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The paper presents the key-finding algorithm based on the music signature concept. The proposed
music signature is a set of 2-D vectors which can be treated as a compressed form of representation of
a musical content in the 2-D space. Each vector represents different pitch class. Its direction is determined
by the position of the corresponding major key in the circle of fifths. The length of each vector reflects the
multiplicity (i.e. number of occurrences) of the pitch class in a musical piece or its fragment. The paper
presents the theoretical background, examples explaining the essence of the idea and the results of the
conducted tests which confirm the effectiveness of the proposed algorithm for finding the key based on
the analysis of the music signature. The developed method was compared with the key-finding algorithms
using Krumhansl-Kessler, Temperley and Albrecht-Shanahan profiles. The experiments were performed
on the set of Bach preludes, Bach fugues and Chopin preludes.

Keywords: music information retrieval; computational music cognition; music data mining; music visu-
alisation.

1. Introduction

The major and minor scales are the foundation
of the Western tonal music. The tonality of the mu-
sic allows creation of music notations, construction of
chords, the analysis of their interdependence, or vari-
ous aspects of harmony and arrangement. The theory
of tonality allows us to determine the tonal similar-
ities of particular musical scales and chords. It also
allows evaluating the auditory reception of the content
of musical pieces, the perception of which relates to
aspects of psychology and aesthetics.

The analysis of tonality of pieces usually includes
three aspects of evaluating a musical work. They are as
follows: the frequency analysis of individual sounds, or
signals, the complexity analysis of harmonic structure
of chords, or the sequence of successive chords and the
analysis of audio signals, using various types of tonality
models. Many different tonal models have been devel-
oped and tested for many years. They are, among oth-
ers, the geometrically-regular helical models proposed
by Shepard (1982); the very mathematically complex

Spiral Array model, that represents the interrelations
among musical pitches (Chew, 2000; 2014); the model
of diatonic space that quantified intuitions of the rela-
tive distance of pitches, chords and keys (Bernardes
et al., 2016; Lerdahl, 2005); or the orbifold which is
a way of geometrical representation of musical chord
(Tymoczko, 2006).

The tonal analysis of a piece is often based on
the analysis of its harmonic structure. Several such
methods based on music theory are proposed in
(Papadopoulos, Peeters, 2012). Very often, sys-
tems for chord recognition rely on different types of
Markov model or neural networks (McVicar et al.,
2014; Chen, Su, 2018; Sigtia et al., 2015; Wu, Li,
2018; Zhou, Lerch, 2015). In the chord identifica-
tion process, various types of histograms are often used
(Harte, Sandler, 2005; Osmalsky et al., 2012). The
methods, which are oriented to data mining from audio
files (Dorochowicz, Kostek, 2018; Gómez, 2006;
Papadopoulos, Peeters, 2012; Reljin, Pokra-
jac, 2017; Sigtia et al., 2015), are particularly valu-
able. The method to extract a tonal description of an
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audio content is presented in (Gómez, 2006). The de-
scription is validated by estimating the key of a piece
and tonal representation of the polyphonic audio sig-
nal. System for real-time description and visualisa-
tion of the tonality of audio signals and tonal uncer-
tainty over time are presented in (Gómez, Bonada,
2005; Martorell, Gómez, 2011; Tverdokhleb et
al., 2017). Sometimes, the presence of higher har-
monics of pitch notes is used in the tonal analysis
(Papadopoulos, Peeters, 2012). The tonal analysis
is successfully used in the process of generating struc-
tured music with constrained patterns (Herremans,
Chew, 2017; Roig et al., 2014), creating the model of
music tension which can be used for detection of mu-
sic emotion (Grekow, 2017b; Lerdahl, 2005; Ler-
dahl, Krumhansl, 2007), systems of music visu-
alisation (Cancino-Chacón et al., 2014; Grekow,
2017a), computer-aided composition software (Huang
et al., 2016; Sabathé et al., 2017), automated mu-
sic analysis (Cancino-Chacón et al., 2017), and mu-
sic genre recognition (Anglade et al., 2010; Bhalke
et al., 2017; Perez-Sanchio et al., 2010; Rosner
et al., 2014; Rosner, Kostek, 2018).

A number of tonality models have addressed the
problem of key-finding. The objective of key-finding
algorithms is to take several tones in a melody or
chords and assign a key to this fragment of a mu-
sical piece. The input for all key-finding algorithms
can be acoustic signal or symbolically coded music
which is represented in MIDI format. Considerable
interest in proposing methods and computer algo-
rithms for automatically key-finding can be observed
(Albrecht, Huron, 2014; Albrecht, Shanahan,
2013; Handelman Sigler, 2013; Quinn, White,
2017; Shmulevich, Yli-Harja, 2000; Temperley,
Marvin, 2008).

