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One of the most important issues that power companies face when trying to reduce time and cost
maintenance is condition monitoring. In electricity market worldwide, a significant amount of electrical
energy is produced by synchronous machines. One type of these machines is brushless synchronous gener-
ators in which the rectifier bridge is mounted on rotating shafts. Since bridge terminals are not accessible
in this type of generators, it is difficult to detect the possible faults on the rectifier bridge. Therefore, in
this paper, a method is proposed to facilitate the rectifier fault detection. The proposed method is then
evaluated by applying two conventional kinds of faults on rectifier bridges including one diode open-circuit
and two diode open-circuit (one phase open-circuit of the armature winding in the auxiliary generator in
experimental set). To extract suitable features for fault detection, the wavelet transform has been used on
recorded audio signals. For classifying faulty and healthy states, K-Nearest Neighbours (KNN) supervised
classification method was used. The results show a good accuracy of the proposed method.

Keywords: acoustic emission; wavelet transform; K-Nearest Neighbours; fault detection; brushless gen-
erator.

1. Introduction

The electricity grid is the largest human-made net-
work in which synchronous generator is one of the most
important equipment pieces of power plants that is re-
sponsible for converting mechanical energy to electrical
one. The basis of electricity generation is the electro-
magnetic induction. Online fault detection is impor-
tant since the development of defect and increasing the
cost and repair time is prevented. The importance of
this issue has increased even more due to the privatisa-
tion of the power industry and the presence of power
plants in the electricity market. Therefore, condition
monitoring and accurate fault detection in the mini-
mum time are considerably significant. One type of
the synchronous generator is the brushless synchronous
generator in which a rectifier bridge is used to provide
a direct current for producing a magnetic field. Since
the rectifier is located on the shaft of the generator,
it is not directly accessible. Therefore, to detect pos-
sible occurring faults on the rectifier, a fault detection

method must be considered in which the fault can be
detected without any electrical contact with the recti-
fier.

Some of the used methods for detecting the
faults are vibration analysis (Hu et al., 2017; Singh,
Parey, 2017; Wang et al., 2017; Narendiranath
Babu T. et al., 2018; Praveenkumar et al., 2018;
Zhang et al., 2018), current analysis (Shah, Bhalja,
2016; Rezazadeh Mehrjou et al., 2017; Haroun
et al., 2018), and sound wave analysis (Chacon et
al., 2015; Glowacz, 2015; 2016; 2018; Glowacz,
Glowacz, 2017a; 2017b; Glowacz et al., 2018;
Vaimann et al., 2018). Due to the fact that the fault
detection method based on the audio signal reveals
faults faster than other common methods (Chacon
et al., 2015), this technique is used for fault detec-
tion. Therefore, fault detection by acoustic signals has
been investigated for many applications. In (Chacon
et al., 2015) bearing defects detection of rotary ma-
chines using the acoustic signal in different signal-to-
noise ratio conditions has been investigated based on
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wavelet packet transform. In (Glowacz, 2015), us-
ing Fast Fourier Transformation, Method of Selection
of Amplitudes of Frequencies (MSAF-5), and Linear
Support Vector Machine classifier, the recognition of
acoustic signals of a loaded synchronous motor is in-
vestigated for different states including healthy loaded
synchronous motor, loaded synchronous motor with
shorted stator coil, loaded synchronous motor with
shorted stator coil and broken coil, loaded synchronous
motor with shorted stator coil and two broken coils. In
(Glowacz, 2016), a feature extraction method, short-
ened method of frequencies selection-25-Expanded, is
utilised for fault detection of loaded synchronous mo-
tor based on acoustic signals. Sound signal analysis is
also utilised for short-circuit fault analysis in the main
winding and auxiliary coil of single-phase induction
motor using KNN classifier (Glowacz, Glowacz,
2017a). Using a feature extraction method called the
shortened method of frequencies selection for acoustic
signals of a DC motor, a fault detection approach is
proposed in (Glowacz, Glowacz, 2017b). Five states
of the commutator motor are considered for fault de-
tection of the motor in (Glowacz, 2018) where some
classification methods, such as nearest mean, nearest
neighbour, back propagation neural network, and self-
organising map are used for acoustic analysis. In ad-
dition, three states of an induction motor including
healthy state, faulty bearing, and faulty bearing and
shortened coils of auxiliary winding are measured and
analysed for fault detection of the motor using the
nearest neighbour, nearest mean, and Gaussian mix-
ture models as classifiers in (Glowacz et al., 2018).
A fault detection approach is proposed for induction
machine using audible noise recorded by a hand-held
smartphone in (Vaimann et al., 2018), and differ-
ent faults are investigated, then, the results are com-
pared with the results of mechanical vibrations mea-
surements.

