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To design breast ultrasound scanning systems or to test new imaging methods, various computer models
are used to simulate the acoustic wave field propagation through a breast. The computer models vary in
complexity depending on the applied approximations. The objective of this paper is to investigate how
the applied approximations affect the resulting wave field. In particular, we investigate the importance
of taking three-dimensional (3-D) spatial variations in the compressibility, volume density of mass, and
attenuation into account. In addition, we compare four 3-D solution methods: a full-wave method, a Born
approximation method, a parabolic approximation method, and a ray-based method. Results show that,
for frequencies below 1 MHz, the amplitude of the fields scattering off the compressibility or density
contrasts are at least 24 dB higher than the amplitude of the fields scattering off the attenuation contrasts.
The results also show that considering only speed of sound as a contrast is a valid approximation. In
addition, it is shown that the pressure field modeled with the full-wave method is more accurate than the
fields modeled using the other three methods. Finally, the accuracy of the full-wave method is location
independent whereas the accuracy of the other methods strongly depends on the point of observation.
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1. Introduction

Breast cancer is the most frequently diagnosed type
of cancer and among the leading causes of death for
women worldwide. Several studies show that detect-
ing the tumor at an early stage significantly increases
the survival rate (Siegel et al., 2017). Currently, X-
ray mammography is generally used in screening pro-
grams since it is the “golden standard” for breast can-
cer examination. However, it can miss tumors in young
women with dense breasts as the healthy fibrous and
glandular tissues, as well as cancerous lumps, show
up white on mammograms (Bird et al., 1992). For-
tunately, ultrasound has the capability to differentiate
between these tissues and therefore it has the poten-
tial to detect cancer in dense breasts. In addition, it is

patient-friendly, safe, fast, cost-effective and avoids the
use of ionizing radiation. To improve breast cancer di-
agnosis, automated whole-breast ultrasound scanning
systems (Ruiter et al., 2006; Wiskin et al., 2012;
Duric et al., 2007) and ultrasound imaging algorithms
(Simonetti et al., 2007; Hesse, Schmitz, 2012; Jirik
et al., 2012; Ozmen et al., 2015) are being developed.

To optimize the design of a breast scanner, it is es-
sential to model the acoustic wave field generated by
the system. In addition, to test new imaging methods,
computer models can be used as an appropriate, inex-
pensive, and flexible approach for generating synthetic
measurement data. However, for these models to be
useful, it is important to know (i) what the relevant
medium parameters are and (ii) the applicability of
approximations commonly made to reduce the compu-
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tational costs involved in solving the forward problem.
It is the objective of this paper to investigate those two
aspects.

To investigate what the relevant medium param-
eters are, we model the pressure field using a three-
dimensional (3-D) full-wave method. The applied
method uses a frequency-domain integral equation for-
mulation to describe the wave propagation in media
with spatially varying compressibility, volume density
of mass and attenuation (van Dongen, Wright,
2006; Ozmen-Eryilmaz et al., 2011). The applied nu-
merical breast model is built from an MRI scan of
cancerous breast (Bakker et al., 2009). Time-domain
results are obtained by applying Fourier transforma-
tions. The method accounts for refraction, diffraction,
multiple reflections, and/or dispersion effects.

The same full-wave method is used to examine
the performance of commonly used approximations to
solve the forward problem in biomedical ultrasound.
In particular, we will evaluate the Born approxima-
tion (Simonetti et al., 2007), paraxial approximation
(Hardin, Tappert, 1973) and ray based method
(Kak, Slaney, 1988). The effects of these approxi-
mations are studied by comparing the resulting wave
fields with the solutions obtained with the full-wave
method. We used the basic form of each approximation
instead of recent methods based on these approxima-
tions that can give more accurate results. The main
reason behind this selection is to point out possible
problems each approximation may bring.

The integral equation formulation (Cobbold,
2007) has the advantage that it allows the problem to
be solved at a predefined accuracy using an iterative
solution method (Herman, van den Berg, 1982).
In this work a conjugate gradient iterative solution
method is used (Kleinman, van den Berg, 1991).
An additional advantage of the frequency-domain for-
mulation is that it leads to a reduction of computa-
tional complexity. This is especially the case, if one
is only interested in the dominant spectral component
of the temporal signal. Since each frequency compo-
nent may be considered as an independent problem,
parallelization techniques can be used to reduce the
computational time.