The first key-finding algorithm which was imple-
mented on a computer is presented in (Longuet-
Higgins, Steedman, 1971). The results of the ex-
periments were encouraging and provided motivation
for further work. Krumhansl (1990) proposed a key-
finding algorithm using the summed duration times of
individual pitch classes in the analysed segment of mu-
sic. This algorithm is based on correlation coefficients
of the resulting input vector with all major and minor
key profiles (Krumhansl, Kessler, 1982). The re-
sults of experiments for Bach Preludes and Fugues in
the Well-Tempered Clavier were favourable and, there-
fore, dynamic models of tonality induction were pro-
posed (Toiviainen, Krumhansl, 2003). Temperley
(2002; 2004) presented a new approach to key-finding.
His Bayesian approach is based on the probability of
sequences of tones. Some researchers have proposed
improvements of the Krumhansl-Kessler algorithm. In
general, different key-profiles are used (Albrecht,
Shanahan, 2013; Temperley, 2004). The utilised
modifications of key profiles lead to better accuracy of

key-finding algorithms (Dawson, 2018). An important
observation about the existing key-finding algorithms
is the disparity between accuracy in determining the
key of major- and minor-mode works (Albrecht,
Shanahan, 2013).

Methods for determining the key presented in
(Albrecht, Shanahan, 2013; Krumhansl, 1990;
Temperley, 2007) are characterised by a very large
computational complexity, which, in the case of will-
ingness of their hardware implementation in musical
instruments, becomes extremely inconvenient.

The aim of the paper is to present a simple key-
finding algorithm based on the proposed form of piece
description called the music signature. The algorithm
can be used to determine the key of the whole piece or
its fragment. Experiments that proved its usefulness
were performed on the preludes and fugues of Bach
and preludes of Chopin.

The paper consists of the following: theoretical
background presenting the fundamental concepts illus-
trating the way of creating the music signature (Sec. 2);
the method for tonality analysis based on the music
signature (Sec. 3); the proposed key-finding algorithm
(Sec. 4); the results and discussion (Sec. 5); and a short
summary.

2. Theoretical background

A piece of music can be treated as a set of notes
occurring at specific points in time. By omitting the
time aspect and the octave ranges of individual notes,
the content of the a music piece can be associated
with elements of the twelve-element set of pitch classes
{C, C♯/D♭, D, D♯/E♭, E, F, G, G♯/A♭, A, A♯/B♭, B}.
According to the enharmonic equivalents, we assume
that C♯ ≡ D♭, D♯ ≡ E♭, etc.

Let xi denote the multiplicity of a pitch class i in
a music composition, where i = C, C♯, ..., B. In order to
make a statistical description of the content of a mu-
sic piece independent of its length, we will normalise
the multiplicities of pitch classes according to the for-
mula (1):

ki =
xi
xmax

, (1)

where i = C, C♯, D, ..., B, and the value xmax = max(xC,
xC ♯, xD, xD ♯, xE, xF, xF ♯, xG, xG ♯, xA, xA ♯, xB).

Let K be the vector of the normalised multiplicities
of individual pitch-classes. This vector is arranged in
accordance with the sequence of the 12 pitch classes
of the chromatic scale in the circle of fifths. Assuming
that the first element of vector K refers to the pitch
class A, and choosing the positive direction of rotation,
we get:

K=[kA kD kG kC kF kB ♭ kE ♭ kA ♭ kD ♭ kF ♯ kB kE].
(2)
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Definition 1: The music signature of a piece is the
set of vectors {ki: i = A, D, G, C, F, B♭, E♭, A♭, D♭,
F♯, B, E}, whose polar coordinates (ri, ϕi) are defined
according to the following rules:

• the length of each vector is equal to the normalised
multiplicity of the corresponding pitch class, i.e.
ri = ∣ki∣,

• the direction of each vector is determined accord-
ing to the equation ϕi = j ⋅ 360○

12
, where j = 0 for

i = A, j = 1 for i = D, etc.

The music signature of a piece or its fragment is
a geometric reflection of its content. According to def-
inition 1 it can be interpreted as rays extending from
the centre of the circle of fifths towards the notes
lying on its perimeter, whose lengths represent the
normalised multiplicities of individual pitch classes in
a given piece of music.

Example 1: Let us consider a fragment of a piece
presented in Fig. 1, for which we want to create a vector
of the pitch class multiplicities K.

Fig. 1. A fragment of a musical piece.

Based on the notation of the analysed piece frag-
ment, it is possible to determine the multiplicities of
the individual pitch classes, which are, respectively:

xA = 7; xD = 8; xG = 9; xC = 10;

xF = 4; xB ♭ = 0; xE ♭ = 0; xG ♯ = 1;

xC ♯ = 1; xF ♯ = 0; xB = 5; xE = 7.

Knowing the multiplicities of the individual pitch
classes, the xmax value can be determined.

xmax =max(xA, xD, xG, xC, xF, xB ♭,

xE ♭, xG ♯, xC ♯, xF ♯, xB, xE)

=max(7,8,9,10,4,0,0,1,1,0,5,7) = 10.

The values of the normalised multiplicity coeffi-
cients ki are, respectively:

kA = 0.7; kD = 0.8; kG = 0.9; kC = 1;

kF = 0.4; kB ♭ = 0; kE ♭ = 0; kG ♯ = 0.1;

kC ♯ = 0.1; kF ♯ = 0; kB = 0.5; kE = 0.7.

