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Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose
a new approach for tissue compression assessment. The proposed method employs the relation between
the tissue scatterers’ local spatial distribution and the resulting frequency power spectrum of the backscat-
tered ultrasonic signal. We show that due to spatial distribution of the scatterers, the power spectrum
exhibits characteristic variations. These variations can be extracted using the empirical mode decomposi-
tion and analyzed. Validation of our approach is performed by simulations and in-vitro experiments using
a tissue sample under compression. The scatterers in the compressed tissue sample approach each other
and consequently, the power spectrum of the backscattered signal is modified. We present how to assess
this phenomenon with our method. The proposed in this paper approach is general and may provide
useful information on tissue scattering properties.
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1. Introduction

Ultrasound imaging has been widely used for
soft tissue characterization. The images of tissue
scanned with ultrasounds are obtained through the
reconstruction of radio-frequency (RF) echo-signals
backscattered in the tissue under examination. Vari-
ous quantitative ultrasound (QUS) methods were pro-
posed to extract tissue properties based on RF data
(Mamou, Oelze, 2013). QUS includes the assessment
of backscatter properties, attenuation coefficients, and
envelope statistics (Oelze, Mamou, 2016).

Tissue is commonly modeled as a matrix of scatter-
ing source centers that are fundamentally divided into
coherent and diffusive ones (Zhou et al., 2017). Coher-
ent scatterers are by definition positioned periodically
within investigated tissue while spatial distribution of
diffusive scatterers is considered to be random. Spe-
cific spatial distribution of scatterers results in differ-
ent backscattering and characteristic speckle patterns
observed in B-mode ultrasound images. For example,
periodically positioned scatterers are expected to pro-
duce specific oscillations in the RF signal power spec-

trum. These oscillations can be analyzed in various
ways, e.g. using the cepstrum method (Lizzi et al.,
1981).

Spatial distribution of scatterers within tissue un-
der compression is modified. In this paper we propose
a new spectral based method for tissue compression as-
sessment. The proposed method, called the SPD (RF
Signal Power spectrum mode Decomposition), offers
some insight into the relation between the scatterers
spatial distribution and the backscattered echo spec-
trum. We show that the power spectrum oscillations
are generally related to the distances between the scat-
terers. This observation leads to the concept of intrinsic
mode functions (IMFs). We show that the RF signal
spectrum is composed of IMFs related to tissue mi-
crostructure. Next, it is depicted how the empirical
mode decomposition (EMD) can be applied to extract
power spectrum oscillations. Finally, we describe how
to use these spectrum oscillations for tissue compres-
sion assessment.

This paper is organized in the following way. Our
method is described in the next section. We show the-
oretically how the power spectrum variations can be
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related to the spatial distribution of scatterers. Next,
it is described how to extract those variations using the
EMD. Moreover, the approach is illustrated using nu-
merical simulations. Next, a simple in-vitro experiment
is performed using an uncompressed and compressed
tissue sample scanned with a linear array transducer.
The scatterers in the sample of squeezed tissue ap-
proach each other and consequently, the power spec-
trum of the backscattered signal is modified. It is de-
scribed how these fluctuations of the backscattered
spectra can be determined using our method. Finally,
the results are presented and discussed.

2. Materials and methods

2.1. Method description

The concept of the SPD relies on the scatterer point
model. The echo backscattered from a single scatterer
(denoted by index k) is expected to be a scaled copy of
the incident ultrasonic pulse, which can be expressed
in the following way:

fk(t) = rkp(t− tk), (1)

where rk is the k-th scatterer reflectivity and p(t− tk)
refers to the incident pulse being scattered at the k-th
point and recorded with time delay tk = 2dk/c, dk is
the distance from the k-th scatterer to the transmit-
ting/receiving transducer, c is the speed of sound. As-
suming single scattering approximation and allowing
linear interference only, the backscattered echo from
the cluster of scatterers can be written as:

f(t) =

L∑
k=1

rkp(t− tk), (2)

where L is the number of all scatterers in medium or
investigated region of interest (ROI). For a stochastic
medium rk and tk are random variables. Although this
model is one-dimensional and simplified, it provides
a good description of ultrasonic echoes obtained with
linear array transducers used in US imaging (Shung,
1993).

Equation (2) is usually separated into two sums
corresponding to diffuse-like and periodic scatterers
(Zhou et al., 2017). Here, however, we follow a dif-
ferent approach. First of all, the Fourier transform of
Eq. (2) is:

F (ω) = P (ω)

L∑
k=1

rkeiωtk . (3)

Next, the power spectrum of f(t) can be expressed
in the following form (Wójcik et al., 2016):

|F (ω)|2 = |P (ω)|2
[
R2 +

L∑
k=1

L−1∑
l=1

2rk,l cos (ωtk,l)

]
, (4)

where

R2 =

L∑
k=1

r2k, rk,l = rkrl, tk,l = tk − tl.

