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Directional excitation of sound in an aperiodic finite baffle system is analyzed
using a method developed earlier in electrostatics. The solution to the corresponding
boundary value problem is obtained in the spatial-frequency domain. The acoustic
pressure and normal particle velocity distribution in acoustic media can be easily
computed by the inverse Fourier transform from their spatial spectra on the baffle
plane. The presented method can be used for linear acoustic phased arrays modeling
with finite element size and inter-element interactions taken into account. Some
illustrative numerical examples presenting the far-field radiation pattern and wave-
beam steering are given.
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1. Introduction

The role of phased array transducers in ultrasound diagnostics and nonde-
structive testing can be hardly overestimated (see (Tasinkevych, Danicki,
2010) and references therein). The full-wave analysis of the periodic baffle sys-
tem for acoustical beamforming applications was presented in the previous work
(Tasinkevych, Danicki, 2010). A similar boundary-value problem is consid-
ered for the case of a finite system in the current paper. The wave excitation case
is examined specifically. However, the scattering or sound detection can also be
addressed by this method. The structure consists of a finite number of acousti-
cally hard baffles (strips) separated by acoustically soft domains. A similar system
modeling the phased array transducer was analyzed for example in (Kuhnicke,
2007). In this paper we deal with a mixed boundary-value problem: the normal
acoustic vibration vanishes on baffles and between them the acoustic pressure is
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given constant values, which models the wave-beam generation. A wave field ex-
citation by a uniform harmonic pressure distribution is not novel and was earlier
dealt with for instance in (Selfridge, et al., 1980) where a model of a narrow
strip transducer is presented. An efficient method developed earlier in electro-
statics (Danicki, Tasinkevych, 2006; Tasinkevych, Danicki, 2005a) for a
finite aperiodic planar system of conducting strips is found suitable for the so-
lution of the above-mentioned problem. Next, the finite baffle system of interest
is approximated by a periodic one with a certain large period, comprised by
the multiple replica of the analysed structure. This enables one to use the BIS-
expansion method as in (Tasinkevych, Danicki, 2010) to find the solution of
the considered problem. The paper is organized as follows. In the next section the
boundary value problem for strips is formulated. In Sec. 3 the method of solution
is discussed and in Sec. 4 some numerical results are presented.

2. Formulation of the boundary-value problem

Let us consider a finite system of N acoustically hard baffles distributed along
the x-axis on the boundary plane z = 0 of the acoustic medium spanning for
z > 0, as shown in Fig. 1. Their edges are defined by x-coordinates (ai, bi),
i = 1, . . . , N . The baffles are assumed to be infinitely long along the y-axis.
Without loss of generality we consider here the baffles having the same width
2d and being equally spaced along the x-axis with the pitch P , which is usu-
ally the case in practical linear arrays. The slots between baffles are denoted by
w = P − 2d. The boundary-value problem for the case of acoustic wave-field
generation by a finite system shown in Fig. 1a is formulated here similar to the
way as it was done in the earlier paper (Tasinkevych, Danicki, 2010) for an
infinite periodic baffle array. Likewise, the time harmonic wave-field is assumed
ej(ωt−ξx−ηz), where t is the time, ω is the temporal frequency, and ξ, η are the
spatial frequencies corresponding to x, z, respectively. The wave-field on the baf-

Fig. 1. a) A system of N rigid baffles (strips) on the boundary of acoustic media spanning for
z > 0; b) multi-periodic structure with certain large period Λ comprised by the replicas of the

finite baffle system (a).
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fle plane is of the main importance in the applied analysis. Following the same
considerations as in (Tasinkevych, Danicki, 2010), we write the relationship
between the normal component of the particle velocity v ≡ vz = −ϕ,z and the x-
derivative of the pressure distribution q ≡ p,x, p = ρaϕ,t (ϕ is the scalar acoustic
potential satisfying the wave equation) on the baffle plane z = 0 as follows:

v = g(ξ)q, g(ξ) =
j

ωρa

η

ξ
, η =

√
k2 − ξ2 = −j

√
ξ2 − k2, (1)

where k = ω/c is the wave-number, c is the sound velocity in the acoustic media,
ρa is the mass density of the media, Sξ = −1 for negative ξ and Sξ = 1 otherwise.