Taking into account the values of multiplicity coef-
ficients, for the analysed fragment the pitch class mul-
tiplicities vector takes the following form:

K = [0.7 0.8 0.9 1 0.4 0 0 0.1 0.1 0 0.5 0.7].

According to the definition of the music signature,
the polar coordinates of vectors ki = (ki, φi) are, re-
spectively:

kA = (0.7; 0○); kD = (0.8; 30○); kG = (0.9; 60○);

kC = (1; 90○); kF = (0.4; 120○); kB ♭ = (0; 150○);

kE ♭ = (0; 180○); kA ♭ = (0.1; 210○); kD ♭ = (0.1; 240○);

kF ♯ = (0; 270○); kB = (0.5; 300○); kE = (0.7; 330○).

Knowing the polar coordinates of the individual
vectors, it is possible to draw a music signature, which
is presented in Fig. 2.

Fig. 2. The music signature of the fragment
of a piece analysed in Example 1.

Let Y, Z ∈ {C, C♯/D♭, D, D♯/E♭, E, F, F♯/G♭,
G, G♯/A♭, A, A♯/B♭, B}. A straight line Y–Z passing
through the centre of the circle of fifths and two tones
Y and Z can be referred to as an axis of the circle
of fifths. In the circle of fifths it is possible to dis-
tinguish 6 different axes, which are marked as: C–F♯,
G–D♭, D–A♭, A–E♭, E–B♭, and B–F. We assume that
the F♯–C axis is identical with the C–F♯ axis, D♭–G
with the G–D♭ axis, etc.

An axis of the circle of fifths divides the set of vec-
tors {ki ∶ i = A, D, G, C, F, B♭, E♭, A♭, D♭, F♯, B, E}
of the music signature into two subsets of vectors lo-
cated on the opposite sides of the axis. For example,
for the axis of the circle of fifths C–F♯, the first subset
contains vectors kB, kE, kA, kD, kG, and the second
one: kF, kB ♭, kE ♭, kA ♭, kD ♭.

Let [C–F♯] denote the absolute value of the differ-
ence in summed lengths of vectors located on the op-
posite sides of the axis of the circle of fifths C–F♯, i.e.

[C−F ♯] = ∣(∣kB∣ + ∣kE∣ + ∣kA∣ + ∣kD∣ + ∣kG∣)

− (∣kF∣ + ∣kB ♭∣ + ∣kE ♭∣ + ∣kA ♭∣ + ∣kD ♭∣)∣ .

Of course, the value [C–F♯] = [F♯–C], [G–D♭] = [D♭–G],
etc.

Definition 2: The axis of the circle of fifths Y–Z,
for which [Y–Z] reaches the maximum value is called
the main axis of the music signature.
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Example 2: Let us look at the music signature ob-
tained in Example 1. The table below shows the val-
ues [Y–Z] for individual axes of the circle of fifths. The
maximum value occurs for the B–F axis, which there-
fore is the main axis of this music signature.

C–F♯ G–D♭ D–A♭ A–E♭ E–B♭ B–F

3 1.2 0.3 1.7 3.1 3.9

A graphic representation of the main axis of the
signature is presented in Fig. 3.

[B−F] = ∣(∣kC∣+ ∣kG∣+ ∣kD∣+ ∣kA∣+ ∣kE∣)

− (∣kB ♭∣+ ∣kE ♭∣+ ∣kA ♭∣+ ∣kD ♭∣+ ∣kF ♯∣)∣

Fig. 3. The example of a music signature and its main axis.

Let Y→Z denotes a directed axis of the circle
of fifths. The Y→Z axis coincides with the Y–Z axis
of the circle of fifths, but its additional feature is the
direction from Y to Z. Each axis of the circle of fifths
can be associated with two directed axes. The direc-
tions of these two axes are opposite. For example, the
C–F♯ axis is associated with two directed axes: C→F♯
and F♯→C.

We can distinguish 12 directed axes in the circle
of fifths, which are: C→F♯; G→D♭; D→A♭; A→E♭;
E→B♭; B→F; F♯→C; D♭→G; A♭→D; E♭→A;
B♭→E; F→B. Each directed axis divides the vectors
of the music signature into two subsets.

Let [Y→Z] denote the difference in value of the
summed lengths of vectors located on the right and
the left side of the Y–Z axis, viewed in the direction of
the Y→Z directed axis, for example:

[F ♯→ C] = (∣kB∣+ ∣kE∣+ ∣kA∣+ ∣kD∣+ ∣kG∣)

− (∣kF∣+ ∣kB ♭∣+ ∣kE ♭∣+ ∣kA ♭∣+ ∣kD ♭∣) ,

[C→ F ♯] = (∣kF∣+ ∣kB ♭∣+ ∣kE ♭∣+ ∣kA ♭∣+ ∣kD ♭∣)

− (∣kB∣+ ∣kE∣+ ∣kA∣+ ∣kD∣+ ∣kG∣).

