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In this paper, a modified sound quality evaluation (SQE) model is developed based on combination of an
optimized artificial neural network (ANN) and the wavelet packet transform (WPT). The presented SQE
model is a signal processing technique, which can be implemented in current microphones for predicting
the sound quality. The proposed method extracts objective psychoacoustic metrics including loudness,
sharpness, roughness, and tonality from sound samples, by using a special selection of multi-level nodes of
the WPT combined with a trained ANN. The model is optimized using the particle swarm optimization
(PSO) and the back propagation (BP) algorithms. The obtained results reveal that the proposed model
shows the lowest mean square error and the highest correlation with human perception while it has the
lowest computational cost compared to those of the other models and software.

Keywords: sound quality measurement; psychoacoustic metrics; wavelet packet transform; optimized
artificial neural network.

1. Introduction

The sound quality (SQ) is a general interpretation
of human feelings from a received sound (Blauert,
Jekosch, 1998; Pleban, 2014). Since physical char-
acteristics of a sound cannot express the human au-
dial stimulation, human perception of the sound should
be assessed. A common approach to reach this pur-
pose is to undertake auditory tests, which are complex
and time-consuming. In the past decades, many re-
searchers paid much attention to the SQ of radiated
sound from medical equipment, home appliances, ve-
hicles, airplanes and trains to evaluate both the quality
of the equipment and the pleasantness of the perceived
radiated sound.

Several psychoacoustic indices, including A-, B-,
C-, D-weighted sound pressure level, loudness, sharp-
ness, roughness, fluctuation strength, tonality, an-
noyance, and pleasantness, have been presented to
quantitatively illustrate subjective feelings of per-

ceived sounds (Carletti, 2013; Fastl, Zwicker,
2007). Failure to consider masking effects results
in a poor correlation between weighting functions
and the perceived feelings (Parmanen, 2007; Ple-
ban, 2010). This has given rise to develop several
psychoacoustic metrics including loudness (Fastl,
Zwicker, 2007; Klonari et al., 2011; de Oliveira et
al., 2009; Wang et al., 2014), sharpness (Leite et al.,
2008; Wang et al., 2007), roughness (Aures, 1985b;
Miskiewicz et al., 2007; Szczepańska-Antosik,
2008; Vencovský, 2016), and tonality (Aures, 1985a;
Hasting, Davies, 2002; Kim et al., 2012) for describ-
ing the perceived feelings. Each of these metrics repre-
sents one or more particular aspect of the sound. The
SQ combines these indices for predicting the pleasant-
ness or annoyance (Kaczmarek, Preis, 2010).

Human will experience different perceptions from
various sound samples with different frequency con-
tent (Silva, 2002). Thus, selecting a signal processing
approach for extracting the sound features based on
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hearing characteristics is important. The fast Fourier
transform (FFT) transforms a signal from time do-
main to frequency domain; however, it is suitable
just for stationary signals. For time-frequency anal-
ysis, there are some other approaches including the
short-time Fourier transform (STFT), wavelet trans-
form (WT), Wigner-Ville distribution (WVD), and
the Hilbert-Huang transform (HHT), which are usu-
ally employed for feature extraction of non-stationary
signals (Błazejewski et al., 2014; Huang et al.,
2015). The continuous wavelet transform (CWT) is
commonly used for data analysis, while the discrete
wavelet transform (DWT) is applied for image com-
pression and pattern recognition (Mallat, 2009; Qin,
Sun, 2015). The Wigner-Ville distribution is a popu-
lar approach thanks to its good time-frequency resolu-
tion, however, generates results with coarser granular-
ity than those of the wavelet transform methods (Xing
et al., 2016). In (Wang et al., 2007), DWT-based
approaches were developed for SQ evaluation (SQE)
of non-stationary vehicle noises. As an extension to
the DWT, wavelet packet transform (WPT) provides
a specific filter bank with identical features to the cen-
ter frequencies and critical bandwidths (Majeed et al.,
2015; Parfieniuk et al., 2006).

Given the complex and nonlinear relationships in
the human auditory system, intelligent approaches
have been investigated in the calculation of psychoa-
coustic indices. Two intelligent methods, namely arti-
ficial neural network (ANN) and support vector ma-
chine (SVM), have been used to classify psychoacous-
tic metrics such as loudness, roughness, and annoy-
ance of vehicle noise (Chen et al., 2011; Liu et al.,
2015). A review of the related literature shows that
the ANN is more effective for predicting the SQ in in-
telligent SQE systems, thanks to its good performance
and adaptability to complex nonlinear problems along-
side its self-learning and self-organization characteris-
tics (Fausett, 1994; Żwan, 2008).