To investigate the aforementioned aspects, we start
Sec. 2 with introducing the integral equation formula-
tion for the acoustic wave field. Section 3 provides de-
tails about four different solution methods: full-wave
method, Born approximation, paraxial approximation
and ray based method. Section 4 first validates the
accuracy of the full-wave method using the analyti-
cal solution for a plane wave scattering off a spherical
contrast. Next, it evaluates how the different medium
properties affect the pressure wave field and ends with
comparing the time-domain results obtained with the
four solution methods. Finally, Sec. 5 contains a dis-
cussion of the obtained results and a final conclusion.

2. Theory

The propagation of acoustic pressure wave fields
in heterogeneous media is governed by the wave equa-
tion. Derivation of this wave equation starts with the
equations of motion and deformation. In the frequency
domain these equations equal

∇p̂(x) + iωρ(x)v̂(x) = f̂(x), (1)

∇ · v̂(x) + iωκ(x)m̂(x)p̂(x) = q̂(x), (2)

where p̂(x) is the acoustic pressure wave field, v̂(x)
is the particle velocity wave field, ρ(x) is the volume
density of mass, κ(x) is the compressibility, m̂(x) is
the causal compliance relaxation function to account
for attenuation, f̂(x) is the volume source density of
volume force, and q̂(x) is the volume source density
of injection rate, ∇ is the nabla operator, ω is the an-
gular frequency, and x is the spatial coordinate in the
3-D spatial domain D (Fokkema, van den Berg,
1993; Gisolf, Verschuur, 2010; Demi et al., 2011;
Huijssen et al., 2008). The caret symbol ̂ is used
to express that a quantity is defined in the temporal
Fourier domain. Combining Eqs. (1) and (2) results in
the inhomogeneous Helmholtz equation for heteroge-
neous media, i.e.

∇2p̂(x)− γ̂20 p̂(x) =− iωρ(x)q̂(x)

+ χρ(x)∇p̂(x)− χ̂γ(x)p̂(x), (3)

where ∇2 = ∇ · ∇ is the Laplace operator, γ0 =
iω
√
ρ0κ0m0 is the propagation coefficient of the em-

bedding, and χρ(x) and χ̂γ(x) are contrast functions.
These contrast functions depend on the spatially vary-
ing medium properties compressibility, density and at-
tenuation, and are equal to

χρ(x) =
∇ρ(x)

ρ(x)
(4)

and

χ̂γ(x) = γ̂20 − γ̂2(x). (5)

In Eqs. (3) to (5) it is assumed that the wave fields
are solely generated by a volume source density of in-
jection rate source q̂(x), hence f̂(x) = 0. In addition,
it is assumed that both the volume density of mass
ρ(x) and the velocity wave field v̂(x) are sufficiently
smooth. These assumptions are typically valid for most
biomedical applications.

To account for the power law attenuation com-
monly observed in biomedical tissue, the complex
propagation coefficient γ̂(x) is expressed as

γ̂(x) = α̂(x) + iβ̂(x), (6)
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where the attenuation coefficient α̂(x) and phase coef-
ficient β̂(x) equal (Szabo, 1995)

α̂(x) = α1(x) |ω|b(x) , (7)

β̂(x) =
ω

cref
+ α1(x) tan

[π
2
b(x)

]
·ω(|ω|b(x)−1 − |ωref|b(x)−1), (8)

with
α1(x) = a(x)(2π)−b(x), (9)

where ωref is the angular reference frequency at which
the speed of sound and attenuation coefficients have
been measured and the medium parameters a(x) and
b(x) reflect the attenuation.

