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The locally resonant sonic material (LRSM) is an artificial metamaterial that can block underwater
sound. The low-frequency insulation performance of LRSM can be enhanced by coupling local resonance
and Bragg scattering effects. However, such method is hard to be experimentally proven as the best
optimizing method. Hence, this paper proposes a statistical optimization method, which first finds a group
of optimal solutions of an object function by utilizing genetic algorithm multiple times, and then analyzes
the distribution of the fitness and the Euclidean distance of the obtained solutions, in order to verify
whether the result is the global optimum. By using this method, we obtain the global optimal solution
of the low-frequency insulation of LRSM. By varying parameters of the optimum, it can be found that
the optimized insulation performance of the LRSM is contributed by the coupling of local resonance
with Bragg scattering effect, as well as a distinct impedance mismatch between the matrix of LRSM and
the surrounding water. This indicates coupling different effects with impedance mismatches is the best
method to enhance the low-frequency insulation performance of LRSM.

Keywords: underwater acoustic; sound insulation; local resonance; statistical optimization; global opti-
mum.

1. Introduction

Locally resonant sonic material (LRSM) is a type
of artificial material with local resonators periodically
embedded in a matrix. It can exhibit band gap char-
acteristics when the wavelength of sound is still much
larger than the material’s periodicity, which is called
“small size controlling long wavelengths” (Liu et al.,
2000). This type of artificial acoustic material at-
tracted much attention from relevant fields of stud-
ies when it was first introduced; it has good prospects
especially for low frequency sound absorption or insu-
lation in underwater acoustics (Goffaux et al., 2004;
Zhao et al., 2006; Wen et al., 2011). Yet, since strong

oscillation can only be stimulated when the frequency
of sound is near the intrinsic frequency of local res-
onators, the band gap induced by local resonance in-
evitably has a deficiency of being too narrow. Hence,
many studies have tried different ways to widen the
band gap, such as designing new type of resonators
(Jiang et al., 2009; Elford et al., 2011; Naify et al.,
2012; Varanasi et al., 2013; Yu et al., 2017), arrang-
ing different periodic patterns (Kuang et al., 2006),
coupling different band gaps (Xiao et al., 2011; Yuan
et al., 2013), or optimizing components’ parameters
(Sigmund, Jensen, 2003; Meng et al., 2012).

Yuan et al. (2013) analyzed the coupling behaviors
of local resonance and Bragg scattering effects, and in-
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dicated that the sound blocking performance of LRSM
can be enhanced in both magnitude and bandwidth
during coupling. Nonetheless, this analytical research
lacks experimental proof that coupling different band
gaps is the best strategy for improving sound insula-
tion of LRSM, since it’s impractical to fabricate and
to test a vast amount of such artificial material with
different properties. An alternative way is to analyze
the optimal sound insulations of LRSM, which are ob-
tained by the collaboration of optimization algorithm
with numerical calculations. And if the optimal sound
insulation of LRSM is just induced by the coupling of
local resonance and Bragg scattering effects, then this
insulation enhancing strategy will be proven valid.

To prove this hypothesis, the low-frequency sound
blocking performance of an LRSM with 4 layers of
spherical local resonators (LRs) is investigated by us-
ing statistical optimization. This LRSM is surrounded
by water on both sides with plane waves perpendic-
ularly incoming from the left side, as seen in Fig. 1.

a) b)

Fig. 1. A section view (a) of an LRSM with 4 layers of
spherical local resonators (LRs), and the partial enlarged
detail of one resonator (b). The dotted filling circles repre-
sent the cores of LRs, whose radius is RS; the white thin
annuli around the cores represent their coats, with the outer
radius to be RC, and the thickness of the coat to be h; the
grey background represents the matrix; the dashed lines
inside the matrix indicate the boundaries of different lay-
ers of LRs. Such a composite is periodically arranged in all
three principle directions. It consists of finite layers of LRs
in z-direction with the thickness of each layer to be L, but
infinite rows and columns of LRs in x- and y-directions
with the lattice constant to be a. The composite is im-
mersed in water with plane waves normally incident on its

left boundary.

