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Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea
hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events
to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were
extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring
sounds related to respiratory disorder events were classified using a support vector machine (SVM)
method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory
disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm
optimization methods. The predicted AHI from the present study has a high correlation with the AHI from
polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed
method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for
diagnosis of OSAHS.
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1. Introduction

Obstructive sleep apnea hypopnea syndrome (OSAHS)
is considered to be one of the most prevalent sleep-
related breathing disorders, with an enormous effect
on public health. It can be characterized by repeated
episodes of complete or partial cessation of breathing
while sleeping. It is also recognized as an indepen-
dent risk factor for several clinical consequences, in-
cluding daytime sleepiness (Rakel, 2009), cerebrovas-
cular disease (Martínez-García et al., 2012), sys-
temic hypertension (Nieto et al., 2000), atheroscle-
rosis (Namtvedt et al., 2013), autoimmune diseases
(Kang, Lin, 2012), cognitive abnormalities (Adams
et al., 2001), stroke (Loke et al., 2012), postopera-
tive complications (Marin et al., 2012), mental health
problems (Hrubos-Strøm et al., 2012) and impaired
quality of life (Flemons, Tsai, 1997). Polysomnogra-

phy (PSG) is currently the gold standard for OSAHS
diagnosis (Pack, Gurubhagavatula, 1999). Unfor-
tunately, PSG requires an overnight hospital stay in
a specially equipped sleep suite, physically connected
to more than 15 measurement channels via sensors
(Ghaemmaghami, 2009). The PSG diagnosis method
has many disadvantages: complex operation, unsuit-
able for mass screening, time consuming, inconvenient
and expensive. Therefore, many researchers have fo-
cused on developing more portable and convenient
methods for diagnosis and monitoring of sleep related
breathing disorders (Hirotaka et al., 2017; Marcel,
2017).

Snoring is the most common symptom of OSAHS
and is caused by an obstruction in the airways due to
a collapse in the soft tissues of the upper respiratory
tract, which results in vibration of the soft tissues of
the upper airway which creates the snoring sound. In
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the past two decades, there has been much attention
given to acoustical analysis of snoring (Pevernagie
et al., 2010; Jin et al., 2015). Xu et al. (2009) stud-
ied the acoustical characteristics of snoring for simple
snoring patients and OSAHS patients. They found that
there was a significant difference in power density ra-
tio and central frequency at 800 Hz between patients
with simple snoring and OSAHS. Israel et al. (2012)
investigated the time domain and frequency domain
characteristics of snoring by using an adaptive energy
threshold algorithm and a Gaussian mixture model
for snoring detection and extracted snoring charac-
teristics such as the Mel Frequency Cepstral Coeffi-
cient (MFCC), pitch density and quiet interval time.
A Bayesian model was used to classify simple snoring,
moderate and severe sleep apnea with an accuracy of
80%. The Apnea-Hypopnea Index (AHI) is an index
used to indicate the severity of sleep apnea and is rep-
resented by the number of apnea and hypopnea events
per hour of sleep. Recently, many studies have sought
to predict the AHI through analysis of the differences
in the acoustical characteristics of subject snoring (Ng
et al., 2008; Xu et al., 2015). Ng et al. (2008) quanti-
fied the differences in snoring resonance peak between
pure snoring and sleep apnea in patients, and used the
regression analysis method to fit the relationship be-
tween the first formant and AHI. The study achieved
88% sensitivity and 82% specificity in evaluating sleep
apnea syndrome in patients. Xu et al. (2015) extracted
the Earth Mover’s Distance (EMD), a method to eval-
uate the dissimilarity between two multi-dimensional
distributions in feature space using the distance mea-
sured between single features, to analyze the acoustical
characteristics of snoring based on a frequency energy
endpoint detection algorithm to detect snoring, and
compared the AHI (AHIEMD) results based on EMD
with the results from PSG detection (AHIPSG). This
study obtained more than 93.3% sensitivity and 96.7%
specificity for the identification of OSHAS patients.