However, according to our assessment of the liter-
ature, no research has been done to detect the fault
of rotating diode rectifier in the brushless synchronous
generator using the analysis of sound signals. In this
paper, due to impossibility of direct access to the rec-
tifier bridge in the brushless synchronous generator,
a fault detection method is proposed based on the
recorded acoustic signals of the generator in which
there is no necessity of direct access to the rectifier. In
addition, multiple conditions such as different mother
wavelet and decomposition level and different distance
functions are compared to provide the enhanced fault
detection. The proposed method is tested on a brush-
less synchronous generator in the laboratory under no-
load and full-load conditions. The proposed method is
based on a signal processing method and could be ap-
plied to other signals like vibration, stray flux, voltage,
and current. However, due to the mentioned advantage
of acoustic signals for fault detection, it is considered

for fault detection here. The proposed method is de-
vised for a diode open-circuit and a phase open-circuit
fault detection in the brushless synchronous generator
but it is not limited to these faults and can be used for
detection of other electrical faults such as stator wind-
ing internal faults, short circuit fault, and bar breaking
fault in the rotor. Beside electrical faults, it could be
also utilised for a mechanical fault like bearing or ec-
centricity faults.

This article is structured as follows. In the next
section general information about synchronous gen-
erator is provided and the structure of a brushless
synchronous generator is presented. Then, the wavelet
transform is studied in which the relative energy of
a decomposed signal by wavelet is formulated. After
that, the KNN method is discussed and different dis-
tance functions and distance weights for the method
are introduced. In the test rig section, to evaluate the
proposed classification method for the rectifier bridge
of brushless synchronous generator fault detection, the
experimental results are used and classified by differ-
ent states which are compared for accuracy. The article
ends with the conclusion about the presented work.

2. Brushless synchronous generator

The conversion of mechanical energy into electri-
cal energy in power plants is carried out by genera-
tors. Most generators used in power plants are syn-
chronous. Synchronous generators are dual port elec-
trical machine and to produce the voltage and current
at the output of the generator, it is necessary to pro-
vide the voltage and direct current to the winding of
their field. There are several ways to reach this, such
as the use of auxiliary DC generator, the use of auxil-
iary synchronous generator, the use of power electronic
converters, each of which has some advantages and dis-
advantages whose discussion is beyond the scope of this
research.

Brushless synchronous generators have been used
to increase reliability and reduce the need for mainte-
nance and repair in many of the power plants or sen-
sitive applications, such as submarines or aircrafts. As
in the Fig. 1 it can be seen that in this case, the main

Fig. 1. Block diagram of a brushless synchronous generator.



M. Rahnama, A. Vahedi – Application of Acoustic Signals for Rectifier Fault Detection. . . 269

Fig. 2. Electrical rotating components of a brushless synchronous generator.

generator field power supply is provided by another
synchronous generator and a rectifier set. Due to the
fact that in the synchronous generator, the field wind-
ing is located opposite to the main generator on the
stator and induced on the rotor coil, this type of syn-
chronous generator is named inverse synchronous gen-
erator. The removal of brushes and rings, which are
used in other systems to transfer the required power
to the main generator field coil, is the advantage of this
type of system.

According to Fig. 2, in auxiliary synchronous gen-
erator, induced voltage arises on rotor winding and this
alternating voltage is rectified by rectifiers mounted on
the rotating shaft which is the only source of the main
generator field winding. Therefore, monitoring the sta-
tus of the rectifier is very important.

