had
been recorded. The pressure mean values with respect
to the i-th crank angle can be determined according to
the following algorithm

pc(i) =
1

50

50∑
j=1

pc(i, j), (1)

where j is the number of the duty cycle and takes
values from 1 to 50, and i is the crank angle index,
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for which the mean value is determined, and which
takes values from 1 to 512. After determining p̄c(i),
pressure pc deviations from the mean values can also
be calculated, according to the following equation

∆pc(i, j) = pc(i, j)− pc(i). (2)

It was demonstrated in (Bąkowski, Radziszew-
ski, 2015) that the signal of the sum of squared devia-
tions (

∑
∆p2c) determined for particular crank angles

can be used to find the values of the combustion onset
angles (αps) and those angles for which the heat release
rate reaches its maximum (αQ̇max). Determining the
value of this descriptor does not require a lot of com-
puting power and is even easier than determining the
coefficient of standard deviation or performing a FFT
analysis of the pressure signal. It should also be noted
that the algorithms for determining descriptors based
on variation coefficients are fairly simple to implement,
do not require high-power processors or a long process-
ing time, i.e. about 0.02 seconds. This allows their real
time application.

Figure 2 shows an example of a graph for the
sum of in-cylinder pressure squared deviations from
its mean values (

∑
∆p2c) with determined angles αps

and αQ̇max marked. Angles αps and αQ̇max determined
based on this graph amount to αps = 353.0◦ and
αQ̇max = 355.8◦ for the diesel-powered engine oper-
ating at full load at a speed of 1200 rpm.

Fig. 2. Sum of squared in-cylinder pressure deviations
∆pc(i, j) from the mean values for the first two duty cycles
– for the diesel powered engine operating at full load at

a speed of 1200 rpm.

Based on the analysis of the pressure signal descrip-
tors, the authors decided to use further in the article
the minimum or maximum pressure in the cylinder or
in the injection lines and the CA of the maximum heat
release rate for fuel type recognition. Recognition ef-
fectiveness was assumed to be the usefulness criterion
for these descriptors.

5. Fuel recognition models

Computational intelligence methods (Sakthivel,
2016; Ruiza et al., 2017), including artificial neural

networks, which in many cases (Pietraszek et al.,
2014) allow building accurate classifiers, are used in the
control or modelling (Brzozowski, Nowakowski,
2014) of IC engine work. Unfortunately, neural net-
works comprehensibility and transparency are low in
comparison to that of classification trees. Moreover,
the relatively long time needed to build the classifier
(or a need of high computational power) is another ob-
stacle for the user. Typically, all combinations of the
network learning method, network architecture param-
eters (number of neurons in the hidden layer) and acti-
vation function (sigmoid or radial-basis function) must
be checked. For these reasons, it was decided to test the
possibility of using other artificial intelligence methods
in fuel recognition models.

5.1. Application of classification trees

Decision trees (more precisely, classification trees)
are applied to fuel type recognition on account of
their advantages, including a short time needed to
build a classifier, faster fuel recognition by the clas-
sifier built (a decision tree), an accessible form of the
classifier, and the possibility of justifying the decision
being made. Further in the article, terms “classifica-
tion tree” and “decision tree” are used interchange-
ably. The C5.0/See5 system was chosen from among
available software for its quick and very good results
(accurate classifiers), as confirmed by the authors’ ex-
perience (Kekez et al., 2016). To construct a decision
tree, a training dataset needs to be built. The train-
ing data was built based on the average values of in-
cylinder and/or in-injection line pressure at more than
ten/several dozen crank angles for which the measure-
ments were made.

