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In this paper, the applications of the multivariate data analysis and optimization on vibration sig-
nals from compressors have been tested on the assembly line to identify nonconforming products. The
multivariate analysis has wide applicability in the optimization of weather forecasting, agricultural ex-
periments, or, as in this case study, in quality control. The techniques of discriminant analysis and linear
program were used to solve the problem. The acceleration and velocity signals used in this work were
measured in twenty-five rotating compressors, of which eleven were classified as good baseline compressors
and fourteen with manufacturing defects by the specialists in the final acoustic test of the production
line. The results obtained with the discriminant analysis separated the conforming and nonconforming
groups with a significance level of 0.01, which validated the proposed methodology.
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1. Introduction

Due to the high competitiveness of the market
in terms of technological change internet develop-
ment of communications and transportation, global-
ization among other factors, the quality of products
has become an important competitive advantage in the
industrial setting (Ganapavarapu, Prathigadapa,
2015). The quality can be defined as the ability of
the product to meet the implicit and explicit needs
for which it was designed. In this way, the produc-
tion process must comprise small variations within the
projected safety margin. It is considered as a more
adequate quality assessment, the quality check af-
ter the production process final product usually car-
ried out in the automobile and electronics industries
(Nahmias, Olsen, 2015). A study by Duarte et al.
(2015) showed that the human ear presents itself as
a good tool in the noise quality control of compres-
sors in production lines. However, it has the vulnera-
bility of being affected by emotional and environmen-
tal problems such as background noise. In addition,
assessment by the human ear does not return measur-
able values for decision making by the company. Wang

et al. (2017) is concerned about the consequences of ex-
posure to noise, such as the effect on human health and
quality of life. These effects can result, among others,
in annoyance and cardiovascular diseases. Sánchez
et al. (2018) points out that one of the main prob-
lems of today’s society is the high exposure to noise.
The high level of exposure to noise can cause dam-
age to people’s quality of life. The author reports that
WHO (World Health Organization) considers noise
pollution as the most important problem in the world
after air and water pollution. The use of vibration sig-
nals has been successfully performed in the detection
of failures in mechanical systems (Lamim Filho et al.,
2014; Amarnath, 2016; Rai, Upadhyay, 2016; Vish-
wakarma et al., 2017). A natural extension of the
techniques based on vibration measurement was its use
as quality control tools for production line equipment
(Carnero et al., 2010; Duarte, 2013). According to
D’Elia et al. (2014) ‘Vibration signals can be success-
fully captured and analysed for quality control at the
end of the production line’. D’Elia et al. (2014) in
their conclusion demonstrate the importance of select-
ing proper signal processing tools in order to extract
the most reliable information from the signals. The
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same conclusion was drawn by Duarte (2013), who
in his work used a set of 185 vibratory parameters in
conjunction with the differential evolution procedure
to list the best parameters to be used in the classifi-
cation of good baseline compressors or manufacturing
defects compressors.

Sartorio (2008) applies techniques of multivari-
ate data analysis to agricultural experiments and per-
forms the comparison with univariate analysis tech-
niques, confirming the superiority of the efficiency of
multivariate techniques in his dissertation. To apply
the technique of multivariate analysis of the data, the
author used the statistical analysis software R. Mat-
ter and Stutzer (2015) propose a tool developed in
software R to make accessible the data of the politi-
cal sphere of the United States to the wide scientific
community, revolutionizing the current reality due to
the great complexity of the data. This tool enables
communication between statistical techniques and the
large database.

Thus, this technique has wide applicability in the
optimization of weather forecasting, agricultural ex-
periments or, as in this case study, in quality con-
trol compressors noise levels. For the simulation, we
used the statistical analysis software R. This report de-
scribes the statistical theoretical development and sim-
ulation. In agreement with the initial proposal of the
work, we used the calculation of the main vibroacous-
tic symptoms diagnosed by Duarte (2013): kurtosis
skewness crest factor K4 energy level of the filtered en-
velope and difference between the maximum and mini-
mum of the filtered envelope. Classic metrics are listed
by Duarte (2013) from the analysis of 185 symptoms.
In this study, we decided to choose the symptoms that
presented the best results in Duarte’s work (2013).
The symptoms were calculated and used as data entry
in the multivariate model with the objective of deter-
mining Fisher’s Linear Discriminant Function (FDLF).
One of the results is from the data of a chosen com-
pressor, to determine if it is adequate or not, through
application of the FDLF found. Another result is the
application of a program in the Gurobi software to
classify the compressors.