3. Wavelet transform

Wavelet transform decomposes a signal into dif-
ferent levels of frequency resolution which are called
wavelets (Kocaman, Özdemir, 2009). The wavelet
family ψa,b is obtained from a unique mother (proto-
type) wavelet ψ(t) which is dilated by factor a and
transformed by factor b as

ψa,b =
1

√
a
ψ (

t − b

a
), (1)

where a and b take values in R, and t is time (Shen-
sa, 1992). The wavelet transform is often discretised
in a and b by special values of discrete sets of factors,
aj = 2j and bj,k = 2jk. Actually, j is a scale factor and
k is a shift factor. Therefore, the family becomes

ψj,k = 2−j/2ψ (2−jt − k), (2)

where ψj,k is for an orthonormal basis of square inte-
grable space L2(R) (Akin, 2002; Guo et al., 2009).
Therefore, the wavelet discrete transform of f(t) is as

W (j, k) = 2−j/2 ∫ ψ (2−jt − k) f(t)dt. (3)

In the above equation j stands for time and k is the
frequency. The Eq. (3) is discretised to be applicable
for discrete signals as

w(j, k) = 2−j/2∑
i

ψ (2−ji − k) f(i). (4)

Figure 3 is an illustration of level-4 decomposition
of the discrete signal F . A1, ...,A4 represent an approx-
imation of F , and D1, ...,D4 are the representatives of
the local details. In order to make the wavelet useful
for signal classification, the concept of relative wavelet
energy can be applied which provides information at
different frequency bands. For a level-N decomposi-
tion, the energy at each decomposition is as Eq. (5)
(Guo et al., 2009). The energy of AN is EAN and is
defined as Eq. (6)

EDj = ∑
k

∣Dj[k]∣
2
, j = 1, ...,N, (5)

EAN = ∑
k

∣AN [k]∣
2
. (6)

Fig. 3. Level-4 decomposition of discrete signal F .

The total energy of the decomposed signal is

Etot = EAN +
N

∑
j=1

EDj . (7)
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Therefore, the relative wavelet energy of each de-
composition is defined as

ρ(Dj orAN ) =
E(Dj orAN )

Etot
× 100, (8)

where

ρAN +
N

∑
j=1

ρDj = 100.

4. K-Nearest Neighbours

KNN is a classification method in which an ob-
ject is classified by its distance to the k neighbours.
Indeed, for a given set of n pairs (x1, y1), ..., (xn, yn)
in which xi, the input vector, and yi, the class label
of xi, take values in the sets Rd and {1,2, ...,M}, re-
spectively, for each xi, k target neighbours are spec-
ified with the same labels that are desired for being
nearest to xi (Cover, Hart, 1967; Short, Fuku-
naga, 1981). When k = 1, it means that xi will be
assigned to a nearest class. Therefore, in KNN method
two parameters play significant role in classification
accuracy, and these are k and the distance calculation
function. According to (Cover, Hart, 1967), among
all KNN rules, the single nearest rule (k = 1) is ap-
propriate. On the other hand, there are several dis-
tance function methods including Minkowski metric
(Eq. (9)), Euclidean distance (Eq. (10)), Standard-
ised Euclidean distance (Eq. (11)), Mahalanobis dis-
tance (Eq. (12)), City block metric (Eq. (13)), Cheby-
chev distance (Eq. (14)), Cosine distance (Eq. (15)),
Correlation distance (Eq. (16)), and some other func-
tions. The distance between the vector xt and xs for an
m-by-n input data matrix X by each distance metric
is defined as follows:

dst = p

¿
Á
ÁÀ

n

∑
j=1

∣xsj − xtj ∣, (9)

d2
st = (xs − xt)(xs − xt)T, (10)

d2
st = (xs − xt)V

−1
(xs − xt)T, (11)

d2
st = (xs − xt)C

−1
(xs − xt)T, (12)

dst =
n

∑
j=1

∣xsj − xtj ∣, (13)

dst = max{∣xsj − xtj ∣} , (14)

dst =
⎛
⎜
⎝

1 −
xsxT

t
√

(xsxT
s ) (xtx

T
t )

⎞
⎟
⎠
, (15)

dst = 1 − z∗, (16)

where

z∗ =
(xs − xs) (xt − xt)

√

[(xs − xs) (xs − xs)
T
] [(xt − xt) (xt − xt)