There are many studies on the optimization algo-
rithm for improving the performance of LRSM, such
as simulated annealing, neighborhood algorithm, and
Genetic Algorithm (GA) (Gothall, Westin, 2005).
GA is highly adaptive to nonlinear, non-derivative, and
multi-objective optimizations; thus it is suitable for im-
proving the sound absorption and insulation of LRSM
(Gazonas et al., 2006; Romero-Garćıa et al., 2009).
Such method has been confirmed as a global optimiza-
tion algorithm (Hartl, 1989). However, in regards to
different optimizing objects and the coverage of initial
populations, GA still has a chance to converge into
a local minimum.

Consequently, this paper proposes to optimize the
sound blocking performance of LRSM by invoking GA
multiple times, and statistically analyze the solution
set of multi-optimizations, in order to judge the glob-
ality of these optima. Since the multi-optimization
will substantially increase the solving duration, such
statistical analysis is rarely seen in GA applications
(Yue, Feng, 2009). Yet, since this article calculates
the acoustic behavior of LRSM by the Layer Multiple
Scattering Theory (LMST) (Sainidou et al., 2005),
whose single calculation could be as short as a few
seconds, it’s achievable to obtain the global optimal
solution of LRSM’s sound blocking performance by
multi-optimization, and thus to verify that the band
gap coupling is the best strategy for sound insulation.
The flow-process diagram for such statistical optimiza-
tion is shown in Fig. 2.

Fig. 2. The flow-process diagram for the statistical opti-
mization using GA.

2. Statistical analysis of the optima’s globality
for multiple optimizations using

Genetic Algorithm

The following content uses two functions to ex-
plain how to determine the global property of the op-
timal solutions through statistical analysis of multi-
optimization. The two functions are Square-sum and
Rastrigin, respectively, as shown below.

Square-sum function: f (x, y) = x2
+ y2, (1)

Rastrigin function: f (x, y) = x2
+ y2

+ 20

−10 (cos 2πx + cos 2πy) . (2)

Figure 3 shows the 3D surface graph and 2D con-
tour graph of both functions in the solution space.
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a)

b)

Fig. 3. 3D surface graph for Square-sum function (a) and
Rastrigin function (b).

Each of the two functions has its own real variables
(x and y), with range [−2, 2]. The difference is that
Square-sum function contains only one minimal basin
of attraction in the solution space, while Rastrigin
function contains multiple minima with the global one
at x = 0 and y = 0.

Figure 4a exhibits the scatter diagram of all ini-
tial populations from multiple optimizations, and the
histogram for different variables of these initial points.
These initial points together are named as the ini-
tial population cluster. Both the histogram and the
scatter diagram in Fig. 4a show that the initial popula-
tion cluster can evenly cover the entire solution space,
which guarantees the GA to get the global optimal
solution from different object functions. However, for
Rastrigin function, which contains several global and
local minima within one solution space, the initial pop-
ulation of a single optimization (shown as asterisks in
Fig. 4a) may only cover parts of its attracting basins.
To ensure at least one global optimum can be sought
from multi-optimizations using GA, each object func-
tion will be optimized 1000 times, while 20 individuals
will be contained in the initial population for each op-
timization.

a)

b)

c)

Fig. 4. The scatter diagram and histogram for the initial
population cluster (a), the optimal solution set of Square-
sum function (b) and those of Rastrigin function (c). Hori-
zontal and vertical axes of scatter diagrams represent vari-
ables x and y respectively, while histograms aside from
scatter diagrams represent the distribution of optimal so-
lutions against corresponding variables. The red dots in
(a) indicate all the points of the initial population clus-
ter for multi-optimization, while black asterisks represent
the initial population distribution for a single optimization;
the blue plus marks in (b) are the optimal solution set for
Square-sum; the red cross marks in (c) represent the opti-
mal solution set for Rastrigin; the solid lines with different
gray levels in scatter diagrams are the contour maps for

either Square-sum (b) or Rastrigin (a, c) functions.