Moreover, we can write:

I (ω) = |F (ω)|2 = |P (ω)|2Q (ω)

= |P (ω)|2
(
Q0 (ω) + Q̃ (ω)

)
= I0 (ω) + Ĩ (ω) , (5)

where
Q0 (ω) = R2,

Q̃ (ω) =

L∑
k=1

L−1∑
l=1

2rk,l cos (ωtk,l),

I0 (ω) = |P (ω)|2Q0 (ω) ,

Ĩ (ω) = |P (ω)|2 Q̃ (ω) .

The Q (ω) component is related to the reflective
properties of the medium and it includes the oscilla-
tory content of the spectrum Q̃ (ω) that results from
periodically spaced scattering sources. The power spec-
trum oscillates in the frequency domain and the rate of
these oscillations is related to the distribution of inter-
distances tk,l between pairs of scatterers weighted by
rk,l. For clarity, we express the inter-distances in time
domain, however the relation holds tk,l = 2dk,l/c and
dk,l = dk − dl establishing a direct link between the
time and space domain.

Before we continue lets remind the concept of the
IMF. A single IMF can be written as (Daubechies
et al., 2011):

u(t) = U(t) cos (ϕ(t)) , (6)

where the phase ϕ(t) is non-decreasing and the enve-
lope U(t) is positive. This relation holds in the Fourier
domain as well if we consider variable ω as the primary
one:

u(ω) = U(ω) cos (ϕ(ω)) , (7)

Relation between Eq. (7) and the power spectrum
is straightforward. Q̃ (ω) is composed of IMFs which
phase depends on the scatterer inter-distances tk,l,
ϕ(ω) = cos (tk,lω). Moreover, the envelope of each IMF
is constant and equal to rk,l. Next, using the Wiener-
Khinchin theorem we can write the inverse Fourier
transform of Q (ω) to obtain the “medium autocor-
relation” function:

q(t) = q0 + q̃(t) = R2δ(0) +

L∑
k=1

L−1∑
l=1

2rk,lδ (ωtk,l), (8)

where δ(·) is the Dirac delta function. In the case of
constant rk,l, q̃(t) can be considered as the distribution
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of inter-distances between scatterers in the medium
(or two elements clusters distribution). For L scatter-
ers the summation in Eq. (8) goes over the number of
all possible inter-distances equal to N = L(L − 1)/2.
We can conclude from Eq. (8) that the medium auto-
correlation function for larger t should be affected by
inter-distances of higher values.

The resulting received backscattered echo is equal
to the convolution of the medium autocorrelation func-
tion q(t) and γ(t) that represents the scanning pulse
p(t) autocorrelation:

W (t) = γ(t) ∗ q(t), (9)

where ∗ refers to convolution operator in respect to
time. Similarly to Q(ω), we can divide W (t) into W0(t)

and variable part W̃ (t). Despite the blurring effect we
present below that the scatterers’ spatial distribution
still can be assessed using RF data. It can be done
by extracting power spectrum oscillations. We illus-
trate the concept of the SPD with numerical simula-
tions. Figure 1a shows the distribution of scatterers’
reflectivities and positions, and Fig. 1b displays the
corresponding q̃(t) function from Eq. (8). Additionally
|W (t)| is presented in Fig. 1c. Reflectivities and posi-
tions are expressed in mm and were sampled uniformly
from [0.75, 1.25] and [0, 20], respectively. We used only
20 scatterers for clarity which corresponds to N = 190.
The emitted pulse consisted of 2 cycle sine wave with
a triangular envelope, center frequency was equal to
6 MHz. The speed of sound was constant and equal to
1540 m/s. Calculations were performed using Matlab
(the MathWorks, Inc).

The aim of the SPD is to extract power spectrum
oscillations and to provide quantitative analysis. For
this task we use the EMD which has been widely used
in signal analysis for IMF extraction. The EMD (the
sifting process) can be described in the following way
(Huang et al., 1998):

1) Find all the local extremes in the signal.
2) Connect all the local maxima to create the upper

envelope.

a)

b)

Fig. 2. Illustration of the proposed method. The oscillations of the signal power spectrum are extracted using EMD inverse
Fourier transform (a) applied to the signal power spectrum and the first IMF (b).

a)

b)

c)

Fig. 1. The signal autocorrelation is related to the distri-
bution of the scatterers: a) distribution of scatterers along

a line, b) q̃(t) from Eq. (8), c) |W (d)| from Eq. (9).