T
]

and in Eq. (11) V is the n-by-n diagonal matrix in
which each diagonal element is square of the vector
containing the inverse weights; in Eq. (12) C is the co-
variance matrix; and in Eq. (16) xs and xt is obtained
by Eqs (17) and (18), respectively.

xs =
1

n
∑
j

xsj , (17)

xt =
1

n
∑
j

xtj . (18)

According to Eqs (9), (11), (13), and (14), for the
special cases of p in Minkowski metric some other met-
rics are derived including city block metric for p = 1,
Euclidean distance for p = 2, and Chebychev distance
for p =∞.

In order to evaluate the classification, v-fold cross-
validation can be used. In v-fold cross-validation, the
original data are partitioned into v equal size subsets
randomly. Of v subsets, v-1 subsets are used for train-
ing and one subset is used for evaluation. The classifier
error is then obtained by fraction of misclassified ob-
servations. Besides, the classifier accuracy is defined
as fraction of accurately classified observations to all
observations.

5. Investigated fault classes

Since there is no mechanical wear between rotating
components for power transmission to generator field
windings in brushless synchronous generators, there
is less need for maintenance than when using other
methods which require brushes and rings. Due to the
fact that the rectifiers are rotating with other electrical
components and there is no direct access to them, the
diode is usually used for rectifying.

Some of the causes that can lead to diode faults in-
clude rise in temperature, load increase, and transient
voltages. One of the most likely faults occurring during
a run is the diode open-circuit. As shown in Fig. 4a,
one of the rectifier diode is open-circuited. Given that
the supply of rectifier bridge is symmetrical, the effect
of the open-circuiting another diode will be similar.
This fault is one of the evaluated fault states.

In the fault case of one diode open-circuit, if an-
other open-circuit fault occurs on the diode in the same
leg of rectifier, a new category of fault is defined. As
seen in Fig. 4b, the occurrence of this fault is similar
to the one phase open-circuiting of the rectifier bridge
feeder.
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a)

b)

Fig. 4. Investigated open-circuit faults: a) one diode open-circuit and b) two diode open-circuit, of rotary rectifier along
with other electrical rotating components.

6. Proposed fault detection method

In order to classify the normal and faulty conditions
of the field rectifier bridge of a generator, the sound sig-
nal of the machine is recorded in different case study
states for learning the classifier. The wavelet trans-
form of the recorded signal is derived using wavelet
functions Coif-4 (Coiflets), Sym-6 (Symlets), and db-6
(Daubechies) and for different decomposition levels.
Then, the relative energy of the transformed signal is
calculated and utilising KNN classification method, in
this step for finding the best mother wavelet and de-
composition level, distance function is considered Eu-
clidean distance and the effect of distance of neigh-
bors are the same (equal). The classification accuracy
is calculated for each wavelet function and decomposi-
tion level. The mother wavelet and decomposition level
by which the maximum accuracy is achieved is cho-
sen for the next steps. Next, using distance functions,
Minkowski metric, Euclidean distance, Standardised
Euclidean distance, Mahalanobis distance, City block
metric, Chebychev distance, Cosine distance, and Cor-
relation distance and distance weights, Equal, Inverse,
and Squared inverse the classification accuracy is cal-
culated. The maximum classification accuracy is con-
sidered by the distance function and weight as the best

classifier state for the rectifier bridge fault detection
using acoustic signals.

Fig. 5. Flowchart of the rectifier faults classification.
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7. Test rig

To evaluate the proposed fault detection method,
a three phase 380 V, 11 kVA, 4 poles brushless syn-
chronous generator has been used. It is necessary to
create faulty conditions that would have access to ro-
tating diodes. As is shown in Fig. 6, some modifications
are performed. First of all, the shaft of the generator is
expanded and five rings are installed on it: three rings
for bringing out the output of the auxiliary genera-
tor and two rings for entering rectified voltage to the
field winding of the main generator. Then modifica-
tions have been made in the circuit of the three-phase
diode rectifier and six switches are added that can eas-
ily open circuit each diode.

a)

b)

Fig. 6. Modification on brushless synchronous generator to
simulate faulty conditions: a) brushes and rings, b) rectifier

bridge with switches.