Figure 4b displays the scatter diagram of the op-
timal solutions for Square-sum function. After 1000
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times of optimizations, the majority of the optimal so-
lutions lies around the position of the function’s global
minimum (x = 0, y = 0). The distribution of these op-
tima regards to each variable conforms to the normal
distribution. As for Rastrigin function, the optimal so-
lutions from multi-optimizations can not only converge
to global minima but also to local ones, which can be
observed from the scatter diagram in Fig. 4c. Never-
theless, the global optimum still has the highest occur-
rence probability.

Due to the fact that, distance among minima from
different attracting basins, is much larger than those
from the same attracting basin, the optimal solution
set apparently exhibits discrete distribution against
both variables (x or y).

There are two reasons the global optimum can be
judged from the above analysis. The first one is that
each of the two functions has only two variables, so the
distance between the different optimal solutions can
be observed directly on the scatter diagram. The sec-
ond reason is that the global and local minima of both
functions are already known before optimization. How-
ever, for realistic optimizing problems, an object func-
tion usually contains more than three variables, and
nobody knows the real position of the global optimum
in advance. Hence, this article tries to distinguish the
globality of optimal solutions from multi-optimizations
by analyzing their Fitness Value (FV) and Euclidean
Distance (ED). The Euclidean distance is the normal-
ized distance between each individual optimum and
the average position of the optimal solution set, whose
equation is shown as below:

ED(Xi) =

¿
Á
ÁÀ

m

∑
k=1

(
xik − xk

∆xk
)

2

, (3)

where Xi is a gene for any individual from either the
initial population cluster or the optimized solution set,
which contains m variables like Xi = (xi1, xi2,⋯, xim),
xik represents the k-th variables in i-th individual. For
above functions, Xi = (xi, yi). xk is the arithmetic
mean value for the k-th variable of all the individu-
als, while ∆xk is the span of k-th variable during the
optimization (the distance between upper and lower
bounds). The usage of ∆xk is to normalize the varia-
tion of each variable before calculating the Euclidean
distance.

Figure 5 exhibits the distribution of fitness value
and Euclidean distance of Square-sum function be-
fore and after multi-optimizations. By comparing his-
tograms (a) and (c), one can find that fitness values
of optimal solutions are much smaller than those of
initial populations (by 6 orders of magnitude), which
implies that the optimization does work. Since ge-
netic algorithm is a stochastic optimization method,
which generates slightly different optimal result each
time, the optimal solutions by multi-optimizations are

a) b)

c) d)

Fig. 5. The histograms of fitness value for Square-sum
function before (a) and after (c) the statistical optimiza-
tion, and their counterparts of Euclidean distance before
(b) and after (d). The red solid lines in (c) and (d) repre-
sent the probability density curves of generalized extreme
value (GEV) distribution fitted by the maximum likelihood
method, whose specific parameters with 0.05 confidence
level are noted on the upper-right corner of corresponding

subfigure.

distributed continuously near the global minimum of
Square-sum (fmin = 0). It needs to be noted that the
amount of individuals for initial population cluster is
different from those for optimal solution set, in which
the former has 20000 while the latter has 1000.

In addition, from Fig. 5b and d, it can be observed
that the distances of the optimal solutions are also less
than those of the initial population (by 3 orders of
magnitude). This means that the optimal solution set
has a good convergence in the solution space. Compar-
ing with the fitness distribution, Euclidean distances of
optimal solutions are also close to zero, and they too
distribute continuously. However, the highest probabil-
ity of occurrence is around 1.09e–4. Such distribution
comes from the randomness of GA, causing each opti-
mization to generate a slightly different result. Thus,
most of optimal solutions locate around the center of
the optimal solution set, while very few of them coin-
cide.