Carletti (2013) presents in his article the results
of a study on the “customization” of a sound quality
methodology for the noise control of construction ma-
chines. Construction machines as well as rotary com-
pressors generate high noise levels which can lead to
health and performance problems at work. A rotary
compressor can be defined as an industrial equipment
to increase the pressure of a gas in the gaseous state
(Fagundes Neto, Duarte, 2015). Expanding the
definition, it is a device that uses the rotating action of
an internal cylinder to a chamber of the same format,
whose function is the compression of the refrigerant
gas (Tecumseh, 2016). Rotary compressors have fewer
components compared to other compression technolo-

gies and are commonly used in air-conditioning and
refrigerators.

The noise spectrum of the rotary compressors is
considered complex due to the kinematics of the com-
pression process and to the large compressor frame
area (Fagundes Neto, Duarte, 2015). Thus, the
noise spectrum consists of low, medium and high fre-
quencies. The low frequencies are controlled by the
mechanism kinematics, electric motor and vane. The
medium frequencies originate from the gas flow, valve,
shaft and roller. High frequencies are generated by fric-
tion.

Barbosa et al. (2002) points out that the tradi-
tional analysis of vibratory systems in machines were
studied in the first modes, i.e. at low frequencies. How-
ever, the analysis of vibration in high frequency have
already aroused interest at some point. Barbosa et
al. (2003) points out that the region of high frequency
is responsible for most of the general level of sound
power, that is, any method of noise control should be
to minimize the noise radiated in this region of fre-
quency.

For ASHRAE Handbook (2008), the main sources
of noise of rotary compressors are the internal tur-
bulences, impacts of the valves, friction and electric
motor. Gerges (2000) defines the dominant sources
of noise in compressors as flow turbulence as a func-
tion of the non-smooth flow of the fluid, separation of
the flow by the interaction of flow – rotating parts and
flow – fixed parts (stators) or by means of the flow with
other structural parts and the non-stationary, that is,
irregular flow in the blades of the rotors, which gener-
ates noise for the rotation frequency and its harmonics.

Figure 1 shows a fixed vane-type rotary compressor
in which are detailed some parts of the compressor such
as the vane, discharge port, suction port, rotor, com-
pressor shaft, compressor chamber and cylinder.

Fig. 1. Rotary compressor.

Fisher addressed the problem of multivariate ana-
lysis AD discriminant analysis in the year 1936 with
the achievement of a linear combination of measured
characteristics that presented the highest potential
discrimination among the groups studied according to
Sartorio (2008).
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Santos et al. (2003) believes that the solution to
research problems when there are two or more groups
of units for which a number of characteristics has been
calculated and we want to classify new units based
on the same characteristics, we find in the multivari-
ate analysis discriminant analysis (AD). Zuge and
Chaves Neto (1999) affirm that AD is a multivariate
technique to verify a classification made a priori.

Reis (1997) defines AD as the construction of
a classification rule, that is, the objective of AD is
to find a linear combination of independent variables
that makes it possible to minimize the probability of
erroneous classification of units/individuals. The first
step is to identify the discriminant variables in the
model. The discriminant variables are the response
variables with the greatest discrimination power be-
tween the groups analysed in the multivariate model.
From the discriminant variables, discriminant func-
tions are estimated, whose objective is the classifi-
cation of new units/individuals.

The discriminant function is used to identify the
discriminant score of the data of the model studied.
The discriminant score is the value found after the use
of the discriminant function. The cutoff point is the
determinant to perform a new classification of a new
individual/unit analysed. The cutoff point is calculated
by means of the means of the discriminant scores of
each group analysed in the multivariate model.

The three hypotheses of the multivariate discrimi-
nant analysis method are presented below.