Of course, [C→F♯ = −[F♯ →C], [G→D♭] = −[D♭→G],
etc.

Definition 3: A directed axis of the circle of
fifths Y→Z, for which [Y→Z] reaches the maximum
value is called the main directed axis of a music
signature.

Example 3: Let us consider the music signature of
the fragment of a piece analysed in Example 1. The
table below shows the values [Y→Z] for individual di-
rected axes of the circle of fifths. The maximum value
occurs for the [B→F] axis, which, therefore, is the
main directed axis of this music signature.

C→F♯ G→D♭ D→A♭ A→E♭ E→B♭ B→F

3 −1.2 0.3 1.7 3.1 3.9

F♯→C D♭→G A♭→D E♭→A B♭→E F→B

3 1.2 −0.3 −1.7 −3.1 −3.9

A graphic illustration of the main directed axis of
an example of music signature is presented in Fig. 4.

[B→ F] = (∣kC∣+ ∣kG∣+ ∣kD∣+ ∣kA∣+ ∣kE∣)

− (∣kB ♭∣+ ∣kE ♭∣+ ∣kA ♭∣+ ∣kD ♭∣+ ∣kF ♯∣)∣

Fig. 4. Music signature with its main directed axis.

For the analysed fragment of a piece, the B–F axis
is the main axis of the music signature (Example 2,
Fig. 3). The process of searching for the main directed
axis of the music signature can be simplified by con-
sidering only two directed axes of the circle of fifths
B→F and F→B coinciding with the main axis of the
B–F music signature. Because [B→F] is positive while
[F→B] is negative, the B→F axis is the main directed
axis of the music signature.

Having found the main axis B–F of the music sig-
nature of the analysed fragment (Example 2, Fig. 3)
we need only to choose between the two directed axes
B→F and F→B to find the main directed axis.

3. Tonality analysis based on music signature

The dominant part of the Western musical pieces
is based on the major-minor scales system. The cir-
cle of fifths is associated with 12 pairs of relative mi-
nor/major keys: 12 major keys and 12 minor keys.
Each major key has its relative minor key. The tonic of
a major is the third degree of its relative minor scale,
while the tonic of a minor scale is the sixth scale de-
gree of its relative major scale, e.g. C–a, G–e, D–b.
For simplicity, let us limit the considerations to major
scales for now.
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When analysing the distribution of keys in the
circle of fifths, it becomes possible to determine the
pitches of individual scales. For example, the pitches
of G major scale: G–A–B–C–D–E–F♯–G, are located
on the F♯→C axis and on the right side of the circle
of fifths looking in the direction from F♯ to C. There-
fore, the F ♯→C axis can be associated with the G
major scale contrary to the C→F♯ axis, whose right
side (looking from the C position towards F♯) contains
the pitches of the D♭ major scale (D♭–E♭–F–G♭–A♭–
B♭–C–D♭). The above observations are illustrated in
Fig. 5.

Fig. 5. The circle of fifths with the pitches for D♭ major
and G major scales.

Each directional axis divides the circle of fifths into
two parts. The pitches located on the right side (look-
ing in the axial direction) along with the pitches on
the axis create particular scale degrees. The first scale
degree (tonic) is located on the circle of fifths on the
first position to the right in the clockwise direction.

In accordance with the above principle, each direc-
tional axis can be assigned its associated major scale.

C→F♯ ⇒ D♭ major

G→D♭ ⇒ A♭ major

D→A♭ ⇒ E♭ major

A→E♭ ⇒ B♭ major

E→B♭ ⇒ F major

B→F ⇒ C major

F♯→C ⇒ G major

D♭→G ⇒ D major

A♭→D ⇒ A major

E♭→A ⇒ E major

B♭→E ⇒ B major

F→B ⇒ F♯ major

The considerations presented above refer to the
analysis of pieces created in major keys. Generally,
the methodology presented above allows determining
the key signature of the analysed piece. The sets of
tones of the major scale and the relative minor scale

are very similar. Taking into account the natural mi-
nor scale, they are identical, e.g. C major (C–D–E–F–
G–A–B–C) and relative natural minor (A–B–C–D–E–
F–G–A). In this situation, it is possible to generalise
the above considerations to minor scales. The circle
of the fifths with the major and minor keys is pre-
sented in Fig. 6. For example, the main directed axis
F♯→C is the main axis of the G major or e minor
scale.

Fig. 6. The circle of fifths containing the major and minor
keys and an exemplary main directed axis (here F♯→C).

After finding the main directional axis of a mu-
sic signature, major or relative minor scale should
be chosen. The algorithm for choosing between two
relative major/minor keys can be based on Pear-
son’s correlation of the pitch class multiplicities vector
with the key profiles proposed by Krumhansl-Kessler’s
(Krumhansl, Kessler, 1982) or others (Albrecht,
Shanahan, 2013; Temperley, 2004). The analysis
of the value of the Pearson’s correlation coefficients
for the relative major and minor profiles correspond-
ing to the main directed axis of the music signature
allows choosing one of the two relative keys. The key
with a higher value of Pearson’s correlation coefficient
is selected.