Using maximum likelihood method, we tried to fit
the fitness value and Euclidean distance of optimal so-
lutions with different distribution patterns. Both of
them can well match with the generalized extreme
value (GEV) distribution, shown as red solid lines in
Fig. 5c and 5d. The generalized extreme value distri-
bution is used to model the smallest or largest value
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among a large set of independently and identically dis-
tributed random values representing measurements or
observations. If we treat all the generations of one
GA optimization as a sample group, then the opti-
mal solution of this optimization can be regarded as
the minimum value of such sample group. Therefore,
the optimal solutions from multi-optimizations should
also satisfy the generalized extreme value distribution,
whose probability density function is written as be-
low:

f (z ∣ ξ, σ, µ) =
1

σ
exp

⎧⎪⎪
⎨
⎪⎪⎩

− [1 +
ξ (z − µ)

σ
]

− 1
ξ⎫⎪⎪
⎬
⎪⎪⎭

⋅ [1 +
ξ (z − µ)

σ
]

−1− 1
ξ

. (4)

Parameters ξ, σ and µ represent the shape, scale,
and position of the probability density curve, respec-
tively. We can estimate these parameters using maxi-
mum fitting method, but in regards to different opti-
mizing problems, these parameters would also be dif-
ferent.

In contrast to Square-sum, the distribution of op-
timal solutions for Rastrigin apparently exhibits dis-
crete pattern. As shown Fig. 6a, out of 1000 opti-
mizations, there are 580 optimal solutions whose fit-
ness values converge to zero (the global optimal solu-
tion at x = 0, y = 0), with 340 solutions converging to
one, and several solutions converging to two and four.
But for each discrete converging fitness values, the dis-
tribution of optimal solutions around it still obeys to
GEV pattern. For instance, Fig. 6c shows the partial
enlargement of the fitness distribution for optimal so-

Fig. 6. Histograms of fitness value (a) and Euclidean dis-
tance (b) for optimal solutions of Rastrigin, and the par-
tial enlargement distribution of fitness (c) and distance (d)
around the global optimum (x = 0, y = 0). The meanings of

red curves and parameters are the same with Fig. 4.

lutions around global optimum. By using maximum
likelihood method, it can be found that the distribu-
tion of fitness matches the GEV’s probability density
curves well, whose specific parameters estimated un-
der 0.05 confidence level are listed on the up-right of
Fig. 6c.

Hence, one way to distinguish the global optimal
solution is to see whether the fitness distribution of op-
timal solutions belongs to a single minimum with con-
tinuous distribution, or several different minima with
apparently discrete distribution; the latter indicates
that these solutions contain local optima.

Nevertheless, judging the global optimum solely
through the distribution of fitness value is not fully
reliable. When the difference between the global opti-
mum and local optima is small, their distributions may
overlap each other, making it behave continuously like
just one optimum. Such misjudgment can be averted
by analyzing the distance distribution of optimal so-
lutions simultaneously with fitness. When there are
several optimal solutions from multi-optimization con-
verging to local optima, they will locate in different
attracting basins compared to the global optimum. No
matter how close these different attracting basins are,
and how similar their fitness value are, the distance of
optimal solutions from one basin will be much smaller
than those from different basins. So, the distance of
optimal solutions will distribute discretely, if only they
are converged to different optima.

Figure 6b shows the distribution of Euclidean dis-
tance of optimal solution set for Rastrigin, which shows
apparent discrete pattern. Most of the distances con-
centrate on the value of 0 and 0.25, while others on 0.35
and 0.5. Those results whose distance are close to 0 are
the optimal solutions converged to global minimum,
while others converged to different local minima. By
referring Fig. 3c and Eq. (2), it can be observed that
distance values of 0.25 and 0.35 represent the optimal
solutions which converges to local minima at positions
of (±1,0) and (±1,±1) respectively. That means the
discrete distance of multi-optimization coincides with
the distance from local minima at the center. For the
partially enlargement distribution around any specific
discrete distance, it matches with the GEV distribu-
tion under 0.05 confidence level, which is shown in
Fig. 6d.

