
ARCHIVES OF ACOUSTICS
35, 2, 191–202 (2010)

Active Noise Control Algorithm Based on a Neural Network
and Nonlinear Input-Output System Identification Model

Tomasz KRUKOWICZ
Central Institute for Labour Protection –
National Research Institute
Czerniakowska 16, 00-701 Warszawa, Poland
e-mail: tokru@ciop.pl

(received April 16, 2010; accepted Maj 18, 2010 )

The development of digital signal processors and the increase in their computing
capabilities bring opportunities to employ algorithms with multiple variable para-
meters in active noise control systems. Of particular interest are the algorithms
based on artificial neural networks. This paper presents an active noise control algo-
rithm based on a neural network and a nonlinear input-output system identification
model. The purpose of the algorithm is an active noise control system with a nonlin-
ear primary path. The algorithm uses the NARMAX system identification model.
The neural network employed in the proposed algorithm is a multilayer perceptron.
The error backpropagation rule with adaptive learning rate is employed to update
the weight of the neural network. The performance of the proposed algorithm has
been tested by numerical simulations. Results for narrow-band input signals and
nonlinear primary path are presented below.

Keywords: active noise control, neural networks, system identification, nonlinear
phenomena.

1. Introduction

Active noise control (ANC) has been a dynamically developing branch of
science for over 60 years. The popularity of ANC systems is mainly due to two
factors. Firstly, ANC systems have some advantages over passive noise reduction
techniques in the low-frequency range (below 500 Hz) in which efficient passive
noise reduction solutions (sound absorbers) usually take up a lot of space. The
second reason for ANC’s growing popularity is the development of digital control
technologies. Increasing computing capabilities of digital signal processors (DSP)
allow for the implementation of multivariable control algorithms in ANC systems.
Artificial neural networks (ANN) are a group of such techniques that have been
widely explored for pattern recognition purposes. In the system theory, pattern
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recognition is equivalent to the identification of static systems. The objective of
pattern recognition is to find a mapping Ψ between compact sets Ui ∈ <N and
elements yi of compact set Y ∈ <M (Ui is a pattern of class yi). Mapping Ψ
for the identification of a single-input–single-output (SISO) dynamical system
is between pairs of two real-valued functions of time: input u(t) and output
y(t) of a system, t ∈ [0,∞). Successful identification of a system occurs when
the difference between model response and system response does not exceed an
arbitrarily assumed accuracy (1) (Narendra, Parthasarathy, 1990; Nelles,
2000; Haykin, 1993):

|yΨ (t)− yP (t)| ≤ ε, t > t0. (1)

Since the purpose of an ANC system is to reduce acoustic pressure p(t) in
a specified point/area, arbitrarily assumed max

t

{
p2(t)

}
at t > t0 is identical

to accuracy ε. Therefore the ANC application can be treated as a dynamical
system identification problem. Further investigation shows that the system iden-
tification problem is defined as follows (Chen, Billings, 1989; Narendra,
Parthasarathy, 1990): for any u := u(t) ∈ U, y := y(t) ∈ Y , t ∈ [a, b], where
U , Y are real Banach spaces.

‖yΨ − yP ‖ = ‖Ψ(u)− P (u)‖ ≤ ε. (2)

The norm ‖•‖ is defined basing on the system output space and depends on
the chosen identification manner. Since modern ANC systems are mainly digital,
further investigation concerns sampled-data systems.

A major advantage of ANNs is the approximation capability of nonlinear mul-
tivariable functions (Cybenko, 1989) (e.g. ANNs are capable to solve the pat-
tern recognition problems). This fact was used to derive a group of ANN-based
methods for the control and identification of a wide class of nonlinear dynamical
systems (Elliott, 2001; Narendra, Parthasarathy, 1990; Nelles, 2000;
Haykin, 1994). Nonlinear phenomena are a feature of primary and secondary
paths of feedforward ANC systems. The presence of nonlinear phenomena in
any element of ANC systems, based on commonly used adaptive transversal fil-
ters (such as FXLMS), may significantly decrease efficiency and may even lead to
a loss of stability in the system. Investigations into the use of ANNs for ANC pur-
poses performed by several researchers brought useful methods capable of main-
taining some of the above-mentioned nonlinear phenomena (Snyder, Tanaka,
1995; Strauch, Mulgrew, 1999; Bouchard et al., 1999; Morzyski, Maka-
rewicz, 2003; Duch et al., 2000). The aim of this article is to derive an efficient
method for ANC systems with a nonlinear primary path. A known ANN-based
ANC method is the Filtered-X Backpropagation Neural Network (FXBPNN)
(Snyder, Tanaka, 1995; Zhou et al., 2005). The method is an extension of the
FXLMS algorithm (Hansen, Snyder, 1997; Engel, Nizioł, 1995) for systems
with nonlinearities and is attained by the replacement of the finite impulse re-
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sponse filter with a forward sigmoidal neural network. Compared to the FXLMS
algorithm, FXBPNN is distinguished by better performance when the primary
path establishes a weak nonlinearity (Elliott, 2001).