• H1.1: The discriminant variables present normal
multivariate distribution.

• H1.2: The covariance matrices of the clusters are
the same.

• H1.3: Clusters differ in their means.

For Khattree and Naik (2000), discriminant
analysis is a type of multivariate statistics whose fo-
cus is the separation of units from a population into
two or more classes according to the characteristics of
the proposed mathematical model.

Regazzi (2000) reports that the record of the first
approach to the problem of discrimination between two
or more groups for later classification dates back to
1936, by Fisher. The procedure tries to classify an in-
dividual Z or experimental unit Z in one of the popula-
tions or groups studied. Thus, measures of a number of
characteristics are taken to minimize the probability
of misclassification, i.e. to minimize the probability of
classifying an experimental unit in the population i,
when in fact it is the population j.

2. Material and methods

The work methodology was divided into four parts.
The first one refers to the technique of bibliographical

revision of the vibroacoustic symptoms used (kurto-
sis, asymmetry, mean square value, crest factor, K4,
filtered envelope energy level, and difference between
maximum and minimum of the filtered envelope), ro-
tary compressors, and statistical techniques for multi-
variate data analysis.

The second part of the methodology corresponds
to the structuring of the work. In this part, the data
acquired by Duarte (2013) for the application of the
statistical technique of multivariate analysis denomi-
nated discriminant analysis in the software of statisti-
cal analysis were used. The vibration acceleration sig-
nals were measured at two distinct points of the car-
casses, with a sampling frequency of 33 333 Hz accord-
ing to Fig. 2.

Fig. 2. Used compressor.

The following signs were acquired:

• Acceleration on the compressor cover.

• Speed on the compressor cover.

• Acceleration at the point near the soldering point
of the compressor kit.

• Speed at the point near the soldering point of the
compressor kit.

The acceleration signals used in this work were
those acquired near the soldering point of the compres-
sor kit. The multivariate model was developed from the
calculated symptoms with the objective of determining
Fisher’s Linear Discriminant Function (FDLF). One of
the results of the work is, from the data of a chosen
compressor, to determine if it is conforming or noncon-
forming, through application of the FDLF found.

Another result of the work is the development of
a program in Gurobi software, with an academic li-
cense, object oriented in C++ with dynamic allocation
of memory to identify nonconforming products.
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For the computer simulation, a computer with the
following technical specifications was used: Ubuntu
16.04 LTS operating system, 3.8 GB memory, Intel R○

Core i5 processor, 64-bit system type and 582.8 GB
disk.

In the fourth part of the work, a comparison was
made of the results obtained with the multivariate
analysis technique implemented in the R software
and the results obtained with the linear programming
in the Gurobi software with the results obtained by
Duarte (2013).

2.1. Fisher’s linear discriminant function

The methodology used in this work to obtain
Fisher’s linear discriminant function (FDLF) is based
on the following steps:

(i) Input of data in software R.

(ii) Matrices construction.

(iii) Estimation of the groups arithmetic means.

(iv) Calculations of groups variance and covariates
matrices.

(v) Estimation of the common variance.

(vi) Calculation of the inverse matrix of the common
variance.

(vii) Calculation of the discriminant vector estimator.

(viii) Obtaining FDLF.

(ix) Reliability evaluation of the FDLF function.

The numbered steps from (i) to (vii) allow the cal-
culations of the 5 parameters required to construct the
FDLF function, as explained below.

• Parameter 1: Matrices correspond to the values of
the symptoms.

• Parameter 2: Arithmetic means of the groups, ob-
tained by the formula of Eq. (1), where is the input
vector of the data of each group:

n

∑
i=1

xi. (1)

• Parameter 3: Matrices of variances and covariance
of the groups given by Eq. (2), where Y is the
data matrix for each population group. In Eq. (2)
we consider v the number of variables observed in
each experiment. The variances and covariances
are defined according to the matrix of Eq. (2).
In Eq. (2) I corresponds to the identity matrix
of dimension v, xjj = var(Yj) the variance of the
j-th variable, xjj′ = cov(Yj , Yj′) sample covariance
between the variables j and j′, j, j′ = 1,2, ..., v
and j ≠ j′. For all variables j and j′, we have
xjj′ = xj′j . The cov matrix is composed of v vari-
ances and 1