Equation (3) can be recasted into an integral equa-
tion which equals

p̂(x) = p̂inc(x) +

∫
x′∈D

Ĝ(x− x′)χρ(x′)∇p̂(x) dV

+

∫
x′∈D

Ĝ(x− x′)χ̂γ(x′)p̂(x′) dV, (10)

where p̂inc(x) is referred to as the incident field, i.e., the
pressure wave field generated by the primary sources
and propagating in the homogeneous embedding and
where Ĝ(x − x′) is the free-space Green’s function of
the homogeneous embedding. This function satisfies
the Sommerfeld radiation condition and the applica-
tion of the absorbing boundary conditions or perfectly
matched layers are not needed as long as the con-
trast is embedded in the background medium (Alles,
van Dongen, 2011). For the 3-D case the free-space
Green’s function of homogeneous background equals

Ĝ(x− x′) =
e−γ0|x−x

′|

4π |x− x′|
. (11)

In the remaining of the paper, when it is mentioned
that there is only a compressibility contrast it means
that both the density and attenuation is constant and
set to values corresponding to the embedding, hence,
ρ(x) = ρ0, a(x) = a0 and b(x) = b0. The same proce-
dure is followed in case that there is only a density or
an attenuation contrast. For the case that all inhomo-
geneities are combined, every parameter has its actual
value. The speed of sound case is an approximation
that is commonly made. In this case attenuation is set
to the embedding, and the contrast function χρ given
in Eq. (4) is set to 0. Only the contrast function χγ
is non-zero where the speed of sound is based on the
actual values of the compressibility and density.

3. Solution methods

The forward problem refers to the situation where
the unknown total pressure field p̂(x) is obtained for

a known incident pressure field p̂inc(x) and known
contrast functions χρ(x′) and χ̂γ(x′). Solving the for-
ward problem via Eq. (10) requires the use of iterative
schemes in situations when arbitrary shaped contrasts
are considered; exact analytical solutions only exist for
a limited number of configurations. In addition to the
full-wave method, we also derive solution methods for
the Born approximation, the paraxial approximation,
and the ray based method.

3.1. Full-wave method

The presented full-wave method is based on the
frequency-domain integral equation formulation as
presented in Eq. (10) (van Dongen, Wright, 2006;
Ozmen-Eryilmaz et al., 2011). This equation can be
rewritten as

p̂inc(x) = p̂(x)−
∫
x′∈D

Ĝ(x− x′)χρ(x′)∇p̂(x) dV

−
∫
x′∈D

Ĝ(x− x′)χ̂γ(x′)p̂(x′) dV. (12)

In operator notation Eq. (12) equals

f = L[u], (13)

where f is the known incident pressure field p̂inc(x), u is
the unknown total pressure field p̂(x), and L is the inte-
gral operator containing the Green’s function Ĝ(x−x′),
and the known contrast functions χρ(x′) and χ̂γ(x′).
In our study, the linear system is solved iteratively by
the conjugate gradient method applied on the normal
equation. The convergence of this method is known to
be good (va Dongen et al., 2007). With this method
the unknown field at the n-th iteration step, i.e. un, is
obtained by minimizing a cost functional. Hence, the
approximate solution at the n-th iteration step equals

un = un−1 + αndn, n ≥ 1, (14)

where αn is the step size and dn is the update direc-
tion. Step size is determined according to the Fletcher-
Reeves formula (Fletcher, 1976). For any updated
solution un the residual rn is defined as

rn = f − L[un], (15)

and the normalized error Errn is defined as

Errn =
‖rn‖
‖f‖

, (16)

with the properties Errn = 0 if un = u, and Errn = 1
if un = 0, and where ‖. . . ‖2 represents the L2-norm of
a vector. The error is used as a measure for the accu-
racy attained in the iterative scheme. All detailed steps
of the conjugate gradient method are given in Table 1.
Note that problems associated with the singularity of
the Green’s function are solved by using its weak form
(Zwamborn, van den Berg, 1992).
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Table 1. The conjugate gradient scheme
(L† is the adjoint operator).

CG

u0 = 0

r0 = f − L[u0]

d0 = r0

g0 = L†[r0]

for n = 1, 2, ...

gn = L†[rn−1]

ηn =
‖gn‖2

‖gn−1‖2

dn = gn + ηndn−1

αn =
‖gn‖2

‖Ldn‖2

un = un−1 + αndn

rn = f − L[un]

Errn =
‖rn‖
‖f‖

if Errn < ε stop

if n > nmax stop

end

3.2. Born approximation

In situations where the contrasts are small and the
scattering is weak, the unknown total field p̂(x), in-
side the integrand of Eq. (10) may be approximated
by the known incident field p̂inc(x), yielding the fol-
lowing equation

p̂(x) = p̂inc(x) +

∫
x′∈D

Ĝ(x− x′)χρ(x′)∇p̂inc(x′) dV

+

∫
x′∈D

Ĝ(x− x′)χ̂γ(x′)p̂inc(x′) dV. (17)

The unknown total field can now be computed directly
and is similar to the field obtained after the first iter-
ation step of the conjugate gradient solution method.
Although this approximation neglects multiple scatter-
ing and possible phase shifts in the resulting field, it is
highly efficient with respect to computational time.