For the case of acoustic wave-filed generation considered here the normal
component of the particle velocity v vanishes on baffles. A harmonic pressure of
amplitude pl (constant over the entire slot) excites the wave-field in the medium
z > 0; lP describes the position of the given l-th slot centre along the x-axis.
Thus, the boundary conditions are:

q = 0, x ∈ (bl, al+1), l = 0, . . . , N – between baffles,

v = 0, x 6∈ (al, bl), l = 1, . . . , N – on baffles,

p(sl) = pl, l = 1, . . . , N − 1 – at the l-th slot centre,

(2)

where sl = (al+1 + bl)/2 is the coordinate of the slot centre between l-th and
(l + 1)-th baffles, b0 and aN+1 correspond to ±∞ respectively, and pl are given
constant values in corresponding slots between baffles due to the condition q = 0
there. The solutions that we seek here are the functions p(ξ) and v(ξ), i.e. the
spatial-frequency representations of the p(x) and v(x) on the boundary plane
z = 0. The field in the medium, z > 0, can be easily evaluated (see Eq. (5)
in (Tasinkevych, Danicki, 2010)) if p(ξ) and v(ξ) are known.

3. Method of solution

To find the solution fulfilling conditions given by Eq. (2) the method devel-
oped earlier in electrostatics for the finite system of conducting strips (Danicki,
Tasinkevych, 2006; Tasinkevych, Danicki, 2005a,b) can be successfully
adopted. The set of template functions introduced in (Tasinkevych, Danicki,
2005b) as partial solutions to the corresponding electrostatic problem is referred
below:

Φ(N)(x) = jN−1
N∏

m=1

1√
d2

m − (x− cm)2
,

Φ(N,i) ∼ xiΦ(N), i = 0, . . . , N − 1,

(3)

where dm and cm are the half-width and centre coordinates of the i-th baffle. The
function Φ(N) is the basis template function and the rest of Φ(N,i) can be derived
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from Φ(N), as in Eq. (3). The above functions have known spectral representa-
tions in the form of multiple convolutions of Bessel functions of the first kind
J0(ξdm) and J1(ξdm). For the basis template function Φ(N) the spatial-frequency
counterpart is:

Φ(N)(ξ) = Φ1(ξ) ∗ Φ2(ξ) ∗ · · · ∗ ΦN (ξ), (4)

where

Φm(ξ) = F
{

1√
d2

m − (x− cm)2

}
=

{
J0(ξdm) ejrcm , ξ ≥ 0

0, ξ < 0

}
(5)

and F denotes the Fourier transform. Note the semi-finite support of the above
functions, which feature is of great importance for further numerical analysis.
The function Φ(N)(x) has the property that its real and imaginary parts vanish
in subsequent domains of the x-axis, as required by the boundary conditions
given by Eq. (2). We introduce the template functions for the acoustic wave-field
generation problem as follows:

Q(N)(ξ) =

{
Φ(N)(ξ), ξ ≥ 0

Φ∗(N)(−ξ), ξ < 0

}
,

V (N)(ξ) = SξQ
(N)(ξ) =

{
Φ(N)(ξ), ξ ≥ 0

−Φ∗(N)(−ξ), ξ < 0

}
.

(6)

As shown in (Danicki, Tasinkevych, 2006), the functions defined in Eq. (6)
have their spatial counterparts vanishing on the x-axis in accordance with Eq. (2),
namely, Q(N)(x) vanishes between baffles (as q(x)) and V (N)(x) vanishes on baf-
fles (as v(x)). These functions, evaluated at discrete values of the spectral vari-
able ξn = n∆ξ, are the discrete series in the numerical analysis and actually they
represent, on the basis of the theory of FFT (Press et al., 1992), the periodic
functions in spatial domain with a certain large period Λ = 2π/K, K = ∆ξ (see
Fig. 1b):

Q(N)(x) =
∑

n

Q(N)
n e−jξnx, Q(N)

n = Q(N)(ξn),

V (N)(x) =
∑

n

V (N)
n e−jξnx, V (N)

n = V (N)(ξn).
(7)

