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In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented.
With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity
through the study of the radiated acoustic field and their temporal evolution in the frequency range se-
lected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator
similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random
sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case
was applied to two beam-type structures made of a sandstone material called Bateig. The experimental
results of the modal response and the bending propagation velocity are compared with well-established an-
alytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method
– FEM, showing a good agreement.
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1. Introduction

The effects of structural vibrations on the acous-
tic field in the neighbouring acoustic fluids have been
key issues in several engineering fields (Crocker,
2007). Sound-structure interaction is an important
topic for the acoustician and noise control engineers.
Since beams and plates are basic in engineering and
construction fields, it is of utmost importance to have
not only analytic, numeric and experimental tools at
our disposal but also the means to analyse and quantify
the influence of significant parameters in noise and vi-
bration control applications (Gerges, Arenas, 2010).

Any structure when subjected to dynamic loads vi-
brates and radiates sound in a frequency range that
depends on its mechanical and geometrical properties.

The acoustic radiation efficiency, however, depends on
frequency. Below the so-called critical frequency, the
radiation is negligible and above it, the radiation is
highly efficient (Crocker, 2007; Gerges, Arenas,
2010). Therefore, the analysis of these parameters is of
great importance in noise and vibrations control appli-
cations (Ewins, 1984).

This study of the effects of structural vibrations
on the acoustic field requires careful inspection and
testing. For modal analysis, we apply one of the most
widely used measurement techniques, the so-called mo-
bility measurements. The system is tested by means of
a Transfer Function Velocity vs Force. The load force
applied to excite the structure may be either stationary
(produced by a modal exciter or shaker) or transitory
(by an impact hammer) (Ewins, 1984). The excita-
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tion force is captured by a force sensor and the sys-
tem’s dynamic response in the selected receiver point
registered by piezoelectric sensors sensitive to accel-
eration (accelerometers). The mass of the transducers,
the emitter and especially that of the receiver, must be
significantly lower than that of the moving assembly so
as to minimize its influence on the system’s vibrational
behaviour (Ewins, 1984).

However, this type of measurement is characterized
by some limitations: the measurement in the transient
or impulsive mode shows inaccuracies inherent to the
application of the force, and the low coherence and
low signal-to-noise ratio in the stationary mode tends
to degrade the measured data. If the mechanical ex-
citation uses an electrodynamic shaker, particular at-
tention has to be paid to the way in which the shaker
and structure are connected and to the noise radiated
by the shaker itself as this may contaminate the mea-
sured sound. There are, in fact, difficulties in exciting
a structure with an electromechanical shaker, in par-
ticular at higher frequencies. Mass loading may occur
due to the force transducer and its mounting arrange-
ment; a stinger should be used to connect the shaker
to the structure to avoid moment excitation. This has
to be as straight as possible to avoid misalignment
and to obtain the correct transmission of force. Fi-
nally, dynamic coupling between the shaker and the
structure may occur affecting the force spectrum. In
summary, the effectiveness of force transmission from
the shaker to the structure decreases with increasing
frequency, especially when a stinger is used. The inter-
ested reader will find a good discussion on this subject
in (McConnell, 2000)

Since its presentation, almost four decades ago, this
measurement technique based on the use of pseudoran-
dom sequences such as Maximum-Length Sequences
(MLS) has been used to characterize linear time-
invariant (LTI) systems, especially within the fields
of room acoustics and electro-acoustics (Schroeder,
1979; Vanderkooy, 1994; Rife, Vanderkooy, 1989;
Vörlander, Kob, 1997). MLS is the sequence most
commonly used to obtain the system’s impulse re-
sponse (IR), even though other existing pseudorandom
sequences that use correlation methods, such as the
binary pseudorandom noises (PRN) or Chirp signals
(Mazurek, Lasota, 2007), are applied. One of the
key benefits of this technique is its high signal-to-noise
ratio, which allows measurements in noisy areas using
low-power testing signals.

The main aim of this paper is to present an alter-
native approach to determine the mechanical charac-
teristics of beam-type structures and the characteri-
zation of its radiated acoustic field when subjected to
a mechanical excitation. The experimental technique
proposed allows obtaining the resonant modes of the
beam and determining bending wave propagation ve-
locity in the solid in function of the frequency. This is

achieved by analysing the sound pressure field close to
the beam in the frequency and wave number, k, do-
main.

From the system impulse response analysis per-
formed at the measurement points, the resonant modes
of the beam and bending wave propagation velocity in
the solid can be estimated. This approach, as explained
below, affords the possibility to perform a temporary
analysis of the structure and observe the interaction
with the fluid surrounding it (Mao, Pietrzko, 2013).