According to the above analysis, we can derive the
global optimum criterion of the statistical opti-
mization: if the fitness value and Euclidean distance
of the optimal solution set distribute continuously in
their own value range, and their patterns match with
the generalized extreme value distribution, it would
mean the optimal solution set converge to the global
optimum. Otherwise, if the fitness value or Euclidean
distance distribute discretely, it means there are solu-
tions converged to local minima during multiple opti-
mizations.



370 Archives of Acoustics – Volume 44, Number 2, 2019

3. LRSM sound insulation statistical
optimization verification

Yuan et al. (2013) proposed enhancing the sound
blocking performance of LRSM by coupling local res-
onance and Bragg scattering effect. To prove this hy-
pothesis, the following optimization used the LRSM
structure mentioned in the introduction section as
reference, as shown in Fig. 1. The optimizing vari-
ables and their boundaries of such 4 layers LRSM are
listed in Table 1. L is the layer thickness of LRs in
z-direction, RS is the core’s radius, RC is the outer ra-
dius of coat, ρM, EM, σM are the density, Young’s mod-
ulus, and Poisson’s ratio of the matrix, respectively;
ρC, EC, σC are the corresponding material properties
of the coat, and ρS is the core’s density. In addition, the
cell’s lattice constant is a = 10 mm. For easier recogni-
tion of the sound blocking effect induced by gap cou-
pling, the material’s damping is not considered during
optimization.

Since the optimizing goal is improving the low-
frequency sound blocking performance of LRSM, the
object function should try to maximize the average
value of transmission loss (TL = 10 lg 1/T ) of the LRSM
on the weight mean of low-frequency in considered fre-
quency range. For a genetic algorithm which tries to
minimize the fitness of individuals, the specific form of
the estimating function of fitness is shown as follow:

F (Xi) =

n

∑
j=1

10 ⋅
∆ω2

ω2
j

⋅ lgT (Xi, ωj)

n
, (5)

where Xi is the i-th individual for estimating fit-
ness; ωj is the j-th discrete frequency for calculat-
ing the sound transmission (T ) of the LRSM, while
there are n points of discrete frequencies which needs
to be calculated in considered frequency range; ∆ω is
the considered frequency range for the optimization
(∆ω = ωn − ω1), which is set as f ∈ [500, 2500] in
this paper. ∆ω2/ω2

j is the weight factor which con-
siders the low-frequency sound blocking performance
to be more important than that of the relatively high-
frequency. The sound transmission (T ) in regards to
different frequencies is calculated by the Layer Mul-
tiple Scattering Theory (LMST) according to the Xi

individual (Sainidou et al., 2005).
Ignoring the time domain term exp(iωt), an inci-

dent wave is normally represented as:

uin(r) = [uin]
s′

g′i′ exp (−iKs′
g′i′ ⋅ r) êi′ (Ks′

g′i′), (6)

Table 1. The optimizing variables and their boundaries of the LRSM with 4 layers of spherical LRs.

Variables L RS RC ρM EM σM ρC EC σC ρS

Lower bound 10 0.01 0.5 800 1e6 0.30 800 1e5 0.2 2600

Upper bound 20 4.5 5 1300 1e9 0.497 1300 1e7 0.497 11600

Note: unit of L, RS and RC is mm, unit of ρM, ρC, and ρS is kg/m3, unit of EM and EC is Pa.

in which, g′ implies the reciprocal lattice vector of the
structure, i′ = 1,2,3 represents the longitudinal wave
and two transverse waves respectively, s′ = ± indicates
the wave going through +z or −z directions, and Ks′

g′i′

implies the wave vector:

K±
g′i′ = (k// + g′ ±

√

q2
i′ − ∣k// + g′∣

2
). (7)

q1 represents the longitudinal wave number, while q2

and q3 represent the wave number of two transverse
waves; k// is the reduced Bloch vector which lies in the
xy plane; [uin]

s′
g′i′ indicates the amplitude of incident

wave; êi′(Ks′
g′i′) is the unit vector with corresponding

polarization. Hence, the incident wave (Eq. (6)) can be
derived as:

uin (r) =∑
nσ

ain
nσJnσ (r) . (8)

The scattering wave of the one layer periodicity
structure, when the wave given by Eq. (8) is incident
upon it, has the form

usc (r) =∑
nσ

b0nσ∑
j

exp (−ik// ⋅Rj)Hnσ (r−Rj), (9)

where Rj is the position vector of the scatter, Jnσ(r)
and Hnσ(r) are vector spherical wave function.