2
v(v − 1) potentially different covari-

ances

cov =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ... x1v

x21 x22 ... x2v

⋮ ⋮ ⋮
xv1 xv2 ... xvv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

n − 1
Y ′ (I − 1

n
11′)Y. (2)

• Parameter 4: Common variance, Sc according to
Eq. (3), where A represents the studied popula-
tion A, SA is the common variance of population
A, and SB represents the common variance of pop-
ulation B

Sc = (nA − 1) ⋅ SA + (nB − 1) ⋅ SB
nA + nB − 2

. (3)

• Parameter 5: Corresponds to the inverse of the
common variance according to Eq. (4) and Eq. (5)
for square matrices of dimension n, where ISc
represents the inverse of the combined common
variance of groups A and B and I is the identity
matrix of order n

ISc ⋅ Sc = In, (4)

Sc ⋅ ISc = In. (5)

After the calculation of these 5 parameters, the es-
timator L is calculated, which is obtained by the prod-
uct of the arithmetic mean of the groups by the inverse
of the common variance according to Eq. (6)

L =XAB ⋅ ISc. (6)

Thus, we obtain the equation for the classification
of new compressors according to Eq. (7), that is, the
FDLF function. X represents the input

D(x) = L ⋅ x[XA −AB]′ ⋅ ISc ⋅ x. (7)

After calculating the FDLF function, the mean
point m of the groups is determined. Based on the
calculated m-point m, Fisher’s classification rule can
be obtained.

m = (groupmean A + groupmean B)
2

, (8)

ra0 should be allocated to group A if D(x) ≥m, (9)

ra0 should be allocated to group B if D(x) <m. (10)

2.2. Simplex method

From the vibroacoustic symptoms defined accord-
ing to the procedure detailed in Sec. 1 and Subsec. 2.1,
the mathematical restrictions for the model were pre-
pared. Thus, there is the need to divide the prob-
lem into two parts to perform the modelling in the
Gurobi software, because it allows the segregation of
the conforming products and the nonconforming prod-
ucts. The model with only one function without divid-
ing into two parts resulted in the non-viable response
by the software.
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Gurobi is an academic-licensed optimization soft-
ware. We used dynamic memory allocation, C++
programming language, object-oriented programming,
non-linear. The mathematical function of the lower
model can be observed in Eqs (11) and (12)

min
25

∑
i=1

xi,

LimLowerij Valorijxi ∀i=1, ...,25 ∀j=1, ...,6,

xi ∈ Z ∀i=1, ...,25.

(11)

The mathematical function of the upper model can
be observed in Eq. (12)

max
25

∑
i=1

xi,

Valueijxi LimUpperij ∀i=1, ...,25 ∀j=1, ...,6,

xi ∈ {0,1} ∀i=1, ...,25.

(12)

The idea of the model created is to cross the two
parts, bottom and top, and from there the software can
issue the list of conforming and nonconforming prod-
ucts.

The lower limit was observed by 24 of the 25 anal-
ysed compressors. The upper limit was not respected
by 12 of the 25 compressors analysed. In this way, it
is possible to observe that, in mathematical terms, the
lower limit is easier to be attended compared to the up-
per limit.

Gurobi software took seconds to solve this problem.
In this way, you can increase the amount of symptoms
and the number of units/compressors analysed easily
in the initial lines of the source code.

The method used in this work is the Simplex opti-
mization method. According to Taha (2008), two as-
sumptions must be considered for modelling, as pre-
sented below.

• The constraints are represented by equations,
so that the right side of the equations is non-
negative.

• Non-negative variables.

The observation of these two assumptions is impor-
tant because it will standardize and increase the effi-
ciency of the Simplex Method. In inequalities, the right
side represents the limit imposed on the availability of

Table 1. Group A of the conforming products.