3.3. Paraxial approximation

To solve the wave equation within the paraxial ap-
proximation, the parabolic wave equation is used as
a starting point (Dagrau et al., 2011). Under the as-

sumption that spatial variations depend on speed of
sound, the Helmholtz equation reads

∇2p̂(x) + k̂2(x)p̂(x) = 0, (18)

where the wave number k̂(x) equals

k̂(x) =
ω

c(x)
, (19)

and where c(x) is the speed of sound of the medium.
After applying a spatial Fourier transform with respect
to x and y Eq. (18) equals

∂p̃

∂z2
+
(
k̃2 ∗kx,ky −k2x − k2y

)
p̃ = 0, (20)

where the tilde symbol ˜ is used to express that a quan-
tity is defined in the spatial Fourier domain (kx, ky)
with Cartesian coordinate z, and where the symbol
∗kx,ky denotes a convolution with respect to the spatial
frequency components (kx, ky). Equation (20) can be
factorized into two parts, i.e.[

∂

∂z
− i k̃z

] [
∂

∂z
+ i k̃z

]
p̃ = 0, (21)

with

k̃z =

√
k̃2 ∗kx,ky −k2x − k2y. (22)

To compute the wave propagating in the +z-direction,
only the second part of the left-hand side of Eq. (21)
is considered, hence[

∂

∂z
+ ik̃z

]
p̃ = 0. (23)

A solution for the one-way wave equation (Eq. (23)) is
obtained using the split-step method (Stoffa et al.,
1990). Using the known field in the plane z = z0, the
field at z = zo +∆ can be computed in following way

p̃(kx, ky, z0 +∆) = p̃(kx, ky, z0)e−ik̃z∆, (24)

where k̃z is approximated as

k̃z = k̂mean +
(k2x + k2y)

2k̂mean
, (25)

with

k̂mean =

∫
k̂(x, y, z) dxdy∫

dx dy
. (26)

This approximation is only valid when the angle be-
tween the z-axis and the direction of propagation is
small. Note that there are several methods to approx-
imate k̃z, all leading to similar results.
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3.4. Ray based method

The ray based method assumes that the pressure
field travels along a straight path and spatial varia-
tions in the speed of sound only lead to phase shifts.
Solutions for the forward problem are constructed by
calculating the phase shifts for every point in the do-
main of interest (Kak, Slaney, 1988).

4. Results

Numerical results are provided in this section in
the following order. First, the full-wave method is val-
idated using an analytical solution for a plane wave
scattering off a spherical object. Next, several simula-
tions are presented using a breast model with inhomo-
geneities in all four medium properties separately and
combined. Finally, a comparison is made of the results
obtained with different solution methods in case only
inhomogeneities in the speed of sound are considered.
All fields are on a dB scale and normalized with re-
spect to the maximum absolute value of the incident
field unless noted otherwise.

4.1. Validation with an analytical solution

To test the accuracy of the full-wave method, a con-
figuration is used for which the analytical solution is
known: a plane wave scattering off a spherical object.
A derivation of the analytical solution can be found
in the literature (Skudrzyk, 2012). The acoustically
penetrable sphere with radius r = 2.5 mm is posi-
tioned in the center of a volume of 10× 10× 10 mm.
The spatial domain is discretized with a grid size ∆x =
0.078 mm in each direction. The acoustic medium pa-
rameters of the sphere and the embedding are chosen
similar to those typically encountered in biomedical
applications. It is considered that the sphere represents
fat and the embedding represents water, see Table 2.
The sphere is illuminated with a plane wave propagat-
ing in the x-direction. The Gaussian modulated wave
has a center frequency f0 = 1 MHz, and a bandwidth