Since the total incident waves of the scatter at orig-
inal position are equal to the summation of incident
wave from the outside environment and the scattering
waves from all other scatters, the following equation
can be obtained as:

u0
in (r) = ∑

nσ

a0
nσJnσ (r)

= ∑
nσ

⎛

⎝
ain
nσ+∑

n′%′
Ωnσn′σ′ (k//)b

0
n′σ′

⎞

⎠
Jnσ (r), (10)

where

Ωnσn′σ′ (k//) =∑
j≠0

exp (−ik// ⋅Rj)Gn′σ′nσ (−Rj),

and Gn′σ′nσ is the constant structure vector for the pe-
riodic arranged scatters. On the other hand, the scat-
tering and incidence coefficients of one scatter satisfy
the following relationship:

b0nσ = ∑
n′σ′

Tnσn′σ′a
0
n′σ′ , (11)
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where Tnσn′σ′ represents the transfer matrix of the
scatter. By combining Eqs (10) and (11), we can derive
the b0nσ, and the scattered wave of the whole layer of
scatters as follows:

usc (r) =∑
gi

[usc]
s
gi exp (−iKs′

g′i′ ⋅ r) êi (Ks
gi). (12)

Thus, the reflected and transmitted waves of this
layer are represented as:

urf (r) =∑
gi

[urf]gi exp (−iK−
gi ⋅ r) êi (K−

gi),

utr (r) =∑
gi

[utr]
s
gi exp (−iK+

gi ⋅ r) êi (K+
gi).

(13)

The coefficient of reflected and transmitted waves
for the n-th layer of scatters ([urf]gi and [utr]gi) are
linearly related with its incident coefficient [uin]

+
g′i′ .

Such relationship can be defined as forward transmis-
sion (QI) and reflection (QIII) matrices for a plane
wave incident from left. On the contrary, QIV and QII

represents the inverse transmission and reflection ma-
trices when the incident wave comes from right side
[uin]

−
g′i′ . The physical meaning of these matrices are

shown schematically in Fig. 7.

Fig. 7. The physical meaning of Qk.

We can obtain the scattering matrices Qk for any
kinds of multiple layers with different periodic spher-
ical scatters or homogenous planes, by successively
calculating all the scattering matrices for each layer.
The transmission and reflection matrices for a pair of
two successive layers, n and n + 1, to be denoted by
Qk(n,n+1), can be obtained by combining the matri-
ces Qk(n) and Qk(n + 1) of the two layers as follows:

QI(n,n + 1) = QI(n + 1)

⋅ [I −QII(n)QIII(n + 1)]
−1
QI(n),

QII(n,n + 1) = QII(n + 1) +QI(n + 1)QII(n)

⋅ [I −QIII(n + 1)QII(n)]
−1
QIV(n + 1),

QIII(n,n + 1) = QIII(n) +QIV(n)QIII(n + 1)

⋅ [I −QII(n + 1)QIII(n + 1)]
−1
QI(n),

QIV(n,n + 1) = QIV(n)

⋅ [I −QIII(n + 1)QII(n)]
−1
QIV(n + 1).