The ANC method proposed in this paper is a modification of FXBPNN.
In order to explain the difference between the proposed one and FXBPNN algo-
rithms, a temporary assumption is made that the influence of the secondary path
on the ANC system performance can be ignored. Since FXBPNN utilizes present
values of reference signals, it can be classified as a Nonlinear Finite Impulse Re-
sponse (NFIR)filter (Nelles, 2000). The proposed ANC algorithm is based on
the Nonlinear Autoregressive Moving Average with Exogenous Input (NARMAX)
system identification model (Chen, Billings, 1989; Nelles, 2000). The NAR-
MAX identification model in general utilizes present and past reference signals
and the past output signal:

y(n + 1) = Ψ (y(n−1), y(n−2), · · · , y(n−I), u(n), u(n−1), · · · ,

u(n−O+1)) , (3)

I and O denote a dimension of input and output vectors respectively, while n
is a discrete moment in time. Depending on the source of the output signal, the
NARMAX model is described as series-parallel when the source is the system
being identified, and parallel when the source is the identification model (Chen,
Billings, 1989; Narendra, Parthasarathy, 1990; Nelles, 2000). The dy-
namical system must satisfy several conditions: it should be casual, continuous,
bounded and time-invariant (Narendra, Parthasarathy, 1990). The utiliza-
tion of the forward neural network for a discrete series-parallel NARMAX model
(Elliott, 2001; Narendra, Parthasarathy, 1990; Nelles, 2000; Haykin,
1994) has been shown in Fig. 1.

Fig. 1. System identification based on the NARMAX model with a forward neural network.

The feedforward neural network is driven by an actual value of input signal
u(n) and two separate tapped delay lines. The first one contains a set of past
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values of the input signals, while the second one contains a set of past values
of the output signals of the system. The error signal e(n) is created by addition
of the system output and network output signals. The error signal is used to
update ANN weights, according to the specific learning rule. The proposed ANC
algorithm is named QNBPN as it involves the use of the NARMAX model, ar-
tificial neural networks (ANN) and a backpropagation (BP) learning algorithm.
‘Q’ stands for ‘quasi’, as the algorithm is neither parallel nor series-parallel.

2. Structure of the neural network

The neural network in the QNBPN algorithm is a three-layer, pure feed-
forward, sigmoidal perceptron (Fig. 2). Since there is no feedback connection
inside the network, it can be assumed to be stable. Furthermore, a static error
backpropagation learning algorithm can be applied to update network weights.
Feedback connection in a neural network implies the application of a dynamic
error backpropagation algorithm that characterizes a higher computational load.

Fig. 2. Structure of the neural network.

The first layer gathers input signals. The second (nonlinear) and third (lin-
ear) layers perform nonlinear approximations (Haykin, 1994; Engel, Nizioł,
1995). Before explaining the ANC algorithm, forward signal propagation through
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the network will be presented. First, using an input vector of L elements
u = [u1, u2, ..., uL], weights matrix W of the hidden layer with J nonlinear
neurons, the output vector of hidden layer is calculated:

yH = [y1, y2, ..., yJ ] = f(vH) = f
[
(uWT)

]
, (4)

f is the bipolar sigmoidal output function of nonlinear neurons, v denotes dot
product of uWT

f(x) =
1− e−x

1 + e−x
= tanh(x), (5)

the weights matrix of the hidden layer has the form shown below:

W =
[
wT

1 · · · wT
J

]
=




w11 · · · wJ1
...

. . .
...

w1L · · · wJL


 . (6)

Next, using an output vector of the hidden layer and a weight vector of the
output layer w = [w1, w2, . . . wJ ], the output of the network is calculated:

y = av = a
(
yHw

T)
, (7)

a is a specified constant, v is a dot product of yHwT.

3. ANC algorithm

The utilization of the NARMAX model for ANC purposes is not directly
available. There are two major difficulties. Firstly, there is a mutual compensation
of both output signals. Secondly, a secondary path is present. This section shows
a detailed solution for the above-mentioned problems, as well as a description
of the proposed ANC algorithm. The proposed structure of ANC solution is
presented in Fig. 3.