Thus, after determining the main directional axis
of the music signature, the key selection is reduced to
a decision whether the analysed piece is in the major
scale, or in the relative minor scale.

Example 4: Let us consider the fragment of a piece
presented in Fig. 1 again. The B→F axis is the main
directed axis of the music signature (see Example 3).
Hence, the sought key of the piece is placed in the
circle of fifths in the first position to the right in rela-
tion to the arrowhead of the main directed axis. It is
the C major or the A minor scale. The Pearson corre-
lation coefficients between the multiplicities vector of
the analysed fragment of the piece and the Krumhansl-
Kessler’s major and minor key profiles are, respec-
tively, rC major = 0.88 and rA minor = 0.71. The graphs
illustrating the correlations are shown in Fig. 7. Be-
cause rC major > rA minor, we conclude that the C major
scale is the sought scale of the piece.
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Fig. 7. The correlation of probe of piece with C major and
A minor key profiles.

4. The key-finding algorithm

The theoretical basis presented in the previous sec-
tions led to the algorithm for finding the key signature
of the analysed piece and detecting its minor or major
scale.

The key-finding algorithm based on music signa-
ture consists of the following steps:

1) The note multiplicities vector K is created for the
piece being considered.

2) The music signature is created based on the mul-
tiplicities vector.

3) The main axis of the music signature is deter-
mined. If it is impossible to determine the main
axis of music signature for the analysed sample of
the piece, the sample is extended. Successive ex-
tensions of a sample by one note take place until
the clear selection of the main axis of the music
signature can be done.

4) The main directed axis of the music signature is
determined (i.e. the direction of the previously
found main axis is chosen).

5) The key signature of the analysed piece is deter-
mined based on the circle of fifths. This narrows
the choice of keys to the corresponding pair of rel-
ative major/minor ones.

6) The Pearson correlation coefficients between the
multiplicities vector of the analysed piece (or its
fragment) and major and minor key profiles are
determined for the two keys resulting from the
previous step. Krumhansl-Kessler’s or others key
profiles may be used.

7) The key of the analysed piece is determined by
selecting this key from the relative major/minor
pair for which the value of the Pearson correlation
coefficient is higher.

If only the key signature (number of sharps or flats)
of a piece is to be found the steps from 1 to 5 of the
above algorithm can be used. All steps of the proposed
algorithm were thoroughly discussed in the examples
in Secs 2 and 3.

5. Results and discussion

In order to confirm the effectiveness of the pro-
posed key-finding algorithm, a number of experi-
ments were performed. The developed key-finding al-
gorithm based on the analysis of the music signa-
ture of a piece was compared to the key-finding al-
gorithm based on the Krumhansl’s and Kessler’s pro-
files (Krumhansl, Kessler, 1982), Temperley pro-
files (Temperley, 2004) and Albrecht’s and Shana-
han’s profiles (Albrecht, Shanahan, 2013). In these
algorithms the key of a piece is determined by finding
the maximum values of the Pearson correlation coeffi-
cients with 24 profiles of major and minor profiles. As
in (Krumhansl, 1990), in all approaches the keys of
the pieces were determined based on the first 4 notes.
If it was impossible to separate the first four notes
in time, the smallest possible number of notes, greater
than four, was taken into account. Similar experiments
were performed using the proposed key-finding algo-
rithm based on the music signature analysis. The key
was also determined based on the first 4 notes of
the piece. If the result of the analysis did not indi-
cate the main directed axis of the signature, consec-
utive notes of the piece were added, until the main
directed axis of the music signature was clearly iden-
tified.

The experiments on the set of Preludes and Fugues
of the Bach’s Well-Tempered Clavier – Book 1 and
Frederic Chopin’s preludes were performed. The re-
sults are presented in Tables 1, 2, and 3. The respective
columns of the tables contain: the prelude/fugue num-
ber, its key and partial results of the performed analy-
ses for the methods for determining the key based on
the Krumhansl’s and Kessler’s profiles (K-K profile),
Temperley profiles (T profile), Albrecht’s and Shana-
han’s profiles (A-S profile) and the proposed method
using the music signature (Music signature). The K-K
profile, T profile and A-S profile parts include, respec-
tively: in the column marked rmax – maximum value of
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Table 1. Comparison of the key-finding algorithms for Bach Well Tempered Clavier preludes (Book 1).