Table 2. Acoustic medium parameters for the breast
(Szabo, 2004; Goss et al., 1980; d’Astous, Foster, 1986;

Duck, 2013; Sohrab et al., 2006).

c ρ κ a b

[m/s] [kg/m3] [1/Pa] [dB/mMHzb] [–]

Water∗∗ 1510 995 4.41e−10 0.2 2.00

Muscle 1580 1041 3.85e−10 57.0 1.01∗

Fat 1430 928 5.27e−10 15.8 1.70

Skin 1537 1200 3.53e−10 104.0 1.01∗

Gland 1510 1020 4.30e−10 75.0 1.50

Tumor 1550 1000 4.16e−10 57.0 1.30
∗ Assumed values, ∗∗ at a temperature of 32◦C.

of 50%. The time span of the simulation is set to 16 µs
with a step size ∆t = 0.25 µs. The iterative scheme
is stopped when the normalized error is Errn ≤ 10−6.
Time-domain results are obtained by applying inverse
Fourier transforms.

Snapshots of the incident, total and scattered fields
at time t = 4.75 µs in the plane z = 0 m are presented
in Fig. 1. The normalized error between the analytical
solution pAS(x, t) and full-wave method pFW(x, t) is
calculated for the incident, total and scattered field, as

Error(x, t) = 20 log10

(
|pFW(x, t)− pAS(x, t)|

|pAS(x, t)|

)
, (27)

where | . . . | indicates that the absolute value is taken.
As can be seen in Fig. 1, the differences between both
solutions are small, i.e. everywhere below −40 dB. For
instance, the normalized error in the total field near the

Fig. 1. Snapshots of the incident (top row), total (middle
row) and scattered (bottom row) pressure fields in dB at
time t = 4.75 µs, and in the plane z = 0 m. The first col-
umn shows the full-wave method, and the second column
shows the error between the analytical and the full-wave
solution. The white circle shows the contour of the sphere

which is located in the middle of the domain.
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border of the sphere is around −45 dB and is mainly
due to the spatial discretization of the sphere.

4.2. Investigating the effect of different
inhomogeneities

The presented full-wave method is used to investi-
gate the effect of the different acoustic medium prop-
erties. For this study, a breast model built from an
MRI scan of a real cancerous breast is used (see Fig. 2)
(Bakker et al., 2009). The breast model is submerged
in water and has acoustic medium parameters as shown
in Table 2.

Fig. 2. Tissue types for the 3-D breast model built from
an MRI scan of a cancerous breast (Bakker et al., 2009).
The bottom image displays a cross-section of the breast at
z = 0 m. The wave fields presented in Fig. 3 to 6 are taken

in this cross-sectional plane.

For the simulations, the time span considered
equals 128 µs, and is discretized with a time step
∆t = 1 µs. A point source, located in the point
(xs, ys, zs) = (0 m,−0.05 m, 0 m), generates a Gaus-
sian modulated field with center frequency f0 =
0.25 MHz and 50% bandwidth. The spatial domain

equals 0.1× 0.1× 0.1 m and is discretized with a uni-
form grid size ∆x = 0.78 mm. The stopping criterion
is set to Errn ≤ 10−6.

To investigate the effect of each acoustic medium
property separately, the forward problem is solved five
times; one simulation where all medium properties are
set to their appropriate values, and four simulations
where only one of the four medium properties has its
appropriate value and where the remaining properties
are set to values corresponding to the embedding (i.e.
water). Figure 3 shows the scattered pressure fields in
the plane z = 0 m evaluated at four different frequen-
cies (0.125 MHz, 0.25 MHz, 0.5 MHz and 1 MHz) and
for the four medium properties separately and com-
bined. The scattering caused by the different inhomo-
geneities are clearly visible. The images show that the
amount of scattering increases for increasing frequency.
In addition, it is shown that for these frequencies the
amount of scattering caused by inhomogeneities in the
compressibility and density is significantly larger than
the scattering caused by inhomogeneities in the attenu-
ation. Maximum values of the fields displayed in Fig. 3