(14)

Hence, we can analytically calculate the sound per-
formance of a locally resonant sonic material with mul-
tiple layers by using Eq. (14). Finally, the transmit-
tance and reflectance of the acoustic material can be
calculated as follows:

T =

∑
gi

ρtr
(ctri )

2
[utr]gi([utr]gi)

∗K+(tr)
giz

∑
gi

ρin
(cini )

2
[uin]gi([uin]gi)

∗K+(in)
giz

, (15)

R =

∑
gi

(cini )
2
[urf]gi([urf]gi)

∗K+(in)
giz

∑
gi

(cini )
2
[uin]gi([uin]gi)

∗K+(in)
giz

. (16)

If absorption is present in any components of the
acoustic material, we can obtain the absorbance A of
such material

A = 1 − T −R. (17)

Figure 8 is the cluster of transmission loss (TL)
curves of the LRSM optimized by statistical optimiza-
tion 100 times. It can be seen that all optimal solutions
exhibit high-efficient sound insulation in the range of
350–1800 Hz, with the average transmission loss up to
78 dB and the peak up to 200 dB. According to shapes
of these curves, it can be preliminarily judged that the
high-efficient sound blocking band is induced by the
coupling of local resonance and Bragg scattering effect
(Yuan et al., 2013). There are three TL peaks whose
peaks are up to 20 dB in the range of 0–350 Hz for all
optimal solutions, and their shapes are highly uniform.
They are induced by the Fabry-Pérot interference on
the boundaries of the LRSM. Since the characteristic
impedance of LRSM’s matrix is seriously mismatched
with the surrounding water, the acoustic material can
still insulate the incoming sound efficiently even in the
frequency range of pass band (for its counterpart with

Fig. 8. The cluster of transmission loss (TL) curves of the
LRSM optimized by statistical optimization 100 times.
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infinite layers in z-direction, which is named as lo-
cally resonant phononic crystal). This indicates that
reducing the matrix’s impedance, thus increasing the
impedance imbalance between matrix and surrounding
will enhance the sound insulation performance of the
material. In addition, optimal solutions also exhibit
several sound blocking peak when frequency is higher
than 1800 Hz, which are caused by different reasons
like impedance imbalance, higher mode of local reso-
nance, and surface localized mode (Sainidou et al.,
2008).

Although, there are slight differences on the fre-
quency ranges or curve shapes for different optimal
solutions, their basic trends of the transmission loss
curves are the same, which means the sound blocking
characteristic of these optimal solutions has high con-
sistency. Therefore, it can be preliminarily concluded
these optimal solutions has converged to the global op-
timum.

Figure 9 shows fitness and distance distributions
for the initial population cluster and the optimal solu-
tion set respectively. As shown in Fig. 9a and 9b, most
fitness values of the initial population cluster are close
to 0, while all of optimal solutions are below −500. Such
value distribution indicates that the initial population
has no apparent sound insulation, while their optimiz-
ing results exhibit efficient insulation in low frequency
range. Besides, the Euclidean distances of initial pop-
ulations are far greater than those of optimized re-
sults, which implies the optimal solutions obtained by
multi-optimization has a good convergence in the solu-
tion space. The statements above can prove that using
Eq. (5) as objective function has indeed optimized the
low-frequency sound insulation performance of LRSM.

a) b)

c) d)

Fig. 9. The fitness and distance distribution of initial popu-
lations and optimal solutions for sound blocking optimiza-

tion of LRSM.

By using the maximum likelihood method, we try
to fit the distribution of fitness and distance of opti-
mal solutions with GEV distribution, which are shown
as solid curves in Fig. 9b and 9d. The corresponding
parameters (ξ, σ, and µ) of GEV are noted on the
upright of subfigures respectively with the confident
level at α = 0.05. It can be found that both fitness
and distance of the optimal solutions fit the GEV dis-
tribution well, and behave continuously in their value
range. According to the global optimum criterion in
last section, we can confirm the optimal solutions of
low-frequency sound blocking performance have con-
verged to the global optimum in the given variation
space.

The specific parameters of the best solution from
multi-optimization are shown in Table 2. In order
to enhance the low-frequency sound blocking perfor-
mance of the LRSM, the optimization converged to
a relatively large radius and heavy density core, while
a low Young’s modulus and thick coat, compared with
the boundaries of variables in Table 1. This can reduce
the resonant frequency of local resonators. Simultane-
ously, the optimized matrix has relatively slow longitu-
dinal and transverse waves, and large layer thickness,
so as to decrease the starting frequency of Bragg scat-
tering effect.