Compressor NEE
(6000 Hz)

DE
(6000 Hz)

NEE
(10 000 Hz)

DE
(10 000 Hz)

NEE
(8000 Hz)

DE
(8000 Hz)

ra1 10.30 71.4 8.46 63.0 9.46 67.1

ra2 7.28 47.7 5.30 37.8 6.02 41.6

ra3 7.73 49.6 4.73 38.9 6.05 45.0

ra4 8.01 71.6 5.28 46.1 6.39 53.7

a resource and the left side refers to the use of this
resource limited by the model variables. Thus, the dif-
ference between the right side and the left side of the
constraint represents the amount of unused resource,
also called the gap.

3. Results and discussion

Duarte (2013) used NWS sound power levels mea-
sured in 1/3 octave-centered bands between 100 and
10 000 Hz. The NWS values in 1/3 octave bands, the
global values in dBL, the global values in dBA and the
mean values of electric current, resulted in 24 symp-
toms to be compared.

From the experiments obtained on the three initial
phases of the research, the fourth phase of the tests
was carried out. We adopted two groups (group A and
group B) and six vibroacoustic symptoms, which are
the variables of the multivariate model created. The
following symptoms were adopted as variables. Symp-
toms calculated on the basis of regions of the spec-
trum related to frequencies of compressor components
for the studied signals, parameters X1, X2, X3, X4, X5
e X6.

• X1DE 10 000 Hz (difference between the max-
imum and minimum of the filtered envelope
with high pass filter with cutoff frequency of
10 000 Hz).

• X2NEE 10 000 Hz (energy level of the filtered en-
velope with high pass filter with cutoff frequency
of 10000 Hz).

• X3DE 6000 Hz (difference between the maximum
and minimum of the filtered envelope with high
pass filter with cutoff frequency of 6000 Hz).

• X4NEE 6000 Hz (energy level of the filtered en-
velope with high pass filter with cutoff frequency
of 6000 Hz).

• X5DE 8000 Hz (difference between the maximum
and minimum of the filtered envelope with high
pass filter with cutoff frequency of 8000 Hz).

• X6NEE 8000 Hz (energy level of the filtered en-
velope with high pass filter with cutoff frequency
of 8000 Hz).

For the group of conforming products, there are
the vibroacoustic symptoms mentioned as exemplified
in Table 1.



84 Archives of Acoustics – Volume 44, Number 1, 2019

Table 2 shows the model for discriminant analy-
sis for nonconforming products. Group A refers to 1
of conforming compressors and group B to 2 noncon-
forming compressors.

Table 2. Fourth modelling of discriminant analysis.

X1A X2A X3A X4A X5A X6A

46.7 5.56 70.0 8.77 61.7 7.19

55.6 6.67 69.4 8.98 64.0 8.06

38.1 4.82 54.4 7.12 48.0 6.23

55.0 6.32 62.3 7.32 59.0 6.81

X1B X2B X3B X4B X5B X6B

89.0 10.90 96.1 11.60 91.7 11.20

114.0 11.40 123.0 12.80 120.0 12.20

81.4 7.66 83.9 8.57 81.8 8.01

58.8 8.66 67.6 9.29 63.4 9.03

From the Fisher Linear Discriminant Function
(FDLF), the equation for the classification of new com-
pressors was estimated, resulting in Eq. (13)

D(x) = [1.2568 − 18.2164 − 0.0108

−0.7007 − 1.3783] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

As the midpoint of populations A and B is −3.432,
the classification rule based on Fisher’s Linear Dis-
criminant Function (FDLF) will be given by Eqs (14)
and (15):

ra0 should be allocated to group A

if D(ra0) ≥ −3.432, (14)

ra0 should be allocated to group B

if D(ra0) < −3.432. (15)

A new compressor x0 whose variables x1 x2 x3 x4

x5 x6 are used to test the new classification rule cre-
ated in this work based on Fisher’s Linear Discriminant
Function (FDLF) 88.1; 10.2; 122.1; 4.5; 118.8 and 12.6.

As the function D(ra0) is −6.968916 value less than
−3.432 the compressor ra0 will be allocated in group
B, nonconforming products, that is, it was allocated in
the correct group according to the classification made
by Duarte (2013).