Fig. 3. Frequency-domain results for the scattered pres-
sure field in the plane z = 0 m for different contrasts. The
columns show results for different frequencies (from left
to right 0.125 MHz, 0.25 MHz, 0.5 MHz, and 1 MHz); the
rows for different contrasts (from top to bottom compress-
ibility, density, attenuation, speed of sound and all inho-

mogeneities combined).
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are given in the Table 3. The amount of scattering
with inhomogeneities in attenuation is 24 dB less for
1 MHz and for other frequencies nearly 30 dB. More-
over, the results obtained with speed of sound case
shows strong similarities with the all inhomogeneities
combined case. Finally, the ripples visible inside the
breast are spaced roughly one wavelength apart. They
are caused by interference of the field inside the breast,
and can be modeled via a full-wave method which al-
lows for multiple scattering.

Table 3. Maximum values of the fields given in Fig. 3.

0.125 MHz 0.25 MHz 0.5 MHz 1 MHz
[dB] [dB] [dB] [dB]

Compressibility −21.1 −18.6 −16.7 −14.6

Density −31.1 −25.8 −20.4 −15.2

Attenuation −58.1 −52.1 −46.1 −39.7

Speed of Sound −24.4 −21.5 −18.5 −14.9

All Inhomogeneities −23.4 −20.8 −17.8 −15.2

Next, time-domain wave fields are compared. Snap-
shots of the corresponding total wave fields for the five
cases considered in Fig. 3 are displayed in Fig. 4. These
time-domain results clearly show again that for low
frequencies (e.g. 0.25 MHz), variations in attenuation
become so small that there is almost no effect on the
wave field. There is even no visible scattering, focusing
or phase shift caused by attenuation at these frequen-
cies. Finally, similarities in the results for the speed
of sound and all inhomogeneities combined cases are
again clearly visible.

4.3. Comparing the solution methods

Finally, results obtained with different solution
methods are compared. The same breast model is used
for every method; it only considers inhomogeneities in
the speed of sound. For the remaining results, the wave
field has a center frequency of f0 = 0.5 MHz and is
discretised using a time step ∆t = 0.5 µs and a grid
size ∆x = 0.39 mm. Snapshots of the total field in the
plane z = 0 m and at time t = 65 µs for one emitter
are presented in Fig. 5.

With Born approximation, first order scattering is
included in the model but phase shifts and multiple
scattering are neglected. The total amount of scat-
tering is clearly less than for the full-wave method
which includes multiple scattering. The wavefront of
the field propagates at the same speed as the incident
field because of the lacking of additional phase shifts
(caused by a spatially varying speed of sound) in the
model.

The paraxial approximation provides more accu-
rate results than the Born approximation; phase shifts,
refraction and diffraction effects are clearly visible in

Fig. 4. Snapshots of the total wave field obtained within
the full-wave method in the plane z = 0 m and at times
t = 25 µs, 45 µs, 65 µs. The rows show the total fields ob-
tained for different contrast functions (from top to bottom
compressibility, density, attenuation, speed of sound and

all inhomogeneities combined).

the resulting wave field. The multiple scattering in-
side the breast shows similarities with the scattering
modeled with the full-wave method. However, they are
very different in the backward direction due to the ap-
proximation applied.

The ray based method clearly only considers phase
shifts. Scattering, refraction, diffraction and attenu-
ation effects are not taken into account with this
method.

A-scans of the transmission and reflection measure-
ments are shown in Fig. 6 and Fig. 7, respectively. All
A-scans are normalized with respect to the maximum
of the incident field and interpolated by zero padding
in the frequency domain.
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Fig. 5. Snapshots of the total wave field in the plane z =
0 m and at time t = 65 µs. Incident field placed at top and
under that the total fields obtained for different methods

(full-wave, parabolic, born, and ray).

Fig. 6. A-scans for the transmission measurements. The A-scans are normalized with respect to the incident field. The top
row shows the position of the source and the receiver, the middle row shows the time-domain results, and the bottom row

shows the frequency-domain results.

The A-scan retrieved from the full-wave solution
and measured below the breast deviates significantly
from the remaining three solutions, see Fig. 6 left col-
umn. The A-scan obtained within the Born approx-
imation shows an incorrect arrival of the wavefront
and absence of scattering. For the paraxial solution
the phase of the signal, especially for the waves arriv-
ing at a later time is erroneous. Although the arrival of
the wavefront is modeled reasonably well with the ray
based method, significant phase shifts do occur in the
tail of the main wave field and multiple scattering is
completely absent. Only the spectral profile of paraxial
approximation shows small similarity with the spectral
profile of the full-wave method.