3) Connect all the local minima to create the lower
envelope.

4) Calculate the mean envelope (signal trend).
5) Subtract the mean envelope from the signal to ob-

tain the first IMF.
6) Repeat the above procedure to extract the second

IMF from the first.

Result of one iteration of the above sifting process
applied to the power spectrum is illustrated in Fig. 2b.
EMD extracts IMFs that contain the most of the power
spectrum oscillations.
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2.2. Method validation

The experimental validation of the SPD was car-
ried out using a sample of compressed turkey breast.
The scatterers centers in compressed tissue sample are
getting closer to one another and this effect should re-
sult in a change of scatterers inter-distances and mod-
ification of backscattered power spectrum. The EMD
is applied to extract the first IMF set that contains
the largest part of the power spectrum oscillations and
should correspond to Q̃(t) from Eq. (5). The inverse
Fourier transform of the extracted data is then used
for signal analysis. The expected value is used to pro-
vide a quantitative measure of spectrum variations. Let
|W1(t)| be the inverse Fourier transform amplitude of
the first IMF set, see Fig. 2a. We can write the mean
value of the first IMF set (MVI) as:

MVI = E [W1] =

∫
s |W1(s)| ds∫
|W1(s)| ds

, (10)

where variable s is used for integration only and E[·]
refers to the expectation operator.

The motivation beyond Eq. (10) is simple. In the
compressed tissue the scatterers’ inter-distances tk,l
decrease and the distribution q̃(t) in Eq. (8) should
experience a shift. One may consider an unrealistic sce-
nario where the scatterers are compressed to a single
point and the oscillations disappear.

Two experiments were carried out. First, the tissue
sample was compressed in a quasi-static way and next,
a simulation was conducted to examine the predictions
on MVI behavior stated above. Simulation parameters
were selected to imitate the in-vitro experiment as close
as possible.

2.3. Experiment

The Ultrasonix SonixTouch Research scanner (Ul-
trasonix, British Columbia, Canada) equipped with
a linear array transducer probe L14-5/38 was used
simultaneously to compress the turkey breast tissue
sample and to acquire the RF data. The mean fre-
quency of the emitted two-cycle pulse was set to
6 MHz. Echoes were digitalized with 40 MHz sampling
frequency. The tissue sample was compressed up to
7 mm with steps of 1 mm at a time by means of a mi-
crometric table. The sample thickness was equal to
50 mm. Figure 3 shows the B-mode images of the tissue
sample acquired during the experiment.

The signal processing pipeline in the case of a sin-
gle image is shown in Fig. 4. A ROI was placed in
the middle of the image. The initial ROI size was
equal to 20× 5 mm that corresponds to 20 RF lines
with 1000 RF samples each. Within the ROI each RF
line was extracted and processed separately. First, the

a)

b)

Fig. 3. The tissue sample: a) before the compression, b) af-
ter compression, displacement of 7 mm.

Fig. 4. The signal processing pipeline. First, the power spec-
trum of a single RF signal line is calculated with the Fourier
transform. Next, the EMD is used to extract the first IMF

set and the MVI is calculated.

autocorrelation was calculated. Second, the Fourier
Transform was applied to calculate the power spec-
trum and the EMD was used to extract the first IMF
set. In both cases the MVI was determined. This pro-
cedure was repeated for each RF signal line. Results
were averaged and the standard deviation was calcu-
lated.
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2.4. Simulation

The aim of the simulation was to model tissue com-
pression in the similar way as in the in-vitro experi-
ment. To accomplish this, we used the approach de-
scribed in the Method concept subsection. However,
now a single line was generated based on 60 scatter-
ers spread along the line to avoid blank spaces in the
RF signal. To imitate the compression inside the ROI,
20 RF lines were simulated and each line was shortened
up to 2.8 mm with a step of 0.4 mm. Mean values and
standard deviations of MVIs were calculated.

3. Results

3.1. Simulation

The autocorrelation function (from Fig. 2) modified
due to the shortening of the scanning line by 2.8 mm
after compression is shown in Fig. 5. Figure 6a shows
the normalized MVI as a function of applied compres-
sion. MVI values were normalized in respect to MVI
calculated for uncompressed data. Linear regression
was used to model the MVI-compression relation. We
obtained high value of the coefficient of determination
(R2 > 0.99) indicating strong linear dependence.

3.2. Experiment

MVIs obtained in the in-vitro experiment are de-
picted in Fig. 6b. The R2 parameter calculated for the
method utilizing first IMF set was equal 0.95.