The occurrence of snoring is not constant and
fixed (Becker et al., 1999), and not all snoring
episodes are due to the same mechanisms during sleep
(Pevernagie et al., 2010). Some studies have already
found significant differences between postapneic snores
and other types of snores (Perez-Padilla et al., 1993;
Fiz et al., 1996; Tobin et al., 1998). Additionally, some
snoring events were over-scored and some were under-
scored, although the overnight average was reasonable,
and thus, only a subset of snores may be useful for in-
dicating OSAHS. However, acoustical analysis of snor-
ing can discriminate between “simple snorers” and pa-
tients with OSAHS, but it can be difficult to estimate
obstructive AHI accurately without distinguishing the
special acoustical characteristics of snoring sounds be-
fore, during and after apnea and hypopnea episodes for
OSAHS patients. This is likely the most critical reason
that acoustical analysis of snoring is inadequate as a ro-

bust method for diagnosing OSAHS. Therefore, there
is a requirement to establish appropriate and feasible
methods that can be used for unequivocal classifica-
tion of snoring sounds and to identify the special char-
acteristics of snoring sounds in OSAHS patients (Jin
et al., 2015). Although methods for acoustical analy-
sis of snoring as a diagnostic tool have become more
mature, there is an urgent need for a rigorous, high-
efficacy, single snoring event test with a large sample
size to reflect the particular features of snoring that
can be used to diagnose OSAHS.

In the study presented in this paper, snoring sounds
related to respiratory disorder events are divided into
four types of snoring: (1) snoring before and after
a respiratory disorder event, (2) snoring during ap-
nea, (3) snoring during hypopnea, and (4) simple snor-
ing. A method for predicting AHI for OSAHS patients
based on these four types of snoring recognition is in-
vestigated. Based on a previous study (Wang et al.,
2017), the overnight snoring signals for six patients
with OSAHS are automatically extracted. The char-
acteristics of the snoring spectrum such as the center
of mass, spectral dispersion and spectral flatness are
extracted. A support vector machine (SVM) is used to
classify the four types of snoring. Finally, the AHI is
predicted according to the type of snoring identified
and the related respiratory disorder event.

2. Method

2.1. Subjects

Six habitual snorers referred for a full-night PSG
participated in this study. Overnight sound recordings
for the entire night were obtained from the First Affi-
liated Hospital of Guangzhou Medical University. The
main outcome of a PSG test to assess the severity of
OSAHS is the AHI. The duration of each recording
was over 7 h. Table 1 lists the age, gender, AHIs from
the PSG test, and body mass indices (BMI) of the six
participants.

Table 1. Information of the six participants.

Patient number Age Gender AHI BMI
1 26 Male 14.7 22.3
2 37 Male 23.4 25.3
3 32 Male 22.9 26.5
4 50 Male 34 29.7
5 65 Male 69.1 28.2
6 63 Female 20.7 25.1

2.2. Recording of snoring sounds

The recording room was a single ward. The air-
conditioning was turned off and the double-glazed win-
dows were closed during recording. The background
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noise in the room was less than 35 dB(A). A digi-
tal audio recorder (Roland, Edirol R-44, Japan) with
a 40–20000 Hz ±2.5 dB frequency response and a di-
rectional microphone (RØDE, NTG-3, NSW, Aus-
tralia) placed over the patient’s mouth was used to
record the snoring, at a distance of between 50–
70 cm from the patient’s mouth, depending on pa-
tient movements. The recorded snoring signal was dig-
itized at a sampling rate of 44.1 kHz with 16-bit reso-
lution.

2.3. Snoring classification and AHI prediction

The algorithm described in a previous study
(Wang et al., 2017) was used to automatically de-
tect and extract each snoring sound from the overnight
snoring recording for each OSAHS patient in order to
create datasets for subsequent classification, with the
snoring sounds identified by an ENT (ear-nose-throat)
specialist.

Based on the PSG results, the ENT experts an-
notated the complete overnight snoring sounds of the

a) b)

c) d)

[Fig. 1]

patients with the four types of snoring sounds related
to the respiratory disorder events that are shown in
Fig. 1. The respiratory disorder events included ap-
nea events and hypopnea events. In Fig. 1, S1 repre-
sents an apnea event and A1 represents a hypopnea
event. C1 represents a snoring sound before or after
a respiratory disorder event (which includes snoring in
the last breathing cycle before apnea, snoring in the
first breathing cycle after apnea, snoring in the last
breathing cycle before hypopnea, and snoring in the
first breathing cycle after hypopnea), C2 represents
a snoring sound during apnea, C3 represents a snoring
sound during hypopnea and C4 represents a common
snoring sound (i.e. a simple snoring sound). All these
annotations were used to verify the accuracy of the
classification of snoring sounds and the prediction of
AHI for OSAHS patients.