To build an accurate classifier, it is essential to
select adequate descriptors of in-cylinder pressure
changes. The training dataset consisted of records con-
taining four input variables: the maximum (x1), and
minimum (x2) pressure in the cylinder, and the maxi-
mum (x3) and minimum (x4) pressure in the injection
line for the investigated crack angle range – Model 1.
The output variable in the dataset was the fuel type
(y). Model 1 contained a total of five variables. The
maximum cylinder pressure varies with the engine ro-
tational speed and type of fuel tested. The largest dif-
ferences between maximum cylinder pressure values for
different fuels occur at the speed of 1200 rpm, there-
fore the data for this rotational speed was used to pre-
pare the training sets for this classifier and for those
which will follow. For building the first classifier, the
measurement data was averaged for all 40 possible con-
secutive work cycles taken from the 50 cycles recorded
for a given fuel. The resultant dataset comprised 11
records for each fuel type (Kekez et al., 2016). In less
than 0.05 s, C5.0/See5 software produced a relatively
simple classifier which recognized the fuel type with
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100% accuracy on the training set. The classifier has
a form of a decision tree with five leaves, and can be
converted to an equivalent set of rules (Fig. 3). There is
no variable x4 in the derived classifier, because decision
tree algorithms do not always use all input variables,
(but only those that in a given node make it possible to
split the dataset into groups that correspond to each
decision).

Fig. 3. Model 1 classifier of fuel recognition, using the classi-
fication trees method, four input variables, C5.0/See5 soft-
ware and measurement data from 40 consecutive engine

cycles.

The predictive accuracy of the classifier was tested
using k-fold cross validation (Witten, 2005) for k = 5,
k = 10 or k = 11, and the result achieved was 92.7%.
With the leave one out method for k = 55, the accu-
racy increased to 96.4%. The strength of the proposed
model is high classification accuracy and a small num-
ber of simple rules. The limitation is the large number
of consecutive engine cycles needed to identify the fuel
and the need to build two pressure measuring chains in
the cylinder and injection lines, which complicates the
measurement system and increases its cost. For these
reasons, the authors decided to build a model similar
to the previous one, but with only two variables.

When the training set was simplified in order to
contain only the fuel type and the maximum in-
cylinder pressure (one input variable instead of four)
– Model 2, the classifier built by the C5.0/See5 had
a simpler form, Fig. 4.

Fig. 4. Model 2 classifier of fuel recognition, using the clas-
sification trees method, one input variable, C5.0/See5 soft-
ware and measurement data from 40 consecutive engine

cycles.

Nevertheless, the classification accuracy for the
data from 40 consecutive engine cycles remained at the
level of 100%. The predictive accuracy of this classifier
tested using k-fold cross validation for k = 5, k = 10
or k = 11, was found to decrease to 90.9%, 92.3%, and
92.7%, respectively, whereas for k = 55 (leave one out)
it was 92.7%. This accuracy level is insufficient and 40
cycles needed to identify the fuel is too many for the
real-time fuel recognition. Another model, Model 3,

uses two input variables, additional decision tree op-
timization and a smaller number of engine cycles, as
discussed in Subsec. 5.2.

5.2. Application of decision trees and particle
swarm optimization

The training set in the proposed model, Model 3,
was created from 10 consecutive engine cycles data,
and with two input variables – maximum (x1) and min-
imum (x2) in-cylinder pressures. The Windows version
of decision tree software, See5, built the classifier which
had 7 leaves and 95.6% classification accuracy on the
training set (Fig. 5). The accuracy of this classifier
tested using k-fold cross validation for k = 5, k = 10
or k = 99 was 91.7%, 92.7% and 90.7%, respectively.
The resulting confusion matrix from 10-fold cross val-
idation has the form as in Fig. 5.

Fig. 5. Model 3 classifier of fuel recognition, using the classi-
fication trees method, two input variables, C5.0/See5 soft-
ware, training data from 10 consecutive engine cycles, and

the confusion matrix of this classifier.

The accuracy tests showed that no fuel was classi-
fied 100% correctly, with the most common errors in
the classification of B30 and B20 (14.6% of B30 cases
were classified as B20 and 14.6% of B20 cases were
classified as B30).