No. Key
K-K profile T profile A-S profile Music signature

rmax key (rmax) rmax key (rmax) rmax key (rmax) [X→Y] rmajor; rminor keym s

1 C 0.81 C 0.69 C 0.76 C [B→F] rmajor > rminor C
2 c 0.92 c 0.75 c 0.86 c [D→A♭] rmajor < rminor c
3 C♯ 0.83 C♯ 0.65 C♯ 0.79 C♯ [C→F♯] rmajor > rminor C♯
4 c♯ 0.87 c♯ 0.72 c♯ 0.83 c♯ [E ♭→A] rmajor < rminor c♯
5 D 0.73 D 0.61 D 0.69 D [D ♭→G] rmajor > rminor D
6 d 0.81 d 0.58 d 0.73 d [E→B♭] rmajor < rminor d
7 E♭ 0.87 E♭ 0.68 E♭ 0.79 E♭ [G→D♭] rmajor > rminor A♭
8 e♭ 0.92 e♭ 0.75 e♭ 0.78 e♭ [F→B] rmajor < rminor e♭
9 E 0.83 E 0.65 E 0.79 E [E ♭→A] rmajor > rminor E
10 e 0.92 e 0.75 e 0.86 e [F♯→C] rmajor < rminor e
11 F 0.83 F 0.74 F 0.80 F [E→B♭] rmajor > rminor F
12 f 0.85 f 0.58 C♯ 0.61 f [G→D♭] rmajor < rminor f
13 F♯ 0.83 b♭ 0.72 F♯ 0.69 F♯ [F→B] rmajor > rminor F♯
14 f♯ 0.93 f♯ 0.77 f♯ 0.85 f♯ [A♭→D] rmajor < rminor f♯
15 G 0.83 G 0.65 G 0.79 G [F♯→C] rmajor > rminor G
16 g 0.85 g 0.63 g 0.77 g [A→E♭] rmajor < rminor g
17 A♭ 0.87 A♭ 0.80 A♭ 0.87 A♭ [G→D♭] rmajor > rminor A♭
18 g♯ 0.83 g♯ 0.61 g♯ 0.64 g♯ [B♭→E] rmajor < rminor g♯
19 A 0.73 A 0.59 A 0.69 A [A♭→D] rmajor > rminor A
20 a 0.82 a 0.58 a 0.66 a [B→F] rmajor < rminor a
21 B♭ 0.88 B♭ 0.71 B♭ 0.85 B♭ [A→E♭] rmajor > rminor B♭
22 b♭ 0.92 b♭ 0.75 b♭ 0.86 b♭ [C→F♯] rmajor < rminor b♭
23 B 0.68 B 0.63 B 0.65 B [B♭→E] rmajor > rminor B
24 b 0.83 b 0.84 b 0.93 b [A♭→D] rmajor < rminor f♯

Table 2. Comparison of the key-finding algorithms for Bach Well-Tempered Clavier fugues (Book 1).

No. Key
K-K profile T profile A-S profile Music signature

rmax key (rmax) rmax key (rmax) rmax key (rmax) [X→Y] rmajor; rminor keym s

1 C 0.68 F 0.60 F 0.70 F [E→B♭] rmajor > rminor F
2 c 0.79 C 0.66 C 0.81 C [B→F] rmajor > rminor C
3 C♯ 0.61 g♯ 0.46 C♯ 0.57 g♯ [F→B] rmajor > rminor F♯
4 c♯ 0.57 c♯ 0.54 c♯ 0.50 c♯ [B♭→E] rmajor < rminor g♯
5 D 0.61 D 0.65 D 0.63 G [D♭→G] rmajor > rminor D
6 d 0.60 d 0.63 C 0.54 d [B→F] rmajor > rminor C
7 E♭ 0.76 g 0.58 E♭ 0.57 g [D→A♭] rmajor > rminor E♭
8 e♭ 0.64 E♭ 0.67 e♭ 0.78 e♭ [F→B] rmajor < rminor e♭
9 E 0.65 f♯ 0.66 b 0.72 h [E♭→A] rmajor > rminor E
10 e 0.92 e 0.75 e 0.86 e [F♯→C] rmajor < rminor e
11 F 0.54 c 0.51 B♭ 0.53 c [A→E♭] rmajor > rminor B♭
12 f 0.43 c 0.33 f 0.41 C [B→F] rmajor > rminor C
13 F♯ 0.72 F♯ 0.62 F♯ 0.76 F♯ [F→B] rmajor > rminor F♯
14 f♯ 0.62 A 0.48 f♯ 0.58 A [A♭→D] rmajor < rminor f♯
15 G 0.61 G 0.51 G 0.62 G [F♯→C] rmajor > rminor G
16 g 0.49 e♭ 0.43 b 0.40 b [A→E♭] rmajor < rminor g
17 A♭ 0.88 A♭ 0.76 A♭ 0.86 A♭ [G→D♭] rmajor > rminor A♭
18 g♯ 0.60 A♭ 0.49 A♭ 0.60 A♭ [G→D♭] rmajor > rminor A♭
19 A 0.64 A 0.60 A 0.64 A [A♭→D] rmajor > rminor A
20 a 0.55 A 0.51 A 0.59 A [A♭→D] rmajor > rminor A
21 B♭ 0.76 B♭ 0.73 B♭ 0.78 B♭ [A→E♭] rmajor > rminor B♭
22 b♭ 0.67 B♭ 0.69 b♭ 0.80 b♭ [C→F♯] rmajor < rminor b♭
23 B 0.48 F♯ 0.53 F♯ 0.52 B [B♭→E] rmajor > rminor B
24 b 0.86 b 0.77 b 0.77 G [D♭→G] rmajor < rminor b
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Table 3. Comparison of the key-finding algorithms for Chopin preludes.