In (Xing et al., 2016), a SQ model was designed
to evaluate non-stationary vehicle interior noise using
a back propagation neural network (BPNN) model.
Results showed good accuracy and efficiency of the
model in mimicking the human hearing system, how-
ever, just two psychoacoustic indices including loud-
ness and sharpness were predicted. As to the best
knowledge of the authors, other previous models (ex-
cept (Xing et al., 2016)) estimated the pleasantness as
a neural network output, by feeding the psychoacous-
tic metrics into the network. The previous approaches
will not decrease computational cost because calculat-
ing the psychoacoustic metrics is the main computa-
tional load of predicting the pleasantness, thus, they
are not suitable for real-time applications. Since SQ
can be considered to estimate the overall pleasantness
or annoyance of noise, one of the targets of this pa-
per is to develop a SQE model and predict the objec-

tive psychoacoustic metrics to incorporate with active
sound quality control (ASQC) system in the ongoing
research. Consequently, there is a necessary need for
presenting a new SQ prediction model that has the
lowest computational load with the highest accuracy
for real-time implementation of active noise control
(ANC) system (Kuo, Morgan, 1996). Accordingly,
traditional algorithms and commercial software can-
not be used due to time delay execution.

The model presented in (Xing et al., 2016) esti-
mates only the loudness and sharpness, and there is
a weak correlation between energy index and rough-
ness and tonality, as the neural network input and
outputs, respectively. Thus, this model cannot be used
to estimate the roughness and tonality indices. Howe-
ver, the roughness and tonality are required for pre-
dicting the pleasantness. Therefore, in this manuscript,
two other indices including the mean and standard de-
viation of the scalogram of sound signals are also added
to the other input of the ANN, which is the energy in-
dex, for estimating the roughness and tonality as well
as loudness and sharpness.

The BPNN can be trapped in local optima or en-
gaged with a slow convergence rate because of not
selecting proper primary weights and biases (Gori,
Tesi, 1992; Jaddi, Abdullah, 2018; Zhang et al.,
2007). In (Zhang et al., 2015a), the genetic algo-
rithm (GA) and particle swarm optimization (PSO)
were compared, in terms of efficiency of optimizing
the primary coefficients used in a BPNN for predict-
ing the pleasantness metric of vehicle interior noise.
The case study investigated in that work was station-
ary. It is necessary to develop a technique to decom-
pose components based on time-frequency features of
non-stationary signals. In order to address these limita-
tions, in this paper, evolutionary optimization meth-
ods optimize the ANN and then it is combined with
the WPT in order to predict the psychoacoustic met-
rics of non-stationary noises with a low computational
cost. All of the samples used herein are non-stationary
which are decomposed to analyze over time and fre-
quency domains. The results are validated by being
compared against those of other investigations and
models, demonstrating fast convergence and high ac-
curacy of the proposed model in predicting the SQ at
a low computational cost. The proposed algorithm can
be implemented using embedded field-programmable
gate array (FPGA) boards in microphones to directly
measure the sound quality metrics in different appli-
ances and devices.

The rest of this paper is organized as follows: Sub-
sec. 2.1 introduces the psychoacoustic metrics. Theo-
retical foundations of the WPT and ANN are explained
in Subsecs 2.2 and 2.3. The applied sound database is
described in Sec. 3. Section 4 provides a derivation of
the proposed SQE model based on the WPT and the
optimized ANN. In this section, the simulation results



M. Pourseiedrezaei et al. – Prediction of Psychoacoustic Metrics Using Combination of WPT. . . 563

are presented to validate the performance of the pro-
posed model. Conclusions are drawn in Sec. 5.

2. Background theory

2.1. Psychoacoustic metrics

Psychoacoustics deals with how a human perceives
the received sound. In the middle ear, the sound waves
are transformed into mechanical vibrations, which are
then transferred into electrical signals once subjected
to nonlinear filtering in the internal ear. Aural com-
prehension is formed in the human brain through the
neural system. The biological structure of the basilar
membrane in the internal ear is the basis of psychoa-
coustic effects. The most popular psychoacoustic met-
rics include loudness, sharpness, roughness, and tonal-
ity. These parameters and their attributes are summa-
rized in Table 1. A detailed description is available in
the literature (Fastl, Zwicker, 2007).