Because See5 software uses random partition of
a training set into subsets in 10-fold cross validation,
in other 50 attempts (with almost identical software,
Linux counterpart C5.0) classification accuracy ranged
from 88.2% to 92.7% with an average of 90.9%. The
analysis showed that the recognition accuracy in Model
3 was unsatisfactory – less than 95%. For this reason,
Model 3 was modified by increasing the number of en-
gine cycles. When additional calculations were made
for training sets, created as previously but contain-
ing averaged data from more engine cycles (15, 20,
25, 30, 35, 40), the accuracy after 10-fold cross valida-
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tion (run once in each case) was 93.9%, 94.3%, 96.2%,
96.1%, 96.2%, and 94.3%, respectively. At the 50th
run of 10-fold cross validation (with almost identical
software, Linux counterpart C5.0), the averaged values
amounted to 93.9%, 95.7%, 97.1%, 96.2%, 95.1%, and
93.1%, respectively. These tests found the number of
successive engine cycles sufficient to achieve averaged
data accuracy above 95% to be between 20 and 25.
With more cycles, accuracy was lower than that from
25 cycles because the training sets contained fewer
records.

To improve the classification accuracy, another
modification of Model 3 was proposed, involving op-
timization of the values of decision borders in the
tree (Fig. 4a) obtained earlier by C5.0/See5. For this
purpose, particle swarm optimization (PSO) (Engel-
brecht, 2006) was used – Model 3 v. PSO. Each of
the six decision border values (Fig. 6a) occurring in the
tree (8.511647, 1.549044, 1.726765, 8.640588, 1.768882,
and 8.605294) was set as a PSO-optimised vari-
able. The Standard PSO 2006 (http://www.particle-
swarm.info/Programs.html) with minor modification
was used in the experiments – the swarm size was set
at 100. In the PSO algorithm, the fit value of a par-
ticle (intended to be minimized) was the number of
cases in the training set misclassified by a decision tree,

a)

b)

Fig. 6. Decision boundaries and decision areas in the deci-
sion tree: a) before optimization, b) after optimization with

a swarm of particles.

whose decision boundaries were equal to the values of
the corresponding variables describing the location of
the particle in the search space. The solution, better
than the classification tree in Fig. 5, was found al-
ready in the second iteration of the PSO method. This
method changed the values of the six used variables to
8.527545, 1.667753, 1.728503, 8.642454, 1.762328, and
8.605295, respectively (Fig. 6b).

This optimized solution had 96.6% accuracy on the
training set (95.6% prior to optimization). 10-fold cross
validation on the PSO-classifier showed 93.7% accu-
racy, which was a better result compared with 91.2%
prior to optimization, but still lower than 95%. Model
3 was modified again, but this time it was created
from averaged data from 20 engine cycles, containing
four decision boundaries: 8.505765, 1.540253, 8.670647,
8.62. Accuracy on the training set before and after
optimization was 98.7%. In 10-fold cross validation,
the classification accuracy without optimization was
94.8%, and 96.1% after optimisation. In another run
of the test, the accuracy was 96.1%, and 97.4% after
optimisation. This classifier showed that PSO of the
classification tree allowed predicting the fuel type with
good accuracy by using data collected from 20 engine
cycles.

5.3. Application of classification trees using maximum
pressure and maximum heat release data

Another in-cylinder pressure change descriptor –
maximum heat release point (Qmax) was proposed for
fuel recognition (Kekez et al., 2016). The method
for computing Qmax, based on instantaneous in-
cylinder pressure in subsequent cycles, was discussed in
(Bąkowski, Radziszewski, 2015). Two approaches
of building a fuel recognition classifier were compared.
The first method used only the maximum in-cylinder
pressure, x1 or pcmax, whereas the second method used
also the in-cylinder pressure at Qmax, pc Qmax. The
training set consisted of records containing values of
two or three variables: fuel type (y), pcmax, and, in the
case of the second training set, also pc Qmax – Model 4.

First, the averaged training items from 40 consecu-
tive engine cycles were used. The accuracy of the clas-
sification trees built on both training sets (one with
pcmax – Model 2 and the other with pcmax and pc Qmax