Our main interest in this paper is to show an alter-
native approach to establishing a correlation between
structural vibrations and radiated sound from a practi-
cal perspective. Now then, our experiment consists in
applying a mechanical exciter on a beam-type struc-
ture to determine its mechanical properties and its
radiated acoustic field. We study the sound pressure
field close to the beam in the frequency domain to
describe the mechanical properties and calculate the
flexural wave wavelength of the solid to delimit its ra-
diated acoustic field. Given that the bending waves
are responsible for sound radiation (Fahy, Garddo-
nia, 2007), our approach, unlike those that use contact
sensors, renders unnecessary to implement signal pro-
cessing strategies to quantify the contribution of the
different kinds of waves propagated over the structure
(Szwerc et al., 2000; Linjama, Lahti, 1992).

We can estimate the beam’s resonant modes and
bending wave propagation velocity in the solid from
the system’s IR analysis performed at the measure-
ment points. Moreover, our approach will allow us to
not only execute a temporary check of the structure
but also to observe how the structure interacts with
the fluid surrounding it (Mao, Pietrzko, 2013).

The structure tested consisted of beams made of
a sandstone material called Bateig, manufactured in
the province of Alicante. We selected this material be-
cause its mechanical properties are similar to those
used in the building sector and can, therefore, be used
as a reference in related studies.

Finally, our lab results obtained in the frequency
domain are compared to those obtained in the modal
analysis applying the Euler-Bernoulli free-free bound-
ary condition model and the FEM-model, and our
bending propagation velocity calculation to that ob-
tained from the Euler-Bernoulli and Timoshenko’s ap-
proximations, and they show a very close agreement.

2. Background theory

2.1. Bending waves in beams

In beams bending waves generate a flexural mo-
tion responsible for sound radiation. This flexural
motion has been described in (Han et al., 1999)
through four approximations, namely Euler-Bernoulli,
Rayleigh, Shear and Timoshenko. They solve the trans-
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verse motion equation for beams to yield the natural
frequencies and Eigen functions if the following six as-
sumptions are observed:

1) the beam’s material is linear straight and elastic,
2) the beam’s Poisson effect is disregarded,
3) the beam’s cross-section area is symmetric with

respect to its flexural axis,
4) the beam’s planes are perpendicular to the neutral

axis and remain so after deformation,
5) the beam’s angle of rotation is such that the small

angle assumption applies,
6) the beam’s axial direction is considerably longer

than the other two dimensions.
Assumption 6 is readily solved once the slenderness

ratio, Sl, is calculated by Eq. (1)

Sl = L

√
A

Iy
, (1)

where L refers to the length of the beam [m], A to its
cross-section area [m2], and Iy to the mass moment of
inertia of its cross-section area with respect to the y
axis (its flexural axis) [m4]. For instance, for a beam
with a rectangular cross section, A = wh and Iy =
wh3/12, where w and h correspond to the width and
the height of cross section, respectively.

Depending on the slenderness of the beam, a differ-
ent approach can be taken. If the beam’s slenderness is
Sl < 100, the Timoshenko’s model (Mao, Pietrzko,
2013), offers the best approximations to its vibrational
behaviour. This model considers the shear distortion
and the rotary inertia effects, which have as great im-
pact on wavelengths as on the thickness of the material.
Here the beam’s bending wave propagation velocity, cB
[m/s], is given by (COMSOL, 2001)

cB=

√√√√√√
√(

EIy
KAG−

Iy
A

)2
ω4 + 4

EIy
ρA ω

2−ω2
(
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A

)
2
(

1− ω2 Iyρ
KAG

) ,

(2)
where E is the Young modulus [N/m2], KAG is the
shear factor – the product of the cross-section area; A,
the shear modulus G [N/m2] and the correction factor
K – the fraction ratio of the beam’s cross section that
is subjected to a shear force; Iy/A, the rotary inertia;
ω, the angular frequency [rad/s] and ρ the density of
the material [kg/m3].

If, however Sl > 100, the Euler-Bernoulli model,
less demanding than the Timoshenko’s, may be ap-
plied. This analytical model greatly simplifies the
calculation of the natural frequencies and vibration
modes. Here the bending wave propagation velocity
in the beam, cB , is given by:

cB =
ω

k
=
√
ω 4

√
EIy
ρA

. (3)

For the simplicity offered, in a first instance, we
selected the Euler-Bernoulli model to briefly describe
the transverse displacement of the beam, which we
proceeded as follows: we chose a continuous slender
beam and subjected it to a vibrating motion in the
XZ plane. We assumed that the transverse section
was flat and perpendicular to the deformed longitudi-
nal axis, and that both the shear deformation and the
rotational inertia of the cross section – which we com-
pared to the bending deformation and translational
inertia, respectively – were negligible. Figure 1 depicts
the flexural motion of a thin beam exhibiting a rect-
angular cross section subjected to a vibrating force in
the XZ plane.

Fig. 1. Flexural motion of a thin beam with rectangular
cross-section when subjected to a force in the XZ plane.