The A-scans measured on the right-hand side of
the breast are also shown in Fig. 6. The most notice-
able artifacts for the A-scan obtained using the Born
approximation are the incorrect amplitude of the wave-
front and the absence of multiple scattering. Next, as
expected due to its approximation, errors in the phase
and amplitude of the field are visible in the results cor-
responding to the paraxial approximation, especially
for the scattered waves arriving after the main wave
field. This confirms that the paraxial approximation is
only valid within a limited opening angle. Finally, the
ray based method shows many similarities with the
Born approximation, in particular the absence of mul-
tiple scattering and an incorrect amplitude of the wave
field. The three measured spectral profiles correspon-
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Fig. 7. A-scan for the reflection measurements using full-
wave method. The A-scan is normalized with respect to
the incident field. The top figure shows the position of the
source and the receiver, the middle figure shows the time-
domain result, and the bottom figure shows the frequency-

domain result.

ding to the three approximations deviate significantly
from the full-wave result.

The A-scan measured for the case when receiver
is placed close to the source for retrieving the reflec-
tions are shown in Fig. 7. Straight ray and paraxial
approximation in their basic form, which is used in
this work, neglect backscattering. Since a comparison
is not valid, the result of full-wave method is given
only. Strong reflections at the beginning comes from
the skin. Reflections that arrive later are mainly due
to the inhomogeneities inside the breast.

5. Conclusion

A full-wave method based on a frequency-domain
integral equation formulation is used to investigate
to which extend spatial variations in the acoustic
medium properties affect the acoustic pressure field
in breasts. The same method is also used to validate
the applicability of three solution methods commonly
used to solve the forward problem for breast ultra-
sound.

The accuracy of the full-wave method, which is
based on a frequency-domain integral-equation for-
mulation, is confirmed using the analytical expres-
sion for a plane wave scattering off a soft spheri-
cal object. For the presented test with representative
medium parameters, the error in the wave field is below
−40 dB.

The effect of the heterogeneities belonging to the
different medium properties are investigated separately
and combined for the following frequencies: 0.125, 0.25,
0.5, and 1 MHz. The applied breast model is based
on an MRI scan of cancerous breast and includes
a spatially varying compressibility, density and atten-
uation. It is shown that the presented attenuation con-
trast causes significant less scattering (−24 dB) than
the compressibility or density contrasts for frequen-
cies below 1 MHz, suggesting that attenuation can be
neglected for both the forward and inverse problem.
The field scattering off the compressibility contrasts
have a slightly higher amplitude than the field scatter-
ing off the density contrasts. Finally, the variations in
the maximum amplitudes of the scattered fields corre-
sponding to the speed of sound and all inhomogeneities
included cases are 1 dB or less.

When comparing the excellent full-wave results
with results obtained using the Born approximation,
paraxial approximation and ray based method, it is
shown that the latter approximations have serious
shortcomings. In general, the main problem with the
Born approximation is that it is lacking phase shifts
and multiple scattering. The paraxial approximation
is more accurate than the Born approximation as
phase shifts and focusing effects are modeled. Un-
fortunately, the paraxial method is only valid within
a limited opening angle and backscattering is not in-
cluded. Therefore the paraxial approximation could
only be used with good results for transmission to-
mography, but has in this regime an order of mag-
nitude lower complexity than full wave approxima-
tion. The ray based method only considers phase
shifts and neglects (back)scattering, refraction and
diffraction effects. Consequently, the results from all
three approximation methods are not accurate. This
strongly limits its applicability for modeling breast ul-
trasound.

In conclusion, for frequencies below 1 MHz, scat-
tering caused by attenuation can be neglected while
both compressibility and density contrasts should be
included in the model. In addition, considering only
speed of sound variations in the medium is a valid
approximation for these frequencies. Only the full-
wave method yields accurate results, irrespective of the
point of observation. The paraxial approximation may
be considered as an alternative when the point of ob-
servation is located on the opposite side of the breast,
as is the case for transmission tomography.
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