– Model 4) was 100% on the training set. Time needed
to recognize the fuel was below 0.05 s in both cases.
The structure of the two trees was identical, and the
trees varied (in two nodes) by the variable with a tested
value and by the limit value in the two nodes. For the
reader’s convenience, let us recall that when the classi-
fier based on 40 consecutive engine cycles, Model 2, was
validated with k-fold cross validation for k = 5, k = 10,
k = 11 or k = 55, accuracy was 90.9% 92.3%, 92.7%,
and 92.7%, respectively. When the classifier based on
40 consecutive engine cycles, Model 4, was validated
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with k-fold cross validation for k = 5, k = 10, k = 11 or
k = 55, accuracy achieved in each case was higher than
for the classifier in Model 2 – 92.7%, 94.3%, 94.5%,
94.5%, respectively. However, since accuracy achieved
was lower than 95%, the size of the training set was
increased, reducing the number of subsequent engine
cycles from which the training items were averaged.
The training data averaged from only 10 consecutive
working cycles allowed creating the classification trees
of the accuracy on the training set of 95.6% in Model 2
and 97.6% in Model 4. The k-fold cross validation of
the classifier in Model 2 for k = 5, 10 or 99 showed clas-
sification accuracy of 93.2%, 92.7% and 92.6%. The ac-
curacy of the classifier in Model 4 (Fig. 7) (containing
pc Qmax) achieved 93.7%, 94.1%, and 95.5%, respec-
tively. The use of the pc Qmax variable improved the
accuracy of the classification.

Fig. 7. Classifier in Model 4 for fuel recognition, using clas-
sification trees, two input variables, C5.0/See5 software,
and measurement data from 10 consecutive engine cycles.

When additional calculations were made for the
training sets created in Model 2 but containing data
averaged from more cycles (15, 20, 25, 30, 35, 40), clas-
sification accuracy achieved in 10-fold cross validation
(in a single run for each case) was 95.0%, 96.1%, 97.7%,
96.1%, 95.0%, 92.7%, respectively. At the 50th run
of 10-fold cross validation (Linux counterpart C5.0),
the average values were 94.7%, 95.9%, 97.4%, 96.0%,
94.6%, 92.7%.

When additional calculations were made for the
training sets created in Model 4 but containing data
averaged from more engine cycles (15, 20, 25, 30,
35, 40), classification accuracy achieved in 10-fold cross
validation (in a single run for each case) was 95.0%,
96.1%, 97.7%, 96.3%, 96.2%, 94.7%, respectively. In
all cases, accuracy achieved in Model 4 was the same
or better than that in Model 2. The sufficient number
of cycles for measurement data averaging was 25. At
the 50th run of 10-fold cross validation (Linux coun-
terpart C5.0), the average values were 95.1%, 95.8%,
97.4%, 95.1%, 95.7%, 94.3%, respectively. The values
obtained pass the 95% threshold for the training data
averaged over each cycle number in the range of 15 to
35, unlike in Model 2, where the averaged data from
15, 35 and 40 cycles did not pass the 95% threshold.

5.4. Application of Random Forests

In order to increase the recognition accuracy, Model
5 was generated in which Random Forest (Breiman,
2001) and in-cylinder pressure descriptors, pcmax and
pc Qmax were used. The Random Forest method cre-
ates an “ensemble of classification trees” consisting of
100 trees or 500 trees, depending on the implementa-
tion. Each tree is grown on the basis of a new training
set drawn by sampling with replacement. Also, a sub-
set of input variables is drawn at random – this tech-
nique is called random feature selection. For a train-
ing set made up of 25 engine cycles, the Random-
Forest algorithm, or its implementation in Weka soft-
ware (http://www.cs.waikato.ac.nz/∼ml/weka/) was
run with default parameters (the number of trees was
100, no randomization of input variables). The re-
sulting classifier achieved 100% accuracy in 10-fold
cross validation. However, in any of the trees that
make up the classifier there is no pc Qmax variable,
but only pcmax. When the algorithm was started with
the option of random sampling of one input variable –
Model 5 v.1, the resulting classifier had both variables
in most of the trees. This classifier also achieved 100%
accuracy in 10-fold cross validation. The weakness of
each of the two built classifiers is their low clarity (they
consist of 100 trees each), a slightly longer building
time (successively 0.13 and 0.19 seconds on a PC) and
the time of classifying a new case. When the algo-
rithm with the default parameters (without random
input variables) was started – Model 5 for data gen-
erated from 10, 15, 20, 30, 35, 40 engine cycles, the
10-fold cross validation accuracy was 95.1%, 97.8%,
98.1%, 100%, 100%, 100%. When similar calculations
were performed with the option of randomly drawing 1
input variable (Model 5 v.1), the accuracy levels were
95.1%, 98.3%, 100%, 99.0%, 100%, 100%, respectively.