Table 2. The specific parameters for the best optimal
solution of LRSM.

Parameters/Components Core Coat Matrix

Density ρ [kg/m3] 11600 816 802

Young’s modulus E [Pa] 4.08e10 1.00e5 1.01e6

Poisson ratio σ 0.37 0.21 0.30

Longitudinal speed cL [m/s] 2493 11.72 41.16

Transverse speed cS [m/s] 1133 9.13 21.94

Structural size [mm] RS = 4.5 RC = 5
a = 10

L = 20

Figure 10 shows the transmission loss spectrum
of the best solution from multi-optimization, and its
derived cases. The best solution (EC = 0.1 MPa) ex-
hibits an unified and efficient sound blocking band in
the range of 350–1800 Hz, and contains two peaks at
1013 Hz and 1657 Hz, respectively. When the Young’s
modulus of the LR’s coat is reduced to the half of the
best optimal solution (EC = 0.05 MPa), the derived
case exhibits two apparent sound blocking band in the
range of 300–1600 Hz. The curve of the band in lower
frequency range has a cusp at 616 Hz where the peak
of transmission loss reaches 200 dB, while the coun-
terpart in higher frequency range varies smoothly in
the range of 854–1600 Hz where the transmission loss
never exceeds 100 dB (shown as the dashed curve in
Fig. 9). On the other hand, when the Young’s mod-
ulus of the LR’s coat is twice of the best optimal so-
lution (EC = 0.2 MPa), the derived case also exhibits
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Fig. 10. The transmission loss spectrum of the best solution
from multi-optimization (solid curve), and its derived cases

(dashed and dotted curves).

two apparent sound blocking bands in the range of
400–2000 Hz. What’s different with the former derived
case is that the sound blocking band in lower frequency
range varies smoothly, while the higher one has a cusp
in the middle of the band (shown as the dotted curve in
Fig. 10). Such varying pattern of sound blocking per-
formance is coincident with the gap coupling charac-
teristics discussed in (Yuan et al., 2013), which implies
the highly efficient sound blocking performance of the
best optimal solution in low frequency range is induced
by gap coupling of local resonance and Bragg scatter-
ing effects. In addition, two derived cases with uncou-
pled gaps (the dashed and dotted curves in Fig. 10)
could be further designed as underwater wave filter
with specific frequency range.

4. Conclusion

To prove the best strategy of enhancing the sound
blocking performance of LRSM includes impedance
imbalance as well as the gap coupling between lo-
cal resonance and Bragg scattering, this article sug-
gests using genetic algorithm to optimize the low-
frequency insulation of LRSM, and analyze the for-
mation of optimized sound insulation characteristic.
Since there are a dozen of the LRSM’s parameters
needed to be optimized, one sole optimization may
not be able to converge to the global optimum for the
sound blocking performance. Thus, we utilize the ge-
netic algorithm to optimize problems multiple times,
and try to judge the globality of solutions with sta-
tistical analysis. The Square-sum and Rastrigin func-
tions are used as examples to conclude the criterion
of global optimum, which should be: the fitness values
and Euclidean distance of the optimal solutions dis-
tribute continuously and match with the generalized

extreme value distribution. By using such statistical
optimization method, we obtain the global optimum
of the LRSM for the best sound blocking performance
in low-frequency, which exhibits highly efficient insu-
lation in the frequency range of 350–1800 Hz with the
average transmission loss up to 78 dB. Further investi-
gation confirms such insulation performance is mainly
induced by the impedance imbalance between the ma-
trix and surrounding water, as well as the gap coupling
between local resonance and Bragg scattering effects.
This study reveals that by integrating impedance im-
balance and gap coupling methods, one can substan-
tially enhance the sound insulation of LRSM. What’s
more, the imperfect gap-coupling case has the poten-
tial to become underwater sound filtering material.
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