Table 3. Optimization: model variables.

Compressor ELFE
(6000 Hz)

DFE
(6000 Hz)

ELFE
(8000 Hz)

DFE
(8000 Hz)

ELFE
(10 000 Hz)

DFE
(10 000 Hz)

ra1 10.30 71.4 9.46 67.1 8.46 63.0

ra2 9.85 79.0 8.31 66.6 6.97 58.2

ra3 7.28 47.7 6.02 41.6 5.30 37.8

ra4 7.73 49.6 6.05 45.0 4.73 38.9

3.1. Significance test

Significance analysis resulted in F0 of 7.869 being
greater than the value of tabulated Ftab = 4.388. Since
H0 is rejected, it can be concluded that the separation
between groups is significant.

The very promising results open a great perspective
for the use of the classification rule based on Fisher’s
Linear Discriminant Function (FDLF) in the construc-
tion of pass-through filters on production lines using vi-
broacoustic signals. The construction of the filter con-
sists of the following steps.

1) Construct a database with the vibroacoustic sig-
nals of a conforming group and a database of
a group that does not conform.

2) Evaluate all vibroacoustic symptoms applicable to
the studied problem.

3) Using an optimization procedure, construct a Dis-
criminant Function that results in maximizing the
alternative hypothesis of the Significance Test.

3.2. Optimization

Another result of the work is the development of
a program in Gurobi software, with an academic li-
cense, object oriented in C++ with dynamic allocation
of memory to identify conforming and nonconforming
products. For this, the steps presented in section 3 of
this article were performed.

First, the problem to be studied was defined: the
distinction between conforming and nonconforming
products based on calculated vibroacoustic symptoms.
The data were acquired by Duarte (2013) and from
these, the symptoms were calculated.

The variables used in the model are: ai energy level
of the filtered envelope with high pass filter with cut-
off frequency of 6000 Hz, bi difference between maxi-
mum and minimum of the filtered envelope with high
pass filter with cutoff frequency of 6000 Hz, with level
of filtered envelope energy with high pass filter with
cutoff frequency of 8000 Hz, difference between maxi-
mum and minimum of the filtered envelope with high
pass filter with cutoff frequency of 8000 Hz, with en-
ergy level of the envelope filtered with high pass filter
with frequency 10 000 Hz cut, and difference between
maximum and minimum of the filtered envelope with
high pass filter with cutoff frequency of 10 000 Hz ac-
cording to Table 3, exemplified for some compressors.
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From the study of the vibroacoustic symptoms the
restrictions for the construction of the mathematical
model were defined. The mathematical model was di-
vided into two parts: part 1 of the model, lower limit
and part 2 of the model, upper limit. The Gurobi soft-
ware from the implemented code crosses the informa-
tion of the two parts of the model, in order to ver-
ify what meets the two parts of the model. The code
implemented in the C++ language is available in the
dissertation work of Reis (2017).

The mathematical function of the lower model can
be observed in Eqs (16) and (17)

min
25

∑
i=1

xi,

LiInfij Valorijxi ∀i = 1, ...,25 ∀j = 1, ...,6,

xi ∈ Z ∀i = 1, ...,25.

(16)

The mathematical function of the upper model can
be seen in Eq. (17)

max
25

∑
i=1

xi,

Valorijxi LiSupij ∀i = 1, ...,25 ∀j = 1, ...,6,

xi ∈ {0,1} ∀i = 1, ...,25.

(17)

Figure 3 shows the results obtained with Gurobi
software. It is possible to observe that the output of
the program presents the 11 suitable compressors and
the 14 inadequate compressors in accordance with the
results obtained by Duarte (2013).

Compressor 1 is good. Compressor 14 is good.

Compressor 2 is bad. Compressor 15 is good.

Compressor 3 is good. Compressor 16 is bad.

Compressor 4 is good. Compressor 17 is bad.

Compressor 5 is good. Compressor 18 is good.

Compressor 6 is bad. Compressor 19 is bad.

Compressor 7 is good. Compressor 20 is bad.

Compressor 8 is bad. Compressor 21 is bad.