By computing the kinetic and potential energies,
and adopting the variational principle (Fahy, Gard-
donia, 2007), we can obtain the Euler-Bernoulli equa-
tion for the lateral displacement ξ(xt) of a time-
dependent harmonic force (Crocker, 2007) as:

−Fz(x, t) = EIy
∂4ξ(x, t)

∂x4
+ ρA

∂2ξ(x, t)

∂t2
, (4)

where Fz(x, t) is the applied force per unit length. The
general solution for Eq. (4) when F (x, t) equals zero is

ξ(x, t)=
[
Ǎe(−jkbx)+B̌e(jkbx)+C̆e(−kbx)+Ďe(kbx)

]
ejωt,

where kb is the bending wave number kb = 4

√
ω2ρA
EIy

[rad/m] and Ǎ, B̌, C̆, Ď are the amplitudes of the
different types of waves.

The expression above implies the existence of two
different types of waves in the solution. Indeed, the
first two terms describe the bending wave propagation
in the X positive and negative directions without at-
tenuation. The second two terms, on the other hand,
describe non-propagation waves, also known as evanes-
cent waves, the amplitudes of which diminish.
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Establishing the free-free boundary conditions in
the above expression, the natural frequencies of the
beam, fn, are given by:

fn =
d2n

2πL2

√
EIy
ρA

, (5)

where dn are the roots from the equation: cos dn
· cosh dn−1 = 0, being dn = kb,nL, kb,n is the bending
wave number [rad/m] and n the modal index. These
frequencies denote which modes are significant for the
study of the movement of the beam-type system.

The bending waves in solids, unlike sound waves in
the air, are dispersive, meaning that the propagation
velocity cB depends on frequency (Crocker, 2007).
The frequency of the bending wave whose velocity is
the same as the propagation velocity for the longitudi-
nal waves in the air is known as the critical frequency,
fc, and is given by:

fc =
c2air
π√
3
hcL

, (6)

where cair is the sound velocity in the air 343 m/s and
cL is the longitudinal wave propagation velocity in the
solid cL =

√
E/ρ [m/s]. In beams, the acoustic radia-

tion is highly efficient around the critical frequency,
whereas below that frequency, the radiation is negligi-
ble (Gerges, Arenas, 2010).

In fact, for the frequency range below the criti-
cal frequency, the acoustic impedance (ratio between
acoustic pressure and velocity of particle) of the waves
is imaginary and positive, therefore the load of the
fluid can be considered inertial (like an acoustic mass),
and in consequence radiated sound power is negligible.
When the bending wave velocity and the propagation
velocity in the fluid coincide, the impedance tends to
infinite, and the radiation efficiency is maximum. Fi-
nally, for those frequencies above fc where the bend-
ing wave propagation velocity is higher than cair, the
impedance is real and purely resistive and sound radi-
ation occurs.

On the other hand, according to modal analysis ap-
proach (for harmonic free vibration), the displacement
of structure can be separate in space and time (Liu,
2015):

ξ(x, t) = φ(x)q(t), (7)

where φ(x) and q(t) are the structural mode shape and
the modal coordinate, respectively.

The application of the variable separation tech-
nique leads to a set of functions, φn(x) for the struc-
tural mode shape and for modal coordinates, qn(t),
which depend on boundary and initial conditions to
which the beam is subjected.

Because the mode shapes are orthogonal to each
other, the displacement response of the beam at any

arbitrary point can be expressed as a linear combina-
tion of these mode shape functions:

ξ(x, t) =

∞∑
n=1

φn(x, y)qn(t), (8)

and the velocity

v(x, t) = φn(x, y)q̇n(t), (9)

where φn(x, y) is the n-th structural mode shape and
q̇n(t) is the modal velocity.

If the medium is discretized, the above equation
can be written in a matrix form

v = [φ] q, (10)

where [φ] is a real orthonormal matrix, and [φ]
H

= [φ]
T

(where superscript H denotes the complex conjugate
transpose and T denotes transpose).

Acoustic radiation is one of the consequences of
the structural motion associated with bending waves
in solid objects. The study of structure motion asso-
ciated radiation is of high practical importance when
designing and controlling noise and vibrations in the
industry and construction (Fahy, Garddonia, 2007).

For a beam, assuming it is in an infinite baffle, dis-
cretizing the top of the beam surface in differential
elements, and using the coordinate system (x, y, z) as
shown in Fig. 2, the acoustic pressure can be expressed
in terms of the velocity by using Rayleigh’s integral

p(r) =
jωρo
2π

∫∫
S

v(ro)
e−jk|r−ro|

|r− ro|
dS, (11)

where S is the surface of the beam and

r = (x, 0, z),

ro = (xo, yo, 0),

|r− ro| =
√

(x− xo)2 + y2o + z2,

(12)

Fig. 2. Schematic diagram of a vibrating beam.