Table 1. Psychoacoustic metrics and their attributes.

Psychoacoustic
metrics

Attributes

Loudness This auditory characteristic reflects the ef-
fect of energy content on the human ear
(Fastl, Zwicker, 2007).

Sharpness This auditory characteristic is calculated
as a weighted loudness focused on high-
frequency contents for quantitative mod-
elling (Fastl, Zwicker, 2007).

Roughness This auditory characteristic is the subjec-
tive perception of amplitude modulation
of a sound pressure signal, which is ob-
tained by measuring the time variation
of the loudness spectrum with modulat-
ing frequencies ranging from 20 to 300 Hz
(Fastl, Zwicker, 2007).

Tonality This auditory characteristic shows the
presence of the tonal component in
the content of broadband noise (Hasting,
Davies, 2002; Kim et al., 2012).

2.2. Wavelet Packet Transform

Wavelet transform refers to decomposing a signal
using wavelets. Wavelets are a family of orthogonal
functions that are obtained by scaling and translating
a mother wavelet. In order to avoid redundancy in the
wavelet function of CWT, its discrete version DWT
is usually used in engineering applications. Based on
the DWT, WPT can be extracted to provide a compu-
tationally efficient alternative to CWT with sufficient
frequency resolution. Thus, the wavelet packet spec-
trum can be used to perform time-frequency analysis
on non-stationary signals (Wang et al., 2007; Zeng
et al., 2008). By selecting nodes at different levels of

the WPT tree, a suitable model is obtained for the
purpose of the present research.

2.3. Artificial Neural Network

Artificial Neural Networks (ANNs) are based on
biological neural systems. An ANN consists of neu-
rons organized in the input, output, and hidden lay-
ers. Neurons are connected to one another via sets
of weights. During the learning process, ANN varies
the weights and biases continuously. The main advan-
tage of ANN in prediction processes lies in its abil-
ity to estimate strong nonlinear correlations. In order
to overcome the associated challenges with ANN, new
heuristic optimization methods or evolutionary algo-
rithms have been used to optimize the ANN struc-
ture (Beheshti et al., 2014; Razmjooy et al., 2013;
Zhang et al., 2015b).

In this section, four ANN-based prediction
models including BPNN, genetic algorithm-back-
propagation neural network (GA-BPNN), particle
swarm optimization-back-propagation neural network
(PSO-BPNN) and imperialist competitive algorithm-
back-propagation neural network (ICA-BPNN) which
are optimized by back propagation (BP), GA, PSO and
imperialist competitive algorithm (ICA), respectively,
are considered. Taking into account the extracted fea-
tures of a signal as the network input and psychoa-
coustic metrics as the network output, the SQ predic-
tion performance could be compared among the devel-
oped neural network models. Figure 1 demonstrates
the three-layer feed-forward neural network with one
input layer, one hidden layer, and one output layer,
that has been established in this paper. If the output
of ANN fails to reach the predefined desired target,
the network error criterion is computed and propa-
gated backward to adjust the weights using the BP
algorithm.

A three-layer back-propagation neural network can
estimate any continuous nonlinear function (Hecht-
Nielsen, 1992). Consider the three-layer BPNN shown
in Fig. 1, where n, h, and m are the numbers of neu-
rons in the input, hidden, and the output layers, re-
spectively. In this paper, the transfer functions f1 and
f2 were examined to minimize the training error, i.e.
mean square error (MSE) between the predicted out-
put and the desired value, as defined by Eq. (1)

MSE = 1

2

q

∑
k=1

ek
(q ⋅m)

, (1)

where ek =
m

∑
i=1

(yki − dki )
2
, q is the number of total train-

ing samples, m is the number of outputs, yki and dki are,
respectively, actual and desired outputs at the i-th out-
put node for the k-th training sample (Fausett, 1994).
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Fig. 1. A three-layer feed-forward neural network.