The reference signal x(n) drives a nonlinear primary path P , estimated sec-
ondary path with impulse response parameters

_

S = [s1, s2, ..., sN ], and the tapped
delay line which is connected to the input of the neural network. For simplifica-
tion of the derivation, it has been assumed that the secondary path is linear and
can be estimated using a finite impulse response filter and an LMS algorithm
(Engel, Nizioł, 1995). The nonlinear path transforms the reference signal into
the desired signal d(n) (desired corresponds to plant the output signal yp in
Eq. (2)):

d(n) = P [x(n), x(n−1), ..., x(n−I+1), yp (n−1) ,

yp (n−1) , ..., yp (n−O)] , (8)

I, O depend on the properties of the primary path. Since the desired signal is
reduced by the filtered output of the neural network y′(n), the error signal is:

e(n) = d(n)− y′(n). (9)
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Fig. 3. Structure of the proposed algorithm.

Equation (9) is used to estimate the desired signal:
_

d(n) = e(n) + ŷ′ (10)

and y(n) = [y(n), y(n−1), ..., y(n−S+1)]. The network input vector is composed
according to (3):

u(n) =
[
x (n) ,

_

d(n−1)
]
,

x(n) =
[
x(n), x(n−1), ..., x

(
n− I

2
+ α + 1

)]
,

d̂(n) =
[

_

d(n), d̂(n−1), ..., d̂
(

n− I

2
+ β + 1

)]
,

(11)

|α|, |β| ∈ {0, 1, 2..., A}, α = −β = const. If I is odd, A =
I + 1

2
, otherwise A =

I

2
.

The weights update procedure is described below. The procedure is based on an
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error backpropagation algorithm. The objective of the procedure is to minimize
the instantaneous square error:

E(n) =
1
2
e2 (n) =

1
2

(
d(n)− y′m(n)

)2
. (12)

This task is achieved by finding a minimum in a space of network weights, e.g.:

∂E(n)
∂W

= 0, (13)

where W is the total weight of the network. In order to update the weights
belonging to a hidden layer, the direction of change of the output layer needs to
be known first. Applying the chain rule to the left-hand side of (13) in accordance
to Fig. 3:

∂E(n)
∂w(n)

=
∂E(n)
∂e(n)

∂e(n)
∂y′(n)

∂y′(n)
∂y(n)

∂y(n)
∂v(n)

∂v(n)
∂w(n)

= ∇ ∂v(n)
∂w(n)

. (14)

Using (12), firstly the factor on the right-hand side of (13) is equal to e(n).
Because of (10), the second factor of (14) is

_

S. The fourth factor is equal to a
because of (7) and according to (4), the last factor is equal to yH(n). ∇ is defined
as the local gradient of the output layer.

∂E(n)
∂w(n)

= ∇ (n) yH(n) = a
_

SeT (n)yH(n). (15)

The error vector has the form of: e(n) = [e(n), e(n−1), ..., e(n−N+1)]. Now
the output layer weights update formula can be written:

w(n + 1) = w(n) + η(n)a
_

SeT (n)yH (n) , (16)

η(n) is the learning rate of the output layer. The gradient of the hidden layer is
obtained by applying the chain rule to the left-hand side of (15), except w(n)
which is replaced by W(n),

∇H = diag
[
f ′H(vH(n))

]
[w(n)∇(n)]T

= diag
[
f ′H(vH(n))

] [
wL(n)a

_

SeT (n)
]T

. (17)

The weights update formula for the hidden layer can be written as:

W(n+1) = W (n) + ηH(n)∇Hu (n) . (18)

ηH(n) is the learning rate of the output layer. Using (11) in (18) we obtain:

W(n+1) = W (n) + η(n)diag
[
f i

H(vH(n))
]
wae (n)

_

S[x (n) ,
_

d (n−1)]. (19)
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According to Eq. (10), Eq. (19) can be rewritten as:

W(n+1) = W (n) + ηH(n)diag
[
f i

H(vH(n))
]

·wae (n)
_

S[x (n) , (e(n) +
_

Syn
T(n))]. (20)

The learning rate of the hidden and output layers is changing during the
weights update process. The use of an adaptive learning rate improves the con-
vergence of the algorithm (Duch et al., 2000). Learning rate is an exponential
function of the error signal:

η(n) = ηmax − (ηmax − ηmin) exp [−γE (n)] , (21)

ηmax and ηmin are maximum and minimum values of the learning rate respectively.
These values depend on the length of u and the number of neurons in a hidden
layer (Osowski, 2000).

4. Numerical simulations

The QNBPN algorithm is compared with FXBPNN in this section. The struc-
ture of the neural network was as described in Sec. 2. Values describing the di-
mension of the input vector and the number of neurons in a hidden layer were
I = 64 and J = 64 respectively. Sampling frequency was set to 16 kHz.