Equation (9) may be included in the Rayleigh inte-
gral. To calculate the pressure radiated by a structure
according to the vibration modes of a beam:

p (r) =

∞∑
n=1

jωρo
2π

∫∫
S

φn(xo)q̇(t)
e−jk|r−ro|

|r− ro|
dS. (13)
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The contribution of the n-th mode to the pressure
in r is:

jωρ0
2π

∫∫
S

φn(xo)η̇(t)
e−jk|r−ro|

|r− ro|
dS. (14)

The contribution of each element dS of the vibrat-
ing surface corresponding to the n-th mode to the pres-
sure p in r is:

jωρ0
2π

φn(xo)η̇(t)
e−jk|r−ro|

|r− ro|
dS. (15)

2.2. Measurement of the Impulse Response
with the Maximum Length Sequence method

For years, several methods in buildings and acous-
tic measurements have been used in numerous applica-
tions. These methods are currently well developed and
can achieve acceptable results in most cases. However,
there are situations where the signal-to-noise ratio is
not high enough and the results obtained are not reli-
able (Stan et al., 2002).

As discussed above, the MLS technique is com-
monly used in acoustics and electroacoustics fields. The
MLS is a deterministic sequence of pulses (periodic
pseudo-random binary sequence consisting of the val-
ues between 0 and 1), with a total length l = 2m − 1,
where m is the order of the sequence. This signal,
treated as a pseudo-random white noise with a negligi-
ble DC component, combines the advantages of com-
mon excitation techniques for characterizing LTI sys-
tems, both transient and steady.

Thus, it can be interpreted as a measurement im-
pulsive technique, without using any pulse. The exper-
imental techniques, presented in the next section, uses
MLS signals. This study approximates the beam to
a LTI (Linear Time Invariant) system, since the beam
motions are small. Also, the system must remain un-
changed during the measurement procedure to ensure
time-invariance. With this in mind, this method can
be considered a very powerful tool to analyse acoustic
and vibratory phenomena.

Some precautions must be taken, though, regarding
the use of the MLS signal. Firstly, the signal length
period must be longer than the impulse response of
the device under test (DUT). If this condition is not
satisfied, one part of the impulse response signal will be
time-aliased. Secondly, as mentioned, the system must
be in linear conditions to prevent non-linarites in the
system.

2.3. K-Space processing

Part of the signal processing in the experimen-
tal procedure was inspired in the Near-field Acoustic
Holography (NAH) technique (Maynard et al., 1985;
Williams, 1999; Sean, 2010). As is well known, the

NAH technique implies the measurement of the ampli-
tude and phase of the sound pressure field generated by
a source in a parallel plane close to it using an array
of microphones. The proposed methodology assumes
that the measurement plane matrix is a rectangular
grid perpendicular to the bending waves generated by
the beam, when subjected to mechanical excitation,
making the acoustic field reconstructable.

Additionally, and assuming that the acoustic waves
radiated by the beam are mainly propagated in the
perpendicular direction to its bending displacement
(predominantly ky), and using a filter in K-Space we
can remove those components which are not propa-
gating in that direction (i.e. interfering components
from other sources). The advantages and drawbacks of
some of these types of filters are discussed in (Escuder
et al., 2007).

For a two-dimensional surface described by a rect-
angular coordinate system as shown in Fig. 2, the Spa-
tial Fourier transform for the acoustic pressure and the
velocity and their inverse are defined as (Williams,
1999):

P (kx, ky) =

+∞∫∫
−∞

p(x, y)e(jkxx+jkyy) dx dy,

p(x, y) =

+∞∫∫
−∞

P (kx, ky)e(−jkxx−jkyy) dkx dky,

(16)

V (kx, ky) =

+∞∫∫
−∞

v(x, y)e(jkxx+jkyy) dx dy,

v(x, y) =

+∞∫∫
−∞

V (kx, ky)e(−jkxx−jkyy) dkx dky.

(17)

We find analogies with the usual Fourier transform
for time in the frequency domain.

We can demonstrate, thus, that the radiated sound
power of a beam-type structure can be expressed as

W (ω)=
1

2
Re

+∞∫∫
−∞

p(x, y, z = 0) · w∗(x, y) dx dy

, (18)

where ∗ denotes the complex conjugate and Re, the
real part of a complex value.

By using the Parseval theorem, we can demonstrate
that:

W (ω) =
ρ0ω

8π2

+∞∫∫
−∞

|V (kx, ky)|2√
k2 − k2x − k2y

dkx dky

. (19)
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Note that
√
k2 − k2x − k2y is real only if k2 ≥ k2x + k2y

and the equation can be rewritten as:

W (ω) =
ρ0ω

8π2

 ∫∫
k2≥k2x+k2y

|V (kx, ky)|2√
k2−k2x−k2y

dkx dky

. (20)

From the equations we derive that only supersonic
waves-wave number components (values of wave num-
ber satisfying k2 ≥ k2x + k2y) radiate to the far-field,
and the subsonic wave number components, associated
only with decaying near-field waves, do not contribute
to the sound radiation in the far-field.