The functions from Eq. (7) will help us satisfy the boundary conditions given by
Eq. (2). Namely, following the same considerations as in (Danicki et al., 1995;
Danicki, 2004), we multiply the functions from Eq. (7) by exp (−jmKx) and
take linear combinations of the resulting terms. After a simple rearrangement of
summations we obtain the following representation of the wave-fields (q, v)(x) by
the inverse Fourier transform, written in a discrete form for the assumed large
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period Λ (formally, Λ → ∞, but in the applied approximation Λ is large but
finite; see Sec. 4 for more details):

q(x) =
∞∑

n=−∞
qne−jξnx, v(x) =

∞∑
n=−∞

vne−jξnx, (8)

where

qn =
∑
m

αmQ
(N)
n−m, vn =

∑
m

βmV
(N)
n−m =

∑
m

βmSn−mQ
(N)
n−m. (9)

The expansions in Eq. (9) are the convolutions in the spectral domain, writ-
ten in a discrete form, which correspond in the spatial domain to the products
of the template functions in Eq. (6) with certain unknown functions (α, β)(x)
represented by their Fourier transforms (in a discrete form):

α(x) =
∞∑

n=−∞
αne−jξnx, β(x) =

∞∑
n=−∞

βne−jξnx. (10)

The corresponding spectral samples (α, β)n occur in Eq. (9) as unknown expan-
sion coefficients that have to be determined. The functions in Eqs. (8), (9), being
the solutions to the considered boundary-value problem for the finite system of N
baffles, satisfy the boundary conditions given by Eq. (2) due to the properties of
the template functions from Eqs. (6), (7). Now we only need to check whether the
applied solutions from Eqs. (8), (9) satisfy the wave equation in the media, which
equation is represented on the baffle plane z = 0 by the harmonic admittance
g(ξ), defined by Eq. (1). Only the part of the wave-field (q, v)(x) that satisfies the
radiation condition at z → ∞ is involved in the solution, yielding the following
relation for the n-th spectral line having wave-number ξn:

vn = g(ξn)qn. (11)

Following the same considerations as for the case of an infinite periodic baffle
system considered in (Tasinkevych, Danicki, 2010), the following system of
linear equations can be deduced:

g∞
∑
m

αm [Sn−m − j(ηn/ξn)]Q(N)
n−m = 0, m, n ∈ [−N1, N1]. (12)

To obey the last condition in Eq. (2) stating that the pressure takes given con-
stant values in the slots between baffles, we use a similar technique as described
in (Danicki, 2006; Tasinkevych, Danicki, 2005b). Having N baffles there are
Ns = N − 1 slots and constraints that have to be satisfied. For this purpose the
number of coefficients αm in Eq. (12) is enlarged to 2N1 + 1 + Ns and the above
Ns constraints are added:

p(x = si) =
∫

q(x)dx

∣∣∣∣
x=si

, i = 1, . . . , Ns, (13)
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where si is the i-th slot centre (see Fig. 1a). Here we benefit from the known
spatial-frequency representation of the template solution Q(N)(ξ) from Eq. (6)
and, following the same procedure as described in (Tasinkevych, Danicki,
2005b), we can numerically evaluate the pressures in Eq. (13) as follows:

p(x = si) = j
∑
m

αmF−1

{
Q(N)(ξn−m)

ξn

}∣∣∣∣∣
x=si

, i = 1, . . . , Ns. (14)

Summarizing, the system of linear equations for unknown αm for

m ∈ [−N1 −Ml, N1 + Mu] ,

where Mu = Ml = Ns/2 for even Ns and Ml = (Ns− 1)/2 and Mu = (Ns + 1)/2
for odd Ns, is:

[Anm][αm] = [bn], n ∈ [−N1, N1 + Ns] . (15)

The elements of the matrix Anm are given by Eq. (12) and bn = 0 for n ∈
[−N1, N1] and

Anm = F−1

{
Q(N)(ξn−m)

ξn

}∣∣∣∣∣
x=si

,

bn = pi, n ∈ [N1 + 1, N1 + Ns] , i ∈ [1, Ns] .

(16)

Thus, solving the system of equations (15) for unknown αm,

m ∈ [−N1 −Ml, N1 + Mu] ,

the solution to the considered boundary-value problem can be obtained from
Eq. (8) using Eqs. (9) (note that βm = αm/(ωρa)).