The secondary path was modelled on a 25th order band-pass FIR filter with
centre frequency of 600 Hz (Fig. 4). The nonlinear primary path was created using
the Wiener nonlinear model. The linear part of the Wiener model was modelled
on a 25th order low-pass FIR filter with cutoff frequency of 800 Hz (Fig. 5). The
nonlinear part of the Wiener model was g(x) = 2.5x3. The reference signal was
a sine wave of frequency f = 50 Hz. The error signal of the QNBPN algorithm
is shown in Fig. 6.

Fig. 4. Frequency response of secondary path: phase – left, amplitude – right.
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Fig. 5. Frequency response of linear part of primary path: phase – left, amplitude - right.

Fig. 6. Error signal of the QNBPN algorithm.

The power spectrum of the error signal is shown in Fig. 7. The FXBPNN
algorithm was simulated using the same network as that used for the QNBPN
algorithm. The network was driven by the reference signal only.

Fig. 7. Error power spectrum of the QNBPN ANC algorithm.
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The error signal and its power spectrum in FXBPNN are shown in Fig. 8 and
Fig. 9 respectively.

Fig. 8. Error signal of the FXBPNN algorithm.

Fig. 9. Error power spectrum of the FXBPNN algorithm.

Both algorithms converged. However, the maximum value of the mean square
error of the QNBPN algorithm was much smaller than the mean square error
of the FXBPNN algorithm. Power spectrums show that the proposed algorithm
was able to reduce harmonic frequency in contrast to FXBPNN.

5. Conclusion

This paper has described an active noise control algorithm based on feedfor-
ward neural networks and the NARMAX system identification model. The pro-
posed algorithm (QNBPN) is able to converge when the primary path exhibits
nonlinear behaviour. The efficiency of QNBPN is greater than that of FXPBNN.
Since the size and the structure of the neural networks for the proposed and
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FXBPNN algorithms are identical, the computational load of the proposed algo-
rithm is not much higher than that of FXBPNN. A physical nonlinear primary
path was not specified, therefore further laboratory experiments need to be car-
ried out.

Acknowledgments

This publication has been prepared on the basis of the results of a research
task carried out within the scope of the first stage of the National Programme
“Improvement of safety and working conditions”, partly supported in 2008–2010
– within the scope of state services – by the Ministry of Labour and Social Policy,
and – within the scope of research and development – by the Ministry of Science
and Higher Education. The Central Institute for Labour Protection – National
Research Institute is the Programme’s main coordinator.

References

1. Bouchard M., Paillard B., Dinh C. (1999), Improved training of neural networks for
the nonlinear active control of sound and vibration, IEEE Trans. on Neural Networks, 10,
2, 391–401.

2. Chen S., Billings S. (1989), Representation of nonlinear systems: The NARMAX model,
International Journal of Control, 49, 3, 1013–1032.

3. Cybenko G.V. (1989), Approximation by Superpositions of a Sigmoidal Function, Math-
ematics of Control, Signals and Systems, 2, 4, 303–314.

4. Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R. (2000), [in Polish: Sieci neu-
ronowe], Exit, Warszawa.

5. Elliott S. (2001), Signal Processing for Active Control, Academic Press, London.

6. Engel Z., Nizioł J. (1995), [in Polish: Perspektywy rozwoju aktywnych metod redukcji
hałasu i wibracji ], Materiały II Szkoły Metody Aktywne Redukcji Drgań i Hałasu, pp.
11–24.

7. Hansen C.J., Snyder S.D. (1997), Active Control of Noise and Vibration, E&FN Spoon.

8. Haykin S. (1994), Neural Networks, a Comprehensive Foundation, Macmillan, New York.

9. Morzyski L., Makarewicz G. (2003), Application of neural networks in active noise
reduction systems, International Journal of Occupational Safety and Ergonomics, 9, 3,
257–270.

10. Narendra K., Parthasarathy K. (1990), Identification and control of dynamical sys-
tems using neural networks, IEEE Trans. on Neural Networks, 1, 1, 4–27.

11. Nelles O. (2000), Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models, Springer.

12. Osowski S. (2000), [in Polish: Sieci neuronowe do przetwarzania informacji ], Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa.



202 T. Krukowicz

13. Snyder S., Tanaka N. (1995), Active control of vibration using a neural network, IEEE
Trans. on Neural Networks, 6, 1, 819–828.

14. Strauch P., Mulgrew B. (1999), Active control of nonlinear noise processes in a linear
duct, IEEE Trans. on Signal Processing, 46, 2404–2412.

15. Zhou Y. et al. (2005), Analysis and DSP implementation of an ANC system using a filtered
error neural network, Journal of Sound and Vibration, 285, 1–25.