As a summary of this subsection, we can argue
that the sound field radiated by any source may be
decomposed in an angular spectrum in the K-space
(or wave number space) as the superposition of plane
waves travelling in different directions. The spatial pe-
riod of each of these harmonic waves is commonly de-
scribed by their wavelength. However, the mathemat-
ical definition of a wave suggests that its spatial vari-
ations are better described by the wavenumber vector
k(kx,ky,kz).

3. Experimental procedure

3.1. Test sample

The proposed methodology uses two rectangular
cross-section beams as experimental basis. The speci-
mens were made of a sandstone material called Bateig.
The physical and mechanical characteristics of the
specimen under test are presented in Table 1.

Table 1. Physical and mechanical characteristics
of the tested sample (Bateig Stone).

Characteristic Value

Longitudinal propagation velocity CL 3718 m/s

Young’s modulus E 32 GPa

Shear’s modulus G 13 GPa

Poisson’s ratio µ 0.230

Density ρ 2312 kg/m3

The Young’s modulus and the Poisson’s ratio
were calculated under the standard UNE-EN 12390-
13 (UNE-EN 12390-13:2014, 2014). Furthermore, the
longitudinal propagation velocity was obtained using
the transmitter-receiver ultrasonic system (Workman
et al., 2007). The Shear modulus (G) was derived from
Young’s modulus (E). The remaining parameters were
obtained from the above Table 1 or by direct measure-
ment. The stone sample was measured and weighted
to obtain the density (ρ).

The geometry of the two beam-specimens is shown
in the Table 2.

Table 2. Description of the beams’ geometry.

Specimen 1: L1−A = 1.17 m

h2−A = 0.03 m

w2−A = 0.08 m

Specimen 2: L1−Total = 1.17 m

L2−A = 0.53 m

L2−B = 0.64 m

h2−A = 0.06 m

h2−B = 0.03 m

w2−A = 0.08 m

w2−B = 0.08 m

Although the simple supported boundary condi-
tion is, in many aspects, desirable for teaching pur-
poses, due to its relatively simple analytic solutions, it
is rarely seen in practice. We have selected the free-
free boundary conditions (FFBC) for the experimen-
tal setup. To emulate FFBC, the beams, as shown in
Figs. 3 and 4, were supported with a recycled polymer,
because of its low stiffness.

Regarding the boundary conditions of the beam
supports, and to verify the validity of the experi-
mental setup, two eigen-frequency 3D numerical mod-
els were implemented, using a finite-element software
(with COMSOLTM Multiphysics (2001)). In the first
model, a FFBC was applied, whereas in the second,
the beam was supported by springs, reproducing the
actual setting of the experiment.

Table 3 compares the first 8 resonance modes for
the Euler-Bernoulli (Crocker, 2007) beam model in
free-free conditions with the two numerical models
above mentioned.

Table 3. Frequency response comparison between analytical
Euler-Bernoulli solution and two Eigen- frequency 3D-FEM

models to the continuous beam.

Bending
mode

number

Euler-Bernoulli
solution

[Hz]

FEM modal
free-free

boundary
conditions

[Hz]

FEM modal
springs

boundary
conditions

[Hz]

1 84.64 85.01 84.85

2 234.90 233.40 232.90

3 455.50 454.70 453.90

4 741.20 745.80 744.30

5 1107.00 1103.00 1103.70

6 1518.00 1524.00 1521.00

7 2004.00 2003.00 2000.00

8 2535.00 2537.00 2567.00

The correlation between the analytical and the nu-
merical data is very high. Therefore, we assume that
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the spring boundary conditions can also be considered
as free-free. Thus, the experimental setup can be vali-
dated.

3.2. Procedure

The experimental configurations are graphically ex-
plained in Fig. 3. The first part of the experimental
procedure involved the measurement of the beams us-
ing accelerometers. The second part consisted in the
characterization of the acoustic pressure field radiated
by the beams using a microphone. Both measurements
share the signal acquisition hardware.

Fig. 3. Configuration of the experimental set-up used for
recording the acoustic field.

As already explained, two elastic endings were used
to support the beams and thus, simulate a free-free
boundary condition. The excitation system consisted
of an actuator (Mini-Pro-NXT Fane electrodynamics
actuator 80 MP), typically seen in audio systems called
Distributed Mode Loudspeaker (DML). To verify the
efficiency of this system, we compared it with standard
excitation systems for measuring vibrations, such as
a hammer and a shaker. In the results and discussion
section, we demonstrate the effectiveness of this system
as a vibro-acoustic exciter. Figure 4, top and bottom,
shows a detail of the experimental set-up. On the top,
we can see the location of the source (actuator) 2 cm
away from the left edge of the beam, the boundary
conditions and the microphone used to perform the
measurement of the field radiated by the beam. On the
bottom, we located another actuator in the centre, and
three accelerometers near the left edge of the beam.