Decision trees and other classifiers can be imple-
mented on a PC but also in a microcontroller. The
authors propose the following algorithm for the recog-
nition of the type of fuel:

a) refuelling the car,
b) engine operating at constant speed, e.g. 1200 rpm,
c) collecting measurement data, i.e. in-cylinder pres-

sure and injection pressure as a function of a crank
angle (for 1 or 2 s),

d) sending collected data (i.e. cylinder pressure
changes) to a microcontroller,

e) calculating adequate descriptors of cylinder pres-
sure signal by the microcontroller,

f) using the classifier by the microcontroller in order
to recognize the fuel type.

The 8-bit microcontroller with 2 KB of flash mem-
ory was sufficient to implement models 1, 2, 3 and 4.
The classification of the fuel lasted no longer than
0.1 second. Fuel identification system using Model 5
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requires the use of 8-bit microcontroller with 32 KB of
flash memory.

6. Concluding remarks

All developed models, except No. 1, allow real-time
fuel recognition with accuracy greater than 95% and

Table 2. Accuracy analysis of fuel recognized in one run of 10-fold cross validation.

Model n Variables in the training set: x1, x2, x3, x4, x5 p

Model 1 40 x1, x2, x3, x4, – 92.7%

Model 2

10 x1, –, –, –, – 92.7%

15 x1, –, –, –, – 95.0%

20 x1, –, –, –, – 96.1%

25 x1, –, –, –, – 97.7%

30 x1, –, –, –, – 96.1%

35 x1, –, –, –, – 95.0%

40 x1, –, –, –, – 92.7%

Model 3

10 x1,x2, –, –, – 92.7%

15 x1,x2, –, –, – 93.9%

20 x1,x2, –, –, – 94.3%

25 x1,x2, –, –, – 96.2%

30 x1,x2, –, –, – 96.1%

35 x1,x2, –, –, – 96.2%

40 x1,x2, –, –, – 94.3%

Model 3 v. PSO
10 x1,x2, –, –, – 93.7%

20 x1,x2, –, –, – 96.1%

Model 4

10 x1, –, –, –, x5 94.1%

15 x1, –, –, –, x5 95.0%

20 x1, –, –, –, x5 96.1%

25 x1, –, –, –, x5 97.7%

30 x1, –, –, –, x5 96.3%

35 x1, –, –, –, x5 96.2%

40 x1, –, –, –, x5 94.7%

Model 5

10 x1, –, –, –, x5 95.1%

15 x1, –, –, –, x5 97.8%

20 x1, –, –, –, x5 98.1%

25 x1, –, –, –, x5 100%

30 x1, –, –, –, x5 100%

35 x1, –, –, –, x5 100%

40 x1, –, –, –, x5 100%

Model 5 v.1

10 x1, –, –, –, x5 95.1%

15 x1, –, –, –, x5 98.3%

20 x1, –, –, –, x5 100%

25 x1, –, –, –, x5 100%

30 x1, –, –, –, x5 99.0%

35 x1, –, –, –, x5 100%

40 x1, –, –, –, x5 100%

Denotation: n – the number of cycles from which training data were averaged,

x1 = pcmax, x2 = pcmin, x3 = pimax, x4 = pimin, x5 = pc Qmax, p – classification accuracy.

can be implemented on an 8-bit microcontroller.
Depending on the model used and its parameters,
the recognition accuracy (evaluated in a single run of
10-fold cross validation) is in the range between 92%
and 100%, as shown in Table 2. Analysis of Table 2
data shows that the classification results are mostly
affected by the classifiers used, in-cylinder pressure de-
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scriptors and the number of engine cycles (training
data).

The highest recognition accuracy levels were
achieved with variables x1 = pcmax and x5 = pc Qmax

used as in-cylinder pressure discriminators and with
the number of cycles n = 25. The 100% recognition
was achieved with Model 5 using RandomForest.

The proposed procedures (methods) are universal
and can be used to identify fuel in any engine. But
the values of the parameters in the models (pressure
descriptors, the number of cycles from which the train-
ing data was averaged) should be adapted to the engine
under analysis.
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