Since the AHI is the number of apnea or hypopnea
events per hour, it can be predicted by the two respi-
ratory disorder events. The detailed processing steps
required to predict AHI based on the four types of
snoring sounds are described below.
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e) f)

g)

h)

Fig. 1. Respiratory disorder events related to snoring sound definition diagram.
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The first step is to determine the position of the C1

snoring sound in the time sequence from left to right
after the four types of snoring sounds are recognized
from the full night’s snoring recording:

1) If a C4 snoring sound or a breathing sound occurs
before the C1 snoring sound, and the time interval
(the time period from the end of the last snoring
sound to the start of the snoring) is less than 10 s,
the C1 snoring sound is determined to be a snoring
sound before a respiratory disorder event; if the
time interval is more than 10 s, it is determined
to be a snoring sound after a respiratory disorder
event.

2) If a C2 or C3 snoring sound occurs before C1, C1

is determined to be a snoring sound after a respi-
ratory disorder event.

3) If the snoring sound before C1 is also C1, and the
time interval is less than 10 s, the second C1 is
determined to be a snoring sound before a respi-
ratory disorder event; if the time interval is more
than 10 s, it is determined to be a snoring sound
after a respiratory disorder event.

The second step is to label C1 snoring sounds that
occur before a respiratory disorder event as CB1, and
label C1 snoring sounds that occur after a respira-
tory disorder event as CA1, according to a left-to-right
time sequence of the snoring sound signals. No res-
piratory disorder event is considered to occur when
there are common snoring sounds. A respiratory disor-
der event is identified between certain common snor-
ing sounds including CB1CA1, CB1C2CA1, CB1C3CA1,
CB1C2, CB1C3, C2CA1, C3CA1, CB1, CA1, C2, C3,
C2C2C2, and so on.

The final step is to calculate the total number of
respiratory disorder events in the full overnight snoring
sound signals in order to obtain AHI, the number of
respiratory disorder events per hour.

2.4. Feature extraction

2.4.1. Spectral centroid

The spectral centroid is used to describe the
weighted average frequency of the area under the power
spectrum density (PSD) for a given frequency band
(FitzGerald, Paulus, 2006). This feature can iden-
tify the location of major peaks and indicates where
the “center of mass” of the spectrum is located

Spectral Centroid =
∑
i
fiXi

∑
i
Xi

, (1)

where Xi is the energy amplitude corresponding to fre-
quency fi.

2.4.2. Spectral spread

Spectral spread reflects the concentration of a spec-
trum’s energy around its spectral centroid. A smaller
spectral spread value indicates that the energy distri-
bution in the frequency domain is more concentrated
and that most of the energy is near the spectrum cen-
troid

Spectral Spread =
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(2)

2.4.3. Spectral flatness

Spectral Flatness is the ratio of the geometric mean
of the magnitude spectrum to the arithmetic mean of
the magnitude spectrum (Peeters, 2004),

Spectral Flatness =

N
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s=1

ps

1
N
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∑
s=1

ps

, (3)

where ps represents the total energy of the s-th fre-
quency band, and the spectrum flatness is between 0
and 1. For a completely flat power spectrum, i.e. white
noise, the spectrum flatness has a value of 1.

2.4.4. Positive and negative amplitude sum (PN+),
positive and negative amplitude difference
(PN−), positive and negative amplitude
ratio (PNAR)

Each snoring segment x(n) is divided into frames
to obtain xk(n), with each frame length equal to 20ms
and 50% overlap. The maximum positive amplitude of
the k-th frame signal xk(n) is:

Pk = max [xk(n)] , k = 1,⋯,K, (4)

where k is the total number of frames in the poten-
tial snoring segment. Similarly, the maximum negative
amplitude of the k-th frame signal xk(n) is:

Nk = max [−xk(n)] , k = 1,⋯,K. (5)

PN+, PN− and PNAR can be defined respectively
as:

Var (Pk +Nk), (6)

Var (Pk −Nk), (7)

Var(
Pk +Nk
Pk −Nk

), (8)

where Var(⋅) is the variance of the values in brackets.
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2.4.5. Power ratio at 500 Hz (PR500)

The power ratio compares the relative power be-
low and above a specific frequency, which is defined as
follows (Xu et al., 2009):

PR500 =

500 Hz

∑
fi=0

Px(fi)

fc

∑
fi=0

Px(fi)

, (9)

px(fi) = mean
k

Pxx(fi, k), (10)

where fc is the cutoff frequency, Pxx(fi, k) is the PSD
for the k-th frame, and Px (fi) is the average PSD for
each potential snoring segment.

2.4.6. Maximum power ratio (MPR)

The maximum power ratio (MPR) reflects the de-
gree of sound jitter, and for 500 Hz is defined as (Xu
et al., 2009):

MPR500 =

500 Hz

∑
fi=0

Px(fi)

fc

∑
fi=0

Pxx(fi, k)

. (11)

2.4.7. Spectral entropy (SE)

The spectral entropy (SE) is used to measure the
flatness of the PSD, defined as:

SE = −∑
f

Px (fi) ln (Px (fi)) . (12)

2.4.8. Sample entropy

The Sample entropy (Richman, Moorman,
2000) is the measure of the complexity of a time se-
ries and is calculated as follows:

1) For an N -point time series, the m-dimensional
vector xm(i) is defined as:

xm(i) = {x(i), x(i + 1),⋯, x(i +m)} , 1 ≤ i ≤ N.
(13)

2) The distance between any two m-dimensional
vectors xm(i), and xm(j) is:

d[[Xm(i),Xm(j)] = max[∣x(i + k) − x(j + k)∣],

0 ≤ k ≤m − 1, i ≠ j, 1 ≤ i, j ≤ N −m.
(14)

3) The following formulas are defined:

Bmi (r) =
1

N −m − 1
Bi, (15)

Bm(r) =
1

N −m

N−m

∑
i=1

Bmi (r), (16)

Am+1
i (r) =

1

N −m − 1
Ai, (17)

Am+1
(r) =

1

N −m

N−m

∑
i=1

Am+1
i (r), (18)

r = a × SD, (19)

where r is the number of template matches, Bi is the
number of d [Xm(i),Xm(j)] values less than r, Ai is
the number of d [Xm+1(i),Xm+1(j)] values less than
r, a is an empirical value, and SD is the standard de-
viation of the signal in the time domain.

4) The sample entropy is estimated to be:

SampEn(m,r) = lim
N→∞

{− ln [
Am(r)

Bm(r)
]} . (20)

For a finite length sequence, N is a finite value and
the sample entropy is calculated as:

SampEn(Zx, r,N) = − ln [
Am(r)

Bm(r)
] . (21)

2.4.9. Frequency energy spectrum features

The frequency domain (40–2000 Hz) is divided
into three frequency bands: B1(40–300 Hz), B2(301–
850 Hz), and B3(851–2000 Hz). The maximum sound
intensity, the mean sound intensity and the maximum
corresponding sound intensity at the corresponding
frequency of each frequency band are calculated in the
frequency domain. The mean sound intensity corre-
sponds to the frequency spectrum characteristic.

For each snoring sound, 30 features including the
spectral centroid, the spectral spread and the spectral
flatness are extracted. The detailed features are shown
in Table 2.

2.5. Support Vector Machine

The Support Vector Machine (SVM) proposed by
Cortes and Vapnik (1995) is a machine learning
method developed from statistical learning theory. The
basic idea is to maximize the classification interval in
the feature space, for the linearly inseparable training
data set T = {(x1, y1)(x2, y2)⋯(xN , yN)}, where N is
the number of potential snoring segments, xi ∈X ∈ Rn,
yi = {−1, 1}, i = 1, 2,⋯,N . Introducing the relaxation
variable ξi and the penalty coefficient C, the original
optimization problem of the linearly inseparable train-
ing data is:

min
ω,b,ξ

1

2
∥ω∥

2
+C

N

∑
i=1

ξi, (22)

s.t. yi (ω ⋅ xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2,⋯,N,

where ω and b are the classification hyperplane normal
vector and constant terms, C > 0.

By introducing the Lagrange function and the La-
grange multiplier αi, SVM classification attempts to
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Table 2. A set of features for snoring sounds.

Time-domain features

PN+, PN−, PNAR
positive/negative amplitude ratio, positive/negative amplitude ratio,
positive/negative amplitude ratio

SampEn50, SampEn100 Sample entropy(a = 50, a = 100)
Frequency-domain features

SCmean, SCvar The mean/variance of spectral centroid
SSmean, SSvar The mean/variance of spectral spread
SFmean, SF var The mean/variance of spectral flatness
Bi − Imax Bi – maximal sound intensity
Bi − Imean Bi – mean sound intensity
Bi − fpeak Bi – peak sound frequency
Bi − fmean Bi – mean sound frequency
PR100, PR300, PR500, PR800 100 Hz/300 Hz/500 Hz/800 Hz power ratio
MPR500, MPR800 500 Hz/800 Hz maximal power ratio
SE Spectral entropy
B1 = (40–300) Hz, B2 = (301–850) Hz, B3 = (851–2000) Hz

construct an optimal classification hyperplane and
then transforms it into a dual quadratic programming
problem according to the Karush-Kuhn-Tucker (KKT)
condition

min
α

1

2

N

∑
i=1

N

∑
j=1

αiαjyiyj (xi ⋅ xj) −
N

∑
i=1

αi, (23)

s.t.
N

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1,2,⋯,N.

The optimal solution α∗ is obtained by solving
the dual quadratic programming problem as described

above, b∗ is obtained from b∗ = yi−
N

∑
i=1
α∗i yi (xi ⋅ xj). By

using the kernel function instead of the inner product
function ϕ(x) ⋅ ϕ(z) in the high-dimensional feature
space, the final classification decision function is ob-
tained

f(x) = sign(
N

∑
i=1

α∗i yiK (xi, xj) + b
∗
) . (24)

The radial basis function can be defined as follows:

K(x, z) = e−g∥x−z∥
2

, (25)

where g is the parameter for the radial basis function.
SVM was originally designed for the second class of

classification problems. Its classification method can
be used to construct multiple classifiers to manage
multi-class problems. This experiment uses a one-to-
one method to realize four types of classification prob-
lems, that is, one type of SVM is trained between each
set of two classes in the training set. For K types, two
K(K − 1)/2 SVMs are constructed. When classifying
unknown samples, each classifier discriminates by cat-
egory, and finally uses a “voting mechanism” to judge
the final category.

3. Results

3.1. Training and test data

The automatic detection model for snoring that
was established in a previous study (Wang et al.,
2017) is used to analyze a full night of snoring for the
six patients in this experiment. The snoring detection
results for each of the six patients are shown in Table 3.
Sen, Spe, AUC, PPV and Acc represent the sensitiv-
ity, specificity, area under the curve, positive predictive
value and accuracy values, respectively.

Table 3. Classification results of snoring sounds for 6 pa-
tients.

Patient
number

Sen [%] Spe [%] PPV [%] AUC Acc [%]

1 95.98 93.49 99.37 0.9421 95.77
2 90.17 93.63 94.18 0.9272 91.78
3 97.34 73.19 90.84 0.8283 90.87
4 98.15 87.05 95.51 0.8991 95.24
5 93.39 90.44 93.22 0.9156 92.16
6 97.98 77.56 82.48 0.8658 88.16

The inspiratory phase for the six OSAHS patients
was labeled as C1, C2, C3, and C4 by ENT experts
for the full night of snoring sounds. There were a to-
tal of 14000 snoring sounds between all six patients
in the study, including 878 C1 type snoring sounds
(6.27%), 262 C2 type snoring sounds (1.87%), 691 C3

type snoring sounds (4.94%), and 12169 C4 type snor-
ing sounds (86.92%). Since the proportion of C4 type
snoring sounds was much larger than all other snor-
ing sounds, 300 C4 snoring sounds from each patient
were randomly selected from the whole night of snor-
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ing sounds, to avoid these sounds from influencing the
quantitative difference between the four types of snor-
ing sounds on the classification results in this study.
878 C1, 262 C2, 691 C3 and 1800 C4 snoring sounds
constituted the test sample, and 2000 further snoring
samples were randomly selected to find the optimal
parameters. After the optimal parameters were set,
a 5-fold cross validation method was used to verify the
classification performance of the system.

3.2. Classification and forecast results

The 30 feature parameters of 3631 snoring segments
were calculated respectively. The Mann-Whitney non
parametric test for feature values of the four types of
snoring sounds was tested by using the SPSS 19 soft-
ware. The results showed that most of the features had
a better ability to discriminate the four types of snor-
ing sounds (p < 0.05). There was no significant differ-
ence between C2 and C3, C2 and C4, C3 and C4 for
the 40–300 Hz band peak sound intensity (B1 − fpeak)
(p > 0.05). There was also no significant difference be-
tween C1 and C2, C1 and C3 for the 301–850 Hz band
mean sound intensity (B2 − fmean), and between C1

and C2, C2 and C3, C2 and C4 for the PR500. There-
fore, further classification will exclude the above three
features and thus 27 features were finally extracted for
each snoring segment.

Principal Component Analysis (PCA) is a dimen-
sion-reduction tool that can be used to reduce a large
set of variables to a small set which will still contain
most of the information in the larger set. PCA was used
to analyze the 27 features of the snoring samples. All
principal components are linear combinations of the set
of 27 features. The individual contribution percentage
and the cumulative contribution percentage of each of
the first ten principle components are shown in Fig. 2.
Since the cumulative contribution percentage of the
first ten principal components is 93.82%, the first ten
principal components were used for classification of the
four types of snoring sounds.

The experimental dataset was classified using
a nonlinear SVM, and a one-on-one SVM multi-
classification algorithm was chosen. The radial basis
functions were selected as the kernel functions and the
training data was used for learning. The grid search
(GS), genetic algorithm (GA) and particle swarm op-

Table 4. Classification results of four types of snoring sound by SVM.

Optimal
parameters

Running time Classification sensitivity [%]
Overall accuracy [%]

C g C1 C2 C3 C4

GS 181.02 0.18 41 min 45 s 88.01 80.49 82.20 98.15 91.38
GA 4.91 0.86 37 min 05 s 88.27 79,67 81.55 98.40 91.20
PSO 23.46 0.52 35 min 09 s 87.24 78.86 82.20 98.28 91.14

Fig. 2. Principal component analysis.

timization (PSO) algorithm were used to find the opti-
mal parameters C and g, and these optimal parameters
were then used to test the experimental dataset. The
results of the classification accuracy under the opti-
mal parameter conditions are shown in Table 4. It can
be seen from Table 4 that the optimal parameters C
and g obtained by each of the three optimal meth-
ods were different, but they have almost identical clas-
sification results. The total recognition accuracy rate
for the four types of snoring sounds under each of the
three optimal methods was at least 91.14%. The C4

snoring sounds had the highest identification rate with
a classification sensitivity of more than 98.15%. The
identification rates for C2 and C3 were lower than that
of C1 and C4 and the classification sensitivity was be-
tween 78.86 ∼ 82.20%. Therefore, the SVM classifica-
tion method can achieve a better classification result
for recognition of these four types of snoring sounds.

After setting the optimal parameters for the exper-
iment, the classification performance of the system was
verified by using 5-fold cross-validation. The results
of each verification were recorded to classify the 3631
snoring sounds which were combined with the 10369
simple snoring sounds. The position of the four types of
snoring sounds was used as the basis for calculating the
number of apnea events or hypopnea events per hour
of the six patients with OSAHS, and to predict the
AHITEST values. A comparison of the results with
the AHIPSG values detected by the PSG is shown in
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Fig. 3 and shows consistency between the experimental
prediction of AHITEST and the PSG-detected AHIPSG

value. Figure 4 shows a scatter plot of AHITEST and
AHIPSG for the six patients and regression analysis was
used to show a significant positive correlation between
AHITEST and AHIPSG (r2 = 0.953, p < 0.001).

Fig. 3. Comparison of AHITEST and AHIPSG.

Fig. 4. The relationship between AHITEST and AHIPSG.

4. Discussions

In this study, 30 feature parameters were automat-
ically extracted from overnight snoring sound record-
ings of six patients with OSAHS. 27 of these 30 features
could be used to successfully discriminate the four
types of snoring sounds. Principal component analysis
showed that the first ten principal components carried
93.82% of the information in the set of 27 features.
These results demonstrate that there were differences
in the snoring sounds for the full night’s recordings
of OSAHS patients, and the acoustical characteris-
tics of the whole night of snoring sounds should be
used instead of partial recordings for identification and
classification of snoring sounds to obtain more accurate
results.

Previous studies have shown that methods based
on snoring sound analysis can reach accuracies of be-
tween 75.1–92.5% for the detection of snoring sounds
for OSAHS patients (Młynczak et al., 2017; Emoto
et al., 2018). Młynczak et al. (2017) reported that
their system achieved a mean of 88.8% accuracy in
the differentiation of normal breathing and snoring.
Emoto et al. (2018) was able to classify low-intensity
snoring/breathing episodes (SBEs) and low-intensity
non-SBEs that may occur during actual sleep with
an average accuracy of 75.10% using artificial neu-
ral network analysis. Using ten-fold cross validation,
Kim et al. (2018) achieved an accuracy of 88.3% in
the four group classification and an accuracy of 92.5%
in the binary classification. This study demonstrated
that their models can be used to estimate the severity
of sleep disordered breathing. Hirotaka et al. (2017)
indicated that the accuracy of their device was 90.7%
based on hysteresis extraction. In their study, the four
types of snoring were classified by SVM and the clas-
sification performance of the system was verified by
using five-fold cross validation. Table 4 shows that the
overall accuracy rate obtained by the three optimiza-
tion methods was more than 91.14%. These results in-
dicated a higher accuracy, but the accuracy is still not
enough to be used for clinical applications for auto-
matic snoring detection.

The C4 snoring sound had a better recognition rate
than the other three snoring sound types. The classifi-
cation results can achieve a better recognition rate for
all four types of snoring sounds. The optimal param-
eters C and g under the three optimization methods
were different but with similar respective classification
results. This shows that the optimal parameters of the
SVM model are not unique. A C parameter value that
is too high may lead to an over-learning problem with
a high time-cost for large samples, and it was shown
that there is only a small difference in classification
accuracy when a moderate optimization parameter C
value was used in the particle swarm optimization al-
gorithm, thus minimizing the computation time. Using
the particle swarm optimization algorithm to optimize
the SVM parameters had better classification effects
on the recognition of the four types of snoring sounds.
Follow-up studies should explore new features that can
reflect the natural differences in the four types of snor-
ing sounds in order to improve the recognition rate of
snoring sounds during apnea and hypopnea.

Ben-Israel et al. (2012) estimated AHIEST us-
ing a multivariate linear regression model with five
features (Mel-Cepstability, Running Variance, Apneic
Phase Ratio, Inter-Event Silence and Pitch Density) as
the independent variables. They found that AHIEST is
correlated with the AHI value from PSG (r2 = 0.81,
p < 0.001). Xu et al. (2015) explored the relationship
between AHI obtained from the Earth mover’s distance
(EMD) calculations and PSG monitoring in the Chi-
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nese Han population and found a significant positive
correlation between AHIPSG and AHIEMD (r2 = 0.950,
p < 0.001). This study conducted a classification exer-
cise using a full night’s recording of snoring in OSAHS
patients and predicted the AHI value as well as the
respiratory disorder events through recognition of the
four types of snoring sounds. The predicted AHITEST

value is essentially in agreement with AHIPSG from
PSG and thus AHITEST could be used to determine the
severity of OSAHS patients. These results indicate that
acoustical analysis of snoring could meet the growing
screening and diagnosis requirements of patients with
OSAHS. Further studies should obtain more snoring
sounds from regular snoring patients and OSAHS pa-
tients of different genders to improve the accuracy of
OSAHS diagnosis and severity based on the four types
of snoring sounds, and provide a credible reference that
can be adopted for clinical use.

5. Conclusions

In this study, a classification method and an AHI
prediction method were presented using the SVM
method, based on full overnight snoring sounds related
to respiratory disorder events. 30 feature parameters
were automatically extracted from the full overnight
snoring sound recordings of six patients with OSAHS
and it was found that 27 of 30 features could be used
to classify the four types of snoring sounds. Princi-
pal component analysis demonstrated that the first ten
principal components reached 93.82% cumulative vari-
ance contribution. The accuracy rate for the recogni-
tion of the snoring sounds for the whole night obtained
by GS, GA and PSO methods was more than 91.14%.
The optimization parameter C of the PSO algorithm
was moderate and had the lowest computation time
of the three methods. The prediction AHI based on
recognition of the four types of snoring sounds related
to respiratory disorder events were highly correlated
with the results from PSG and may be useful to de-
termine the severity of OSAHS patients. These results
demonstrate that the proposed method can classify the
snoring sounds of OSAHS patients and provide guid-
ance for diagnosis of OSAHS.
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