An experimental set has been installed according
to Figs 7 and 8. The set comprises a modified brush-
less synchronous generator, the three phase induction
motor for driving the generator, the switch set for ap-
plying faults, the DC supply for feeding field winding of
auxiliary generator, the microphone set for recording
the sound, the three-phase electric load and the elec-
trical drive for rotating motor and generator at syn-
chronous speed.

Electrical and mechanical connections and measur-
ing system diagram for elements of the experimental

Fig. 7. Connection diagram for electrical and mechanical
elements and measuring system.

Fig. 8. Laboratory set.

set are shown in Fig. 7. The discussed faults on the
diode rectifier bridge are one diode open-circuit fault
and one phase loss could be reached by turning off any
of the switches from one to six for diode open-circuit
fault and turning off the switches one and two, or three
and four, or five and six leads to one phase loss.

Figure 9 illustrates the sound signals for six states
including two normal conditions and four faulty ones.
The recorded sound is then divided into ten equal time
one second interval samples for each of the six states.
The sound recording sample rate is 48000 Hz and the
sixty discrete samples are transformed by the mother
wavelet. The wavelet function is chosen to be Coif-4
(Coiflets), Sym-6 (Symlets), and db-6 (Daubechies),
and decomposition level is chosen to be up to level-5.
Then, the relative wavelet energy of each fault state of
the rectifier by the mentioned cases is calculated. The
results of the mentioned procedure implemented for
relative energy of all states for 4 level decomposition
using sym mother wavelet are presented in Tables 1–6.
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a) b)

c) d)

e) f)

Fig. 9. Sound signals for six states: a) normal, no-load; b) normal, full-load; c) one diode open-circuit, no-load; d) one
diode open-circuit, full-load; e) two diode open-circuit, no-load; f) two diode open-circuit, full-load.

Table 1. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples

of normal and no-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

88.989 0.066 1.184 2.563 7.198

88.417 0.063 1.284 2.949 7.287

88.187 0.069 1.430 3.050 7.264

89.609 0.062 1.227 2.767 6.335

88.585 0.067 1.336 2.940 7.072

89.240 0.064 1.211 2.789 6.697

89.169 0.064 1.350 2.875 6.543

88.922 0.063 1.297 2.903 6.815

88.544 0.061 1.286 2.904 7.205

88.727 0.060 1.300 2.855 7.058

Table 2. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples

of normal and full-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

70.674 0.175 8.872 14.562 5.718

68.784 0.160 9.181 15.118 6.756

70.758 0.163 8.895 14.232 5.953

70.467 0.174 9.372 14.427 5.560

71.159 0.173 8.281 13.794 6.593

71.819 0.150 8.364 13.529 6.138

69.755 0.167 9.329 14.720 6.029

71.707 0.168 8.680 13.162 6.283

69.833 0.151 9.037 14.299 6.681

71.338 0.153 8.450 14.235 5.824
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Table 3. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples

of one diode open-circuit and no-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

92.008 0.059 1.013 2.107 4.813

92.596 0.049 0.928 1.983 4.444

91.984 0.056 1.071 2.291 4.598

91.852 0.055 1.076 2.180 4.837

92.239 0.047 0.967 2.067 4.680

92.116 0.051 0.958 2.026 4.848

92.129 0.051 0.929 2.087 4.804

92.423 0.049 0.875 1.967 4.686

92.672 0.051 0.912 1.996 4.370

92.305 0.052 0.943 1.959 4.741

Table 4. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples
of one diode open-circuit and full-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

78.298 0.143 7.664 9.154 4.741

78.510 0.143 7.400 9.277 4.670

76.082 0.141 8.689 10.043 5.044

77.756 0.138 7.885 9.220 5.002

78.862 0.127 7.551 8.830 4.629

78.115 0.132 7.289 9.801 4.664

75.937 0.146 8.454 10.571 4.892

78.079 0.123 7.193 9.808 4.797

77.800 0.130 7.761 9.678 4.630

75.070 0.140 8.481 10.759 5.550

Table 5. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples

of two diode open-circuit and no-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