2.4. Optimization of primary weights of BPNN

Primary weights and thresholds are the most effec-
tive parameters on the performance of a neural net-
work. Since gradient descent algorithm is usually used
for minimizing the error function in the BP approach,
random selection of the primary weight and threshold
coefficients causes two main shortcomings: trapping in
local minima and low convergence rate (Gori, Tesi,
1992; Jaddi, Abdullah, 2018; Zhang et al., 2007).
Therefore, global search methods have been applied
to overcome these shortcomings. In this paper, GA,
PSO, and ICA methods are used to optimize the pri-
mary values of the weights and thresholds, with their
performances compared to one another.

The number of individuals is set as follows:

N = nlnh + nhno + nhbias
+ nobias

, (2)

where ni, nh, and no refer to the numbers of neurons
in the input, hidden and output layers of the neural
network, respectively, and nhbias

and nobias
are the

numbers of biases in the hidden and output layers,
respectively.

3. Establishment of sound database

In order to evaluate the proposed model, a sound
database is selected based on incorporating the model
with ASQC system for noise control of the Neonatal
intensive care unit (NICU) in our ongoing research.
Moreover, one of the criteria for ranking the NICU is
its environmental sound quality (Dunn et al., 2013).
NICU noise consists of equipment noise and human ac-
tivity noise. Medical staff activities and treatment op-
erations can generate noise. Caregiving routines involv-
ing talking, laughing and neutral emotional states can
add to the neonate’s environment noises. Moreover,
the crying also increases NICU noise level (Olbrych,
2010). Therefore, in this paper, the Oxford Vocal
Sounds (OxVoc) database is used for extracting the

sound indices; the sound samples include natural af-
fective vocal sounds from infants and adults (Parsons
et al., 2014). This database consists of a total of 173
non-verbal sounds including happy, sad and neutral
emotional states. The main feature of this database
is that it includes high-quality noise-free vocalizations
from different naturalistic situations. In this paper, the
psychoacoustic metrics of nonverbal affective sounds
are investigated for the first time. The use of non-
verbal vocalizations is very important in psychological
feature recognition since the vocalizations involve no
accent, individual features, and issues of authenticity.
Thus, the vocalizations are being increasingly utilized
today. The sampling frequency is set to 44 100 Hz for
using the mentioned samples in the developed sound
feature extraction model.

4. Sound feature extraction process

Since features of non-stationary audio signals
should be specified in the time and frequency domains,
selecting an appropriate time-frequency analysis ap-
proach is very important in the SQE. As the human
auditory threshold is in the range of 20 Hz to 20 kHz,
a three-order high-pass Butterworth filter is designed
for eliminating the infrasound, which is below 20 Hz
of the used sound signals. The resolution of WPT is
linear in frequency domain and the frequency ranges
are not overlapped. Therefore, it can be used for signal
analysis at different frequency bands according to the
human hearing system. In order to reach this goal and
remove the redundant data resulted from the WPT,
suitable nodes at multi levels of wavelet packet decom-
position tree should be selected. Based on the sampling
rate and the frequency partition of the critical bands,
a nine levels wavelet packet decomposition tree is de-
signed, as shown in Fig. 2. Then, a set of WPT nodes is
selected manually to create 24 critical bands as shown
in Table 2. Daubechies wavelet function (db35) is used
in this paper.
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Fig. 2. The selected nodes from the wavelet packet decomposition tree and the corresponding 24 critical bands.

Table 2. Frequency range of the selected nodes in the WPT model corresponding to the 24 critical bands.

Critical band rate,
z (Bark)

Critical bands
[Hz]

Frequency range of the WPT
[Hz]

Number of the selected nodes
in the wavelet tree

1 (0–100) (0–86) (8, 0)

2 (100–200) (86–172) (8, 1)

3 (200–300) (172–258),(258–301) (8, 2), (9, 6)

4 (300–400) (301–344),(344–430) (8, 4), (9, 7)

5 (400–510) (430–516) (8, 5)

6 (510–630) (516–688) (7, 3)

7 (630–770) (688–775) (8, 8)

8 (770–920) (775–861),(861–947) (8, 9), (8, 10)

9 (920–1080) (947–1033) (8, 11)

10 (1080–1270) (1033–1205),(1205–1291)) (7, 6), (8, 14)

11 (1270–1480) (1291–1378),(1378–1550) (7, 8), (8, 15)

12 (1480–1720) (1550–1722) (7, 9)

13 (1720–2000) (1722–2067) (6, 5)

14 (2000–2320) (2067–2411) (6, 6)

15 (2320–2700) (2411–2756) (6, 7)