No. Key
K-K profile T profile A-S profile Music signature

rmax key (rmax) rmax key (rmax) rmax key (rmax) [X→Y] rmajor; rminor keym s

1 C 0.81 C 0.81 C 0.85 C [B→F] rmajor > rminor C
2 a 0.64 e 0.56 e 0.60 e [F♯→C] rmajor < rminor e
3 G 0.79 G 0.67 g 0.82 g [F♯→C] rmajor > rminor G
4 e 0.68 b 0.67 e 0.74 e [F♯→C] rmajor < rminor e
5 D 0.39 G 0.40 G 0.40 G [F♯→C] rmajor > rminor G
6 b 0.92 b 0.75 b 0.86 b [D♭→G] rmajor < rminor b
7 A 0.65 E 0.56 A 0.57 A [A♭→D] rmajor > rminor A
8 f♯ 0.69 c♯ 0.58 f♯ 0.60 f♯ [A♭→D] rmajor < rminor c♯/f♯
9 E 0.88 E 0.76 E 0.86 E [E♭→A] rmajor > rminor E
10 c♯ 0.40 a 0.41 c♯ 0.44 A [E♭→A] rmajor < rminor c♯
11 B 0.67 F♯ 0.50 F♯ 0.63 F♯ [F→B] rmajor > rminor F♯
12 g♯ 0.85 g♯ 0.79 g♯ 0.91 g♯ [B♭→E] rmajor < rminor g♯
13 F♯ 0.88 F♯ 0.76 F♯ 0.86 F♯ [F→B] rmajor > rminor F♯
14 e♭ 0.81 E♭ 0.69 e♭ 0.86 e♭ [F→B] rmajor < rminor e♭
15 D♭ 0.82 D♭ 0.78 D♭ 0.82 D♭ [C→F♯] rmajor > rminor D♭
16 b♭ 0.43 F 0.49 b♭ 0.42 b♭ [C→F♯] rmajor < rminor b♭
17 A♭ 0.76 A♭ 0.75 A♭ 0.81 A♭ [G→D♭] rmajor > rminor A♭
18 f 0.55 b♭ 0.53 b♭ 0.82 b♭ [A→E♭] rmajor < rminor g
19 E♭ 0.72 B♭ 0.59 E♭ 0.66 E♭ [D→A♭] rmajor > rminor E♭
20 c 0.88 c 0.75 c 0.89 c [D→A♭] rmajor < rminor c
21 B♭ 0.68 F 0.54 F 0.64 F [A→E♭] rmajor > rminor B♭
22 g 0.44 a 0.46 d 0.43 d [E→B♭] rmajor < rminor d
23 F 0.76 F 0.75 F 0.81 F [E→B♭] rmajor > rminor F
24 d 0.92 d 0.75 d 0.86 d [E→B♭] rmajor < rminor d

the Pearson correlation coefficients obtained for 24 key
profiles (12 major profiles, 12 minor profiles) and the
key, for which the maximum value of the correlation
coefficient was obtained (column marked key (rmax)).
The Music signature part of the tables contain the
main directed axis of the music signature [X→Y], rela-
tion between Pearson’s correlation coefficients for the
indicated major (rmajor) and minor (rminor) keys, and
the result of the analysis indicating the key (column
marked keym s).

The analysis of the results obtained for 24 Bach’s
preludes contained in the Well-Tempered Clavier –
Book 1 indicated only four cases, in which the key of
the piece was determined incorrectly. The algorithms
based on K-K profiles led to a wrong decision in the
case of Prelude No. 13, T profiles led to a wrong deci-
sion in the case of Prelude No. 12, while the algorithm
using the music signature led to a wrong decision in
case of two preludes, No. 7 and No. 24. In the case of
the proposed algorithm, the incorrectly indicated key
was a neighbour of the good key on the circle of fifth.
A similar mistake was observed for prelude 13 in the
case of using the K-K profiles and for Prelude 12 in
the case of using the T profiles. The B♭ minor key in-
dicated by the K-K profile is a relative minor of the
D♭ major located in the neighbourhood of the correct

key of the prelude, F♯ major (G♭ major). Similarly, the
C♯ major key indicated by the T profile is a relative
minor of the B♭ minor located in neighbourhood of the
correct key of the prelude, F minor.

In the case of the fugues much more faulty results
were observed. The K-K profiles, T profiles, A-S pro-
files led to an incorrect determination of the key, re-
spectively, in 14 (58%), 9 (37.5%), 13 (54%) cases. All
profiles led to a wrong key for Fugues 1, 2, 9, 11, 16,
18 and 20.