4. Discussion

Due to applied compression the scatterers are more
densely distributed within the investigated tissue sam-
ple. This phenomenon is illustrated in Fig. 6a. As the
tissue sample is compressed, the power spectrum be-
comes less variable and the normalized MVI decreases.
This result is in a good agreement with the numer-
ical simulation shown in Fig. 6b. Comparing Fig. 6a

a)

b)

Fig. 5. Impact of compression on the autocorrelation function decompositions (a) from Fig. 2a and on the EMD power
spectrum decomposition (b) from Fig. 2b. Compression modifies the frequency content of the signal.

and 6b, however, the MVI obtained in the experi-
ment should have a slightly different rate. The ap-
plied compression in the simulation (one axis dilata-
tion) had a slightly different character than the one
in the in-vitro experiment. In the case of the simula-
tion, the compression was applied strictly vertically,

a)

b)

Fig. 6. MVI for the first IMF set in the case of the: a) nu-
merical experiment, and b) the in-vitro experiment. Com-

pression results in decrease of the MVI.
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but in the tissue sample also a lateral shift could ap-
pear. For both these deformation types, however, the
distances between the scatterers should be modified.

Presumably, the SPD can be used for tissue de-
formation monitoring. The MVI estimation may be
a more practical method of strain assessment, for ex-
ample in the case of heart wall (Dandel et al., 2009).
Classical strain estimation relies on speckle tracking
and is prone to tissue or probe motion. These two
factors may result in strain mis-estimation and sev-
eral methods were proposed to overcome this issue
(Curiale et al., 2017). Supposedly, our method may
be more robust than the classical strain estimation
techniques because the SPD is related to scatterers’
spatial distribution that is generally phase-insensitive.
The RF signal may be unexpectedly modified, for
example due to probe motion, but the character of
the power spectrum will remain unchanged as long
as the same part of the tissue sample is being im-
aged.

There are several issues related to the proposed ap-
proach. First of all, the scatterer point model neglects
several physical factors like the medium attenuation,
RF signal synthesis method or transducer characteris-
tics. It would be interesting to examine different beam-
forming techniques to select the one that provides the
most reliable and spatially consistent assessment. As
reported in studies on the Nakagami imaging, the esti-
mation of the Nakagami parameter is less reliable out-
side the focal zone (Yu et al., 2015) or may be affected
by tissue attenuation (Byra et al., 2015). Probably
the same dependence is expected of the SPD since the
scatterer point model used to derive our method as-
sumes that the incident pulse characteristic is spatially
invariant. Moreover, the assessment of oscillations is
related to the sampling frequency and the number of
samples which were used to calculate the power spec-
trum. These values should be high enough to provide
good resolution in the Fourier domain.

Another issue is the uniqueness of the proposed ap-
proach. We used the EMD to extract power spectrum
oscillations. However, there are other methods that
could be applied for this task. For example, the use of
variational mode decomposition (Dragomiretskiy,
Zosso, 2014) would probably result in a different
power spectrum decomposition. This issue, however,
is beyond the scope of this paper and demand further
studies. The EMD applied in our study is robust and
extracts significant oscillations directly.

In this work we used the mean mode frequency to
assess power spectrum oscillations. Another possibil-
ity would be to calculate higher moments and to pro-
vide a more statistical description of modes frequen-
cies. Tsui et al. (2017) proposed to use the entropy
to assess statistical properties of backscattered echo
amplitudes. Although the context was different, in our
case the entropy can be applied to determine the level

of randomness in scatterers spatial distribution instead
of using the MVI.

As to future applications, we consider our method
as a general QUS technique which can be applied to
various problems related to tissue characterization. For
example, it can be used for temperature monitoring
(Ghoshal et al., 2016; Byra et al., 2017). As the tem-
perature is increased in the tissue, for example by high
intensity ultrasound technique, the speed of sound is
modified (Simon et al., 1998). This phenomenon re-
sults in a change of scatterers’ axial distribution (ac-
cording to the formula t = 2d/c) which supposedly can
be assessed with the proposed approach.

5. Conclusions

In this paper we described a new approach to com-
pression assessment. The STD is based on extraction
of RF signal power spectrum oscillations which con-
tain the information on scatterers’ spatial distribution
within investigated tissue. The method was examined
numerically and validated by means of an in-vitro ex-
periment using tissue sample before and after compres-
sion. We have shown that the compression influences
power spectrum oscillations and that it can be effec-
tively monitored with our method.

The STD can be perceived as a QUS technique. In
the future we would like to compare various methods of
oscillations extraction and to investigate the impact of
beamforming technique on estimated quantities. More-
over, we plan to apply our method to issues which have
been already addressed by other QUS techniques.
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