4. Numerical examples

In this section some numerical examples of the sound beamforming by the
finite baffle systems are given. We consider here the far-field radiation pattern of
the acoustic pressure field. It should be noted, that the method of the analysis
discussed here yields the spatial spectrum of the acoustic pressure on the baffle
plane directly. Taking the advantage of this, the radiation pattern can be eval-
uated as the inverse Fourier transform of p(ξ) which is related to q(ξ) = −jξp
(note, p(ξ → 0) = 0) in a similar way as in (Tasinkevych, Danicki, 2010):

pR(θ) = p (k sin θ) cos θ
k

K

√
j2π

kR
e−jRk. (17)

The angular dependence in the far-field region can also be written in terms of
q(ξ) as follows:

pR(θ) ∼ q (k sin θ) cot θ. (18)
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In the numerical example presented in Fig. 2a, a far-field radiation pattern is
shown for N = 8 baffles and the given pressures pl = exp (jlPk sinβ), l = 1, . . . , 7,
where β is a steering angle. The cases of β = 0◦ and β = 15◦ are considered. In
Fig. 2b corresponding distributions of the pressure field on the baffle plane are
shown. In Fig. 3 a pressure field distribution in the media z > 0 is illustrated for
the considered 8 element baffle array and different steering angles.

a) b)
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Fig. 2. a) Far-field radiation pattern for an 8 element baffle array; steering angle β = 15◦

(a solid line) and β = 0◦ (a dashed line); P = λ, w = 0.75λ; b) spatial distribution of p(x)
on the baffle plane; steering angle β = 15◦ (thick lines) and β = 0◦ (a thin line); solid lines

– Re(p), dashed lines – Im(p).

a) b)

Fig. 3. Pressure distribution generated in an 8 element baffle array in the media z > 0:
a) steering angle 0◦, b) steering angle 30◦.

In the numerical example presented in Fig. 4a a far-field radiation pattern
for the case of one active slot in 5 element baffle array (pl = δl0, l = −2, . . . , 2)
is shown and a corresponding distribution of the pressure field on the baffle
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Fig. 4. a) Far-field radiation pattern of one active slot in a 5 element baffle array (a solid
line) and of a narrow strip acoustic transducer excited by a time harmonic uniform pressure
distribution (a dashed line); P = λ, w = 0.75λ; (b) spatial distribution of p(x) on the baffle

plane; a solid line – Re(p), a dashed line – Im(p).

plane is illustrated in Fig. 4b. For comparison, a far-field radiation pattern of a
narrow strip acoustic transducer excited by a time harmonic uniform pressure
distribution is marked by a dashed line in Fig. 4a. According to (Selfridge et
al., 1980), the analytical expression for the later case is:

f(θ) =
sin(πw/λ sin θ)

πw/λ sin θ)
cos θ. (19)

The comparison of the far-field radiation patterns calculated for the case of a sin-
gle active slot in a 5 element baffle array and a narrow strip transducer indicates
influence of neighboring baffles on the radiated wave-field. In Fig. 5 the pressure
field distribution in the media z > 0 is shown for the considered 5 element baffle

Fig. 5. Pressure distribution generated in a 5 element array
with one active slot in the media z > 0.
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array with one active slot computed by the presented method. In the numerical
examples shown in this section the period Λ ≈ 100P is applied, which is sufficient
for considering the finite baffle array as isolated within an approximating periodic
structure (see Fig. 1). This can be easily observed from the examples, shown in
Figs. 2b, 4b where pressure distribution on the boundary plane vanishes rapidly
at a distance of several P away from the baffle system.

5. Conclusions

In this paper a mixed boundary-value problem for a finite array of rigid
baffles in acoustic medium was solved for the case of wave-field generation.
The method developed earlier in electrostatics (Danicki, Tasinkevych, 2006;
Tasinkevych, Danicki, 2005a) was adopted here. The finite baffle system was
approximated by some multi-periodic structure with a certain large period and
an approach similar to the one developed in our previous work (Tasinkevych,
Danicki, 2010) was used to find a solution to the considered problem by means
of the BIS-expansion method (Blotekja et al., 1973). The presented numerical
examples show that the method yields all interesting characteristics of a linear
transducer array for beamforming analysis. Direct evaluation of the spatial spec-
trum of acoustic pressure distribution on the baffle plane is favourable since it
is used for far-field radiation pattern evaluation. The developed method delivers
a model of a linear phased array which accounts for a finite element size and
inter-element interactions. Also, transducers with different elements’ width and
spacing can be modeled by this approach. Such a modification may help reduc-
ing spurious effects connected with abrupt ends of a transducer system, which is
considered as quite difficult for analysing. Besides, the problem of wave detection
can be also addressed by this approach, which requires solving a corresponding
boundary-value problem formulated for the case of plane acoustic wave scatter-
ing.
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