The test signal was a MLS, whose properties are
shown in Table 4.

Specifically, for measurement of vibration purposes,
we used three Brüel and Kjær piezoelectric accelerom-
eters, all connected to a preamplifier NEXUS Brüel &
Kjær Type 2693-0S4. Each beam was divided in 38

Fig. 4. Detailed view of a section of the experimental setup.
Top: location of the source (actuator) 2 cm away from the
left edge of the beam. Bottom: three accelerometers near
the left edge of the beam and an actuator in the centre.

Table 4. MLS properties.

Variable Value

Quantization 16 bits

Sample rate fs 96 kHz

Sequences number 16

Signal duration 3 s

Signal length before average in samples 32 768

parts, obtaining 37 measurement points with a sepa-
ration ∆ of 3 cm.

We registered the acoustic field in a normal plane to
the propagation of the bending waves in the structure.
The measurements were performed in anechoic condi-
tions and the Brüel & Kjær Type 4951 microphone
linked to a NEXUS Brüel & Kjær Type 2693-0S4 pre-
amplifier.

For each beam sample we scanned two 60× 60 ma-
trices with a dx = 1 cm resolution for a total of 3600
points in each matrix. We used two matrices because
the robotic arm presents a geometric limitation (not al-
lowing movements above 0.60 m). After capturing the
signal, we linked the matrices. Thus, we sampled the
acoustic field of each beam with a total of 7200 mea-
surement points.

The captured signal was transmitted to the Na-
tional Instruments BNC 2110 data acquisition card.
This card allowed the automation of the microphone
displacement. The microphone was placed on a me-
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chanical arm and the actuator, on the upper face of the
beam close to one of the ends, specifically at 0.02 m as
in the first experimental set-up.

3.3. Signal processing

After we measured the vibration with the ac-
celerometers, we processed the signals to find out the
impulse response at each measurement point. From
the impulse response (IR), a Fast Fourier Transform
(FFT) renders the frequency response of the system.
Provided that the MLS signal preserves the phase ref-
erence, a temporal analysis will enable us to see pulse
propagating in the solid.

Likewise, we processed the pressure field captured
by the microphone to derive the IR of the 7200 mea-
surement points. This allowed the visualization of the
temporal evolution of the phenomenon and the perfor-
mance of a frequency analysis. This temporal analysis
allows to demonstrate, for instance, the influence of
the actuator above the 3 kHz.

In the next section the results of the experiments
are explained, once the signal processing had been ex-
ecuted in MATLABr.

4. Results and discussion

4.1. Experimental validation

The experimental procedure proposed in this work
was compared with the traditional techniques (shaker
and hammer). In this way, we validate the second
experimental set-up through which has served to
characterized the behaviour of the beam. Table 5
shows a comparison between the frequency response
for a hammer impact, a shaker, and for the actuator for
the first eight resonant modes.

Table 5. Frequency response between hammer
and the actuator [Hz].

Mode Hammer Shaker Actuator

1 88.0 83.50 87.90

2 225.10 232.90 225.60

2 434.20 440.90 436.60

4 – 745.60 738.00

5 – 1097.00 1087.00

6 1615.00 1513.00 1493.00

7 1826.00 1996.00 1994.00

8 – 2521.00 2441.00

Table 5 shows that the correlation between the
techniques is high, meaning that the electroacoustic
system proposed parallels the frequency response of
the structure with a good performance.

Figure 5 shows the displacement frequency re-
sponse of the continuous beam using the Mini-Pro-

Fig. 5. Displacement frequency response of the continuous
cross section beam using the actuator as exciter.

NXT actuator. The analysis of this curve indicates that
the technique here presented offers a wider frequency
range, being therefore more suitable for the purpose of
the present work.

The described experimental setup, with this “low
cost actuator” ,which can be coupled to the structure,
combined with the proper use of pseudorandom se-
quences (specifically MLS), allows us to have a whole
frequency range with a reliable signal-to-noise ratio.

4.2. Frequency response

In a first step, we analysed the spatially aver-
age pressure frequency response of those measurement
points close to the beam. Figure 6 shows the resulting
spectrum, where the critical frequency fc = 589 Hz,
analytically calculated from Eq. (5) is highlighted. It
establishes the lower frequency limit for the sound ra-
diation to occur.

Fig. 6. Spatially averaged pressure frequency response ob-
tained from those measurement points close to the conti-

nuous beam.