90.091 0.073 1.124 2.576 6.136

89.793 0.077 1.194 2.815 6.122

89.841 0.067 1.138 2.722 6.232

89.645 0.070 1.232 2.945 6.107

89.543 0.074 1.253 2.893 6.236

89.749 0.066 1.161 2.889 6.135

89.577 0.063 1.126 2.817 6.418

90.198 0.066 1.176 2.773 5.786

89.933 0.070 1.238 3.019 5.740

89.503 0.073 1.263 2.924 6.236

The calculated relative energy of the wavelet is used
for classification by KNN technique (distance function

Table 6. The relative energy of level-4 wavelet
decomposition for ten 1-second sound samples
of two diode open-circuit and full-load state.

ρA4 ρD1 ρD2 ρD3 ρD4

72.504 0.145 9.082 12.196 6.073

71.494 0.146 9.204 12.908 6.249

72.121 0.148 9.014 11.843 6.875

71.313 0.140 9.316 12.813 6.418

72.422 0.135 8.828 12.238 6.377

72.681 0.153 9.136 11.801 6.229

72.726 0.160 8.898 11.685 6.531

72.267 0.176 8.950 12.247 6.360

70.498 0.195 9.154 13.047 7.106

71.326 0.156 9.175 12.873 6.470

of Euclidean distance and distance weight of equal). In
order to find the best mother wavelet and decomposi-
tion level, the classification accuracy with respect to
decomposition level is shown in Fig. 10 for the three
mentioned wavelet functions. According to the fig-
ures, for all three wavelet functions, level-4 decompo-
sition leads to better accuracy. In addition, by Sym-6
wavelet function the classification accuracy results in
about 97.1, which is the highest value among these
cases.

The other parameters which affect the classification
accuracy are distance function and distance weight. By
choosing Sym-6 level-4 decomposition of the wavelet
transformation, the distance function and distance
weight of KNN classification are changed and the re-
sults of classification accuracy are presented in Ta-
ble 7. According to the table, the best accuracy is
achieved by the distance weight of inverse and the dis-
tance function of Euclidean, Chebychev, Cosine, and
Minkowski.

Table 7. Classification accuracy for different dis-
tance function and distance weight of KNN.

Distance function

Distance weight

Equal Inverse Squared
inverse

Euclidean 97.15 98.57 97.14

Cityblock 97.15 97.14 95.71

Chebychev 97.15 98.57 95.71

Correlation 95.71 94.29 95.71

Cosine 95.71 98.57 97.14

Mahalanobis 95.71 95.71 94.29

Minkowski 97.14 98.57 97.14

Standardized Euclidean 88.57 91.42 90.00
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a)

b)

c)

Fig. 10. Classification accuracy with respect to decom-
position level by wavelet functions: a) Coif-4; b) Sym-6;

c) db-6.

8. Conclusion and future work

In this paper, fault detection and classification
method of the rotary rectifier of brushless synchronous
generators have been investigated. The considered
fault classes are one diode open-circuit and two diodes
open-circuited which lead to the opening of one arma-
ture phase of the auxiliary generator. Since there is no
need to destruct the structure of the machine in fault
diagnosis using the sound signal, this method has been
suggested for fault detection. Therefore, sound signals
are recorded for a healthy situation of the machine and
two modes of fault are recorded under no load and full-
load conditions of the main generator. Characteristic

extraction is performed using the wavelet transform
and the classification is carried out by KNN method.

To select the suitable mother wavelet and the de-
composition level of the main signal, a comparison was
made between the db-6, Coif-4, and Sym-6 wavelets.
The best performance is achieved by the level-4 de-
composition of the main signal by sym wavelet. In ad-
dition, in the KNN method different distance functions
and distance weights are compared for selecting the
best accuracy of classification. The Euclidean, Cheby-
chev, Cosine, Minkowski distance functions in Inverse
distance weight had the best accuracy performance.

For future work, short-circuit fault happening on
the rotating diode and discrimination between short
circuited and open circuited fault are suggested. For
implementing this idea, time, frequency, and time-
frequency domains need to be investigated. Due to
the importance of reducing the repair time in the big
brushless generator, finding the location of the faulty
diode should also be considered.
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