The proposed algorithm using the music signature
has led to a wrong result in nine cases (37.5%) like
key-finding algorithm based on A-S profile. The pro-
posed key-finding algorithm led to a wrong decision for
Fugues 1, 2, 3, 4, 6, 11, 12, 18, and 20. For five fugues
(Nos. 1, 2, 11, 18 and 20) all methods indicated the
wrong key. For Fugue No. 4 only the proposed method
led to a wrong result.

The highest number of wrong results was observed
for the case of the Frederic Chopin’s preludes. The al-
gorithm based on K-K profiles led to an incorrect de-
termination of the key in 13 cases (54%). This was
observed for Preludes 2, 4, 5, 7, 8, 10, 11, 14, 16, 18,
19, 21, and 22. For T profiles, much better results were
observed. Only in the seven (29%) cases (Prelude Nos.
2, 3, 5, 11, 18, 21, and 22) a wrong decision was made.
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Algorithm based on A-S profile led to an incorrect de-
termination of the key in eight (33%) cases (Preludes
2, 3, 5, 10, 11, 18, 21, and 22).

The proposed algorithm using the music signature
has led to a false result only in five cases (21%) – Pre-
ludes 2, 5, 11, 18 and 21. All cases of wrong decisions
occurred for the same preludes for which all the other
approaches led to an incorrect determination of the
key. Analysing these situations in depth, it is impor-
tant to point out that the reason for a wrong decision
is mainly a special way of starting a piece which sug-
gests a key that is different from the one observed by
looking at a bigger fragment of the piece. For exam-
ple, additional sharps and natural symbols appearing
in the first notes of the Preludes 2, 11 and 18 make it
virtually impossible to properly identify the key.

The most interesting results were observed for Pre-
lude No. 21. The proposed algorithm led to the correct
key indication, which was not achieved by any others
algorithm. After analysing the sample of the first four
(4) notes, the algorithms based on K-K, T, and A-S
profiles indicated the wrong key. The proposed algo-
rithm for an identical fragment of piece was unable to
indicate the main axis of the signature. This resulted
in the need to increase the number of notes what even-
tually led to the possibility of choosing the main axis
of the music signature indicating the right key of the
piece. In the case of Prelude No. 21, the determination
of the main directed axis of the music signature became
possible only after examining the sample containing
the first 25 notes. Also for others preludes (Nos. 3, 7,
10, and 14) extension of the analysed fragment of the
piece was required. In most preludes, the right deci-
sion was made without the need to extend the analy-
sed fragment of the piece. Sometimes extension by one
note was required (Prelude No. 10).

In addition to the direct comparison shown in Ta-
bles 1, 2 and 3, the comparison of the key-finding al-
gorithms for all approaches is presented synthetically
in the form of bar graphs in Fig. 8. The height of the
bar shows how many right keys were indicated for each
key-finding algorithm. When comparing the number of
correct decisions it can be observed that the algorithm

Fig. 8. Comparison of the key-finding algorithms based
on Krumhansl-Kessler’s, Temperley, Albrecht-Shanahan’s

profiles and music signature.

based on music signature was especially effective for
Chopin’s preludes.

6. Conclusions

The concept of describing the musical content by
means of the music signature is proposed. Music sig-
nature constitutes a compressed form of the represen-
tation of the content of a musical piece. It allowed the
development of a simple key-finding algorithm. The re-
sults presented in the paper confirm the effectiveness
of the developed method in case of using a very short
fragment of piece in the analysis process. Of course,
the analysis of longer fragments of piece, or even the
whole piece improves the efficiency of the proposed al-
gorithm. A number of additional experiments, not pre-
sented in this study, clearly confirmed this obvious the-
sis, which is also valid for other well-known key-finding
algorithms.

One drawback of the presented idea is the fact
that the major/minor key choice procedure is based
on the statistical analysis for two relative key profiles.
This is done in a typical way, using Pearson corre-
lation coefficients. It can be clearly seen that this is
the most complex part of the algorithm in terms of
computation. The most valuable aspect of the pro-
posed approach is the original and very simple way
of defining the main directed axis of a music signa-
ture. This allows an extremely simple determination
of the key signature, which indicates a pair of rela-
tive major/minor keys. Another advantage of the pro-
posed approach is the possibility of flexible selection
of the size of the analysed sample. The extension of
the analysed fragment of a piece, occurring in the case
of difficulties with determining the main directed axis
of the music signature, is the main element, which
gave better results than the results obtained with the
K-K, T and A-S profiles. In the case of fragments of
pieces that were difficult to analyse, the algorithms
based on major and minor profiles led to a wrong de-
cision. In the proposed approach, difficult fragments
often resulted in lack of decision, which led to the ex-
tension of the analysed sample of a piece, until it be-
came possible to determine the key. This feature of
the developed algorithm proves its value, giving very
favourable results with relatively low computational
complexity.

In the future, expanded usage of music signature
for musical arrangement classification will be proposed.
First works are already done for Polish Christmas car-
ols. Experimental results confirm that the shape of the
signature is correlated with the arrangement of a carol.
For these experiments the classical and jazz arrange-
ments have been evaluated. It seems that music sig-
nature have much more applications than key-finding
algorithm.
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