Figure 6 also identifies the resonance peaks corre-
sponding to the radiation modes. From the analytical
solution of the Euler-Bernoulli free-free beam model
we evaluated the difference between the measured res-
onance frequencies and the ten first analytical bend-
ing modes (Eq. (4)). The results are also presented
in Table 6, where the difference (in %) is the relative
percentage deviation of the results obtained from the
acoustic field data in relation to the analytical solution.
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Table 6. Comparison between experimental contact
data and experimental contactless results (vibratory

and acoustical).

Bending
mode

number

Accelerometer
[Hz]

Microphone
[Hz]

Error
[%]

1 88.00 70.00 −20.10

2 233.00 257.00 10.30

3 444.00 539.00 21.40

4 748.00 773.00 3.34

5 1097.00 1102.00 0.46

6 1513.00 1524.00 0.73

7 1994.00 1993.00 −0.05

8 2533.00 2556.00 0.91

The acoustic records of the first three resonant
modes are not clearly identifiable because all of them
show a high deviation. This may be due to the coin-
cidence phenomenon in an area close to the critical
frequency, fc. Below the fc, sound radiation is almost
nonexistent; near the fc, sound radiation is highly ef-
ficient (Fahy, Garddonia, 2007). The deviation in
the first mode is due to the position of the force, as
is not applied to the centre of the beam, a condition
that would facilitate the presence of the first reso-
nance mode. Above the critical frequency, the correla-
tion of the experimental data is very high (differences
less than 5%). Therefore, the acoustical experiment is
validated. Nevertheless, this alternative experimental
procedure can be a useful tool to characterize high ra-
diation resonant modes.

4.3. Vibratory and acoustic response of the structure

The use of MLS signals provides a phase reference
for all the vibratory and acoustic signals recorded. This
allows us to observe any intended modal form. For
instance, Fig. 7 (see Fig. 6 for all modes) shows the

a)

b)

Fig. 7. Vibratory and acoustic results for the continuous
beam (5-th mode – 1100 Hz): a) real part of the pressure
field radiated by the beam in the window of 1.2× 0.6 m,

b) modal displacement (relative values).

5-th modal form for the continuous beam. The real
part of the pressure field radiated by the beam is shown
at the top, and the amplified displacement resulting
from the vibration measurement on the structure at
the bottom.

Figure 7 also shows a slight displacement of the
beam ends in the areas close to the elastic support,
confirming the recreation of the free-free condition ap-
proach. Consequently, there is an absolute consistency
between the vibration mode of the structure and the
radiated field by the structure.

Figure 8 shows the 6th mode of the non-uniform
cross section beam through the relationship between
vibratory and acoustical results.

a)

b)

Fig. 8. Vibratory and acoustic results for the non-
continuous beam (6-th mode – 1428 Hz): a) real part of
the pressure radiated field by the beam in the window

of 1.2× 0.6 m, b) modal displacement (relative values).

In Fig. 8, we can easily differentiate the mode shape
in the pressure field. In the thin (right) portion of the
non-uniform cross-section the movement is easier than
that in the thick (left) one.

4.4. Temporal analysis

A significant feature of the MLS technique is its
ability to synchronize each measurement point and en-
able the observation of the generated wave fronts, as
well as their propagation.

Figure 9 shows specific information regarding
the evolution of the wave fronts at the time point

Fig. 9. Wave fronts at the time point 1.6563 ms, obtained
after processing the 7200 impulse responses of the records

for each point.
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1.6563 ms, obtained after processing the 7200 impulse
responses of the records for each point.

The figure shows both the wave front generated
by the beam and the front generated by the actua-
tor as well as the diffraction at the beam end, on the
right side. The wave front generated by the actuator
is quasi-spherical, similar to that of a point source,
whereas the wave front generated by the beam is flat.
The wave front inclination responds to the way the
beam has been excited. Note that the actuator is on
the left side of the beam. Therefore, there is a delay in
the pulse across, resulting in the inclination of the flat
wave front. Clearly, the pulse moves at a higher speed
through solid elements than through the air. The pulse
in the solid element covered the entire length of the
beam (1.2 m) and reflected (second wave front), while
the pulse in the air only covered half a metre. The
temporal behaviour of each mode can be observed by
using a band-pass filter.

4.5. K-space analysis

We obtained the spatial distribution of the sound
pressure field in the frequency domain (from the phase
information for each measurement point and by per-
forming a Fourier transform), as shown in Fig. 10 for
the case of 2 kHz. Figure 10a shows that the beam ra-
diation is predominant in the acoustic field, and there-
fore, the wavelength of the flexural wave in the solid,
λ [m], can be calculated from the spatial distance be-
tween maximums or minimums of the radiated acous-

a)

b)

Fig. 10. Sound pressure field at 2 kHz: a) spatial distribu-
tion in the measurement grid, b) K-space representation.

tic wave in the x direction close to the upper surface
of the beam. For the case of 2 kHz, the value of λ is
approximately 0.30 m, as marked out in the Fig. 10a.