Compressor 9 is bad. Compressor 22 is bad.

Compressor 10 is good. Compressor 23 is bad.

Compressor 11 is bad. Compressor 24 is bad.

Compressor 12 is good. Compressor 25 is bad.

Compressor 13 is good.

Detailed solution:

The total of good compressors is: 11.

Fig. 3. Output of Gurobi.

In Fig. 4 it can be observed that the lower limit
was respected by 24 compressors, only one compressor
was not respected.

Detailed solution:

The total of good compressors is: 11.

F0 lower: 26

X[1]: 1. X[14]: 1.

X[2]: 1. X[15]: 1.

X[3]: 1. X[16]: 1.

X[4]: 1. X[17]: 1.

X[5]: 1. X[18]: 1.

X[6]: 2. X[19]: 1.

X[7]: 1. X[20]: 1.

X[8]: 1. X[21]: 1.

X[9]: 1. X[22]: 1.

X[10]: 1. X[23]: 1.

X[11]: 1. X[24]: 1.

X[12]: 1. X[25]: 1.

X[13]: 1.

Fig. 4. Detailed solution of Gurobi: lower limit.

In Fig. 5 it can be observed that the upper limit
was respected by 12 compressors, and 13 compressors
did not respect the limit.

F0 lower: 12

X[1]: 1. X[14]: 1.

X[2]: 0. X[15]: 1.

X[3]: 1. X[16]: 0.

X[4]: 1. X[17]: 0.

X[5]: 1. X[18]: 1.

X[6]: 1. X[19]: 0.

X[7]: 1. X[20]: 0.

X[8]: 0. X[21]: 0.

X[9]: 0. X[22]: 0.

X[10]: 1. X[23]: 0.

X[11]: 0. X[24]: 0.

X[12]: 1. X[25]: 0.

X[13]: 1.

Fig. 5. Detailed solution of Gurobi: upper limit.

It is worth mentioning that the code implemented
according to (Reis, 2017) can be adapted to work with
as many compressors as it seems appropriate. Suffice
it to change the number of compressors and the input
file with the vibroacoustic symptoms calculated for the
compressors to be evaluated. It is also possible to im-
plement more vibroacoustic symptoms.

4. Conclusions

The objective of this work was to apply the tech-
nique of multivariate analysis and optimization to con-
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trol the noise quality of compressors using R software
and Gurobi software. Through the literature review, it
was possible to conclude that the discriminant analy-
sis technique can be applied to the noise quality con-
trol of compressors. Thus, the methodology of discrim-
inant analysis, multivariate technique, was applied to
the case study for the noise quality control with the
signals acquired by Duarte (2013) for 25 compres-
sors.

In phase 4 of the tests were used six vibroacous-
tic symptoms for which discriminant analysis was per-
formed and satisfactory results were obtained with
a level of significance of 0.01 and it was possible to
conclude that the separation between groups A and B
is statistically significant by the tests implemented in
software R.

Thus, the results obtained with the discriminant
analysis were satisfactory with a level of significance
of 0.01 and it was possible to conclude that the sepa-
ration between groups A and B is statistically signifi-
cant by the statistical tests implemented in software R
for phases 1, 2 and 4 modelling as details available in
(Reis, 2017). While the results of phase 3 show that
the mathematical model of this phase did not allow the
significant separation between groups A and B, accord-
ing to statistical tests performed, which indicates the
redundancy of the symptoms used.

The results obtained using the methodology pro-
posed in this work are superior to the classical meth-
ods in relation to the cost attribute, since the statistical
analysis software R used in the computational tests is
free software, i.e. it does not have license costs and al-
lows the processing of the order of millions. One of the
results of the work is, from the data of a chosen com-
pressor, to determine if it is adequate or inadequate,
through application of the FDLF found.

Another result is the development of a Gurobi soft-
ware program, with an academic license, object ori-
ented in C++ with dynamic memory allocation to
identify conforming and nonconforming products. Like
software R, Gurobi software allows the processing of
data in the order of millions, which justifies the choice
of these two software for this work. All the objectives of
this work presented in the summary and introduction
were satisfactorily fulfilled.
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