16 (2700–3150) (2756–3100) (6, 8)

17 (3150–3700) (3100–3445), (3445–3789) (6, 9), (6, 10)

18 (3700–4400) (3789–4134), (4134–4478) (6, 11), (6, 12)

19 (4400–5300) (4478–4823), (4823–5512) (5, 7), (6, 13)

20 (5300–6400) (5512–6201) (5, 8)

21 (6400–7700) (6201–6890), (6890–7579) (5, 9), (5, 10)

22 (7700–9500) (7579–8268), (8268–9746) (4, 6), (5, 11)

23 (9500–12000) (9746–11025), (11025–12403) (4, 7), (4, 8)

24 (12000–15500) (12403–13789), (13789–16537) (3, 5), (4, 9)
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Considering the Zwicker’s model for calculating the
loudness and sharpness of the sound, the sound energy
distribution can be measured in the time-frequency do-
main to extract the sound features. The model pre-
sented in (Xing et al., 2016) estimates only the loud-
ness and sharpness, but the correlation analysis be-
tween the energy matrix as inputs and the roughness
and tonality as outputs, shows that there is a weak
correlation between the neural network inputs and out-
puts in this model. Table 3 shows the RMS error and
correlation coefficient of the ANN model presented in
(Xing et al., 2016). As seen in Table 3, this model can-
not be used to estimate roughness and tonality. How-
ever, the roughness and tonality are required for pre-
dicting the pleasantness. Thus, in this paper, in addi-
tion to energy matrix, two statistical features, namely
mean and standard deviation of selected nodes in WPT
model output, are used as neural network inputs to es-
timate the tonality and roughness metrics. The mean
scalogram is a representation of the sound energy de-
formations and the standard deviation of scalogram
reveals the temporal attributes and time fluctuations
of the signal.

Table 3. The RMS error and correlation coefficient based on
energy criteria input and objective psychoacoustic metric

outputs by ANN model.

Loudness Sharpness Roughness Tonality

R2 0.97317 0.93410 0.23934 0.45203

RMS 0.08190 0.10135 0.61151 0.39609

It is essential to analyze non-stationary sounds over
time and frequency domains. The temporal masking
effects in the human auditory system are considered
by setting the resolution of the sound in the time do-
main to 50 ms, and the frequency masking is observed
by setting up the frequency interval into 24 critical
bands. Thus, each sound signal is partitioned into 24
by T /50 ms blocks, where T is the signal length and
50 ms is the frame length commonly used in psychoa-
coustics analysis.

A schematic presentation of the presented model
for extracting the sound features is shown in Fig. 3.
First, the sound signal is passed through the high-pass
filter, and then it is divided into M frames of 50 ms in

Fig. 3. Schematic presentation of the WPT model for sound feature extraction.

time length. Each frame is divided into 24 sub-signals
by the multi-level node selection of the WPT. The en-
ergy value Ei is obtained for each sub-signal in a dis-
crete form with the following relationship:

Ei =∑
t

[ai(t)]2 ∆t, (3)

where ai(t) and ∆t are the amplitude of the i-th sub-
signal, and the time interval of ai(t), respectively.

The total extracted feature matrix would be the
input of the BPNN model, which is made by juxtapos-
ing the feature blocks of the n signals with a size of
n× (24× 3×T /50). The output of the neural network,
which is the sound quality matrices (SQM), can be
expressed as follows:

SQM = [loudness sharpness roughness tonality]T. (4)

4.1. Development of the sound quality
prediction model

In order to evaluate the sound quality, it is neces-
sary to map the extracted sound features to the re-
lated psychoacoustic metrics. Accordingly, the BPNN
model can be used for this purpose. As previously
mentioned, in order to overcome the challenges of the
BPNN model, some evolutionary optimization algo-
rithms (GA, PSO, and ICA) are used to obtain initial
weights and thresholds of the BPNN model. The pre-
sented model used to predict the objective psychoa-
coustic parameters goes through the following steps
(Fig. 4):

Step 1: Identification of the input and output
nodes. Considering the energy, mean and standard
deviation scalogram of the output sub-signals of the
multi-level node selection WPT method, the number
of neurons in the input layer is found to be 3×24 = 72.
Four outputs there exist in the output of the ANN
to represent the four psychoacoustic metrics: loudness,
sharpness, roughness, and tonality.

Step 2: Selection of neurons in the hidden layer em-
pirically via a trial and error approach.

Step 3: The linear function is selected as the out-
put transfer function f2, and two sigmoid transfer
functions including logarithmic sigmoid and hyperbolic
tangent functions can be used as the transfer function
f1 of the hidden layer.
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Fig. 4. Schematic of the combined BPNN and WPT model used for predicting the objective psychoacoustic metrics.

Step 4: Optimization of the initial weights and
thresholds of the BPNN model using the evolutionary
optimization algorithms.

Step 5: Training the BPNN.
Step 6: Computing hidden layer values and output

layer values.
Step 7: Calculating MSE of the network (Eq. (1)).
Step 8: Updating the weights and thresholds of the

neural network.
Step 9: If the MSE is less than a predetermined

value, the BP algorithm stops, otherwise, the algo-
rithm returns to Step 2.

4.2. Architectural design of optimized BPNN

In order to train the neural network, objective psy-
choacoustic metrics and sound feature matrices are
computed by programming in MATLAB software. Sev-
enty percent of the sound samples are randomly sepa-
rated and are used to train the network; fifteen percent
of the data are used for validation purposes, and the
remaining formed a basis for testing the neural net-
work. In order to achieve a precise prediction model,
it is necessary to determine the network structure and
the training parameters.

The optimal number of neurons in the hidden layer
and the transfer functions are determined by trial and
error. Accordingly, the number of neurons is experi-
mentally changed from 8 to 50 according to the number
of inputs and outputs of the neural network. In order to
identify appropriate activation functions f1 and f2 in
the hidden and output layers, different combinations of
sigmoid functions (tansig, logsig) and linear function
(purelin) are considered. The predicated RMS errors
for different feasible combinations of the transfer func-
tions are listed in Table 4. As seen, the combination of
(logsig, purelin) gives the lowest mean RMS error. The
effect of the number of neurons on the accuracy of the
final BPNN model is shown for various output param-
eters based on the RMS errors in Table 5. The lowest
RMS error value for the predicted psychoacoustic met-
rics is achieved at h = 12. Consequently, 12 neurons are

Table 4. The RMS errors of the network outputs
for different transfer functions.

Neuron
number

All data A B C D

(tansig, purelin)

8 0.1515 0.0980 0.1243 0.1617 0.2015

12 0.1764 0.1462 0.1630 0.1714 0.2173

16 0.1604 0.1121 0.1422 0.1650 0.2072

20 0.1754 0.1469 0.1628 0.1702 0.2146

25 0.1668 0.1264 0.1514 0.1666 0.2113

Mean 0.1661 0.1259 0.1487 0.1670 0.2104

(logsig, purelin)

8 0.1506 0.0976 0.1162 0.1668 0.1998

12 0.1419 0.0824 0.1098 0.1568 0.1928

16 0.1685 0.1298 0.1528 0.1690 0.2117

20 0.1694 0.1290 0.1541 0.1699 0.2133

25 0.1529 0.0991 0.1309 0.1609 0.2019

Mean 0.1567 0.1076 0.1328 0.1647 0.2039

(tansig, tansig)

8 0.1530 0.1209 0.1227 0.1593 0.1964

12 0.1517 0.1181 0.1292 0.1589 0.1900

16 0.1666 0.1401 0.1521 0.1672 0.2008

20 0.1680 0.1481 0.1421 0.1664 0.2074

25 0.1871 0.1470 0.1578 0.1742 0.2512

Mean 0.1653 0.1349 0.1408 0.1652 0.2092

(logsig, tansig)

8 0.1442 0.0909 0.1163 0.1583 0.1905

12 0.1448 0.0922 0.1127 0.1555 0.1962

16 0.4048 0.7551 0.1376 0.1595 0.2019

20 0.6131 0.7551 0.9326 0.1573 0.1978

25 0.4042 0.7551 0.1348 0.1593 0.1995

Mean 0.3422 0.4897 0.2868 0.1580 0.1972

A – loudness, B – sharpness, C – roughness, D – tonality.

used in the hidden layer, with the transfer functions f1

and f2 set to logarithmic sigmoid (logsig) and pure line
(purelin), respectively.
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Table 5. Sensitivity analysis of the RMS errors of the BPNN model versus number of neurons in the hidden layer.

Neuron
number

All data A B C D

7 0.150397 0.091415 0.120058 0.164543 0.201575

8 0.15063 0.097577 0.11625 0.166771 0.199774

10 0.157641 0.10973 0.132403 0.1668 0.20496

11 0.167282 0.125133 0.147472 0.170043 0.213572

12 0.141947 0.082369 0.109833 0.156811 0.192764

14 0.166157 0.125029 0.150333 0.167564 0.210053

15 0.16141 0.111813 0.145899 0.165064 0.207792

16 0.168519 0.129807 0.152776 0.169028 0.21174

18 0.168553 0.132291 0.151586 0.169371 0.21089

20 0.169388 0.129047 0.154095 0.169933 0.213292

25 0.152948 0.099071 0.130878 0.160866 0.201869

30 0.165381 0.122711 0.148726 0.167142 0.210452

35 0.164204 0.121196 0.148776 0.166221 0.208325

40 0.167162 0.124484 0.152715 0.168412 0.211167

45 0.167234 0.130515 0.152295 0.165501 0.210356

50 0.168237 0.132168 0.151485 0.166759 0.21211

A – loudness, B – sharpness, C – roughness, D – tonality.

Table 6. Optimal parameters for the four SQ prediction models designed in this research.

Type of algorithm Parameters Value

BP

Number of the hidden layer 1
Number of neurons in the input layer 72

Number of neurons in the hidden layer 12
Number of neurons in the output layer 4

Transfer function of the input-hidden layer Logsig
Transfer function of the hidden-output layer Purelin

Training function Levenberg-Marquardt
Momentum factor 0.9

Learning rate 0.5
Training target of MSE 0.001

Testing performance MSE

GA

Population size of GA 150
Max generation 100
Crossover factor 0.5
Mutation factor 0.02

PSO

Population size of PSO 200
Max generation 100

Acceleration factors 2
Inertial factor 0.7 to 0.4

Particle dimension 928

ICA

Number of Countries 200
Number of Initial Imperialists 50

Number of Decades 50
Revolution Rate 0.3

ξ 0.02
γ 0.5
β 2
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Prior to the network training, all data should be
normalized to the interval [−1, 1] to remove the effect
of data magnitudes and prevent large prediction errors.
The normalization is using Eq. (5):

x′i =
xi − xmin

xmax − xmin
, (5)

where x′i is the normalized value.
Final optimal parameters of the proposed method

are reported in Table 6. Performance curve of the four
well-trained models is shown in Fig. 5, where the hor-
izontal axis denotes the number of iterations and the
vertical axis shows the prediction MSE of the network.
This figure reveals that the ICA-BPNN model con-
verges to the target MSE at 640 iterations. The con-
vergence rate of this model is approximately 1.5 times,
1.8 times, and 2.2 times faster than the convergence
rate of the PSO-BPNN model, GA-BPNN model, and
standard BPNN model, respectively.

Fig. 5. Performance curve of the four SQ prediction models.

4.3. Discussion and model verification

In Table 7, RMS errors and R2 values are tabu-
lated for BPNN, GA-BPNN, PSO-BPNN, and ICA-
BPNN models in the testing phase. By comparing the
results, we concluded that the PSO-BPNN model has
higher accuracy and lower RMS error than the other
three models. So that the corresponding mean RMS
value of PSO-BPNN is 79%, 70%, and 67% of those of
ICA-BPNN, GA-BPNN, and standard BPNN model,

Table 7. Performance of BPNN, GA-BPNN, PSO-BPNN, and ICA-BPNN models.

Model
Loudness Sharpness Roughness Tonality Mean

RMS R2 RMS R2 RMS R2 RMS R2 RMS R2

BPNN 0.08237 0.98237 0.10983 0.98883 0.15681 0.88528 0.19276 0.93396 0.13544 0.94761
GA-BPNN 0.09138 0.98084 0.09859 0.98925 0.14259 0.88564 0.18443 0.93323 0.12925 0.94724
PSO-BPNN 0.09210 0.98526 0.10473 0.98936 0.09885 0.88234 0.06543 0.93104 0.09028 0.947
ICA-BPNN 0.09151 0.98203 0.08504 0.98885 0.09717 0.8919 0.18247 0.93519 0.11405 0.94949

respectively. The mean correlation coefficient indicates
that the developed model is highly reliable for SQE ap-
plications.

Plots of comparison between real and prediction
outputs of the BPNN model are