The representation in the K-space of the sound
pressure field at 2 kHz is shown in Fig. 10b. It was ob-
tained by implementing a 2-D Fourier transform over
all the spectral values in the measurement grid and
illustrates the spatial frequencies kx and ky that con-
form the spatial frequency k in the measurement plane.
As observed, the predominant radiation occurs in the
y direction (spatial frequency, ky), supporting the as-
sumption that sound radiation of the beam is perpen-
dicular to the upper face of the structure.

At frequencies above 3 kHz, the radiation from the
beam is masked by the actuator sound radiation. Figu-
re 11 shows, as an example, the sound pressure field at
4 kHz. Figure 11a illustrates how the spherical pattern
of sound radiation of the actuator and of the beam are
significantly overlapped, making it difficult to properly
analyse the radiation of the beam as previously.

a)

b)

Fig. 11. Sound pressure field at 4 kHz (sound radiation
overlapping of the actuator and the beam): a) spatial distri-
bution in the measurement grid, b) K-space representation.

The representation in the K-space in Fig. 11b ver-
ifies the predominance of kx components in the sound
pressure field. As stated and illustrated in Fig. 10, the
beam sound radiation is normal to its upper surface
(ky components).

In order to minimize this interfering sound radia-
tion, a filter in the K-Space was applied to remove the
spectral components generated by the direct radiation
of the actuator and to better study the radiation of
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the beam itself. The filter used was a Veronesi filter
(Veronesi, Maynard, 1987; 1989), which is com-
monly employed in NAH applications. This filter re-
sponse in K-space, Hv(kx, ky), can be expressed as:

Hv (kx, ky) =

 1− 0.5e( k
kc
−1)/s k ≤ kc,

0.5e−( k
kc
−1)/s k > kc,

(21)

where kc and s are the spatial cut-off frequency and
the filter slope respectively. Figure 12 shows the re-
sponse in K-space of the Veronesi filter (Veronesi,
Maynard, 1989).

Fig. 12. Iso-lines representing the response in K-space of
the Veronesi filter (s = 0.65).

Once the filtering procedure was carried out, an
inverse 2-D Fourier transform was performed in order
to return back to the frequency domain.

In Fig. 13a, the resulting filtered sound pressure
field at 4 kHz is shown (in this case, the filter parame-
ters were kc = 45 and s = 0.65). Note that the contri-
bution of the beam’s sound radiation of the beam to
the acoustic field can be analysed more accurately since
the kx components from the radiation of the actuator
have been minimized. This enabled us to estimate the

Fig. 14. Bending waves propagation velocity obtained experimentally,
and with the Euler-Bernoulli and Timoshenko models.

a)

b)

Fig. 13. Filtered sound pressure field at 4 kHz: a) spatial
distribution in the measurement grid, b) K-space represen-

tation (Veronesi filter iso-lines are included).

wavelength λ of the flexural wave in the solid, which
for the case of 4 kHz is approximately 0.20 m.

Figure 13b shows the resulting filtered representa-
tion in the K-space. The cut-off region of the Veronesi
filter can be also identified as iso-lines.

Using the previous methodology, we obtained the
value of λ of several frequencies with the aim of cal-
culating the experimental bending wave propagation
velocity of the beam, cB . Figure 14 shows the compar-
ison of the cB obtained with the proposed methodology
and the Euler-Bernoulli free-free beam model (using
Eq. (3)).
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The cB calculated using the Timoshenko free-free
beam model (Eq. (2)) was also included, fitting better
to the experimental results. It must be reminded that
the Timoshenko model takes into account the resis-
tance to shear deformation and the rotary mass iner-
tia and in consequence outcome effect in the calculus
for those wavelengths comparable with the thickness
of the beam. Figure 14 also marks out the critical fre-
quency fc. It is important to highlight that the value
of this frequency is almost the same (around 589 Hz)
for the analytical solution and the proposed alternative
experimental methodology.

5. Conclusions

An experimental procedure has been put forward
for studying the vibro-acoustic behaviour of beam-type
structures based on the use of Maximum Length Se-
quence (MLS)-type pseudorandom signals. In compar-
ison to other techniques, this method requires a rel-
atively simple post-processing procedure with a high
signal-to-noise ratio. This technique has proved effi-
cient as an alternative to characterise the vibratory
and radiation field of this type of structures. The only
precaution to be taken consists of limiting the testing
signal so as to avoid nonlinearities.

The presented procedure may be very useful in
many acoustical engineering fields, specifically to
beams, plates and compound structures, where it is
mandatory that the use of prototypes have the dimen-
sions required, usually smaller than real size, for labo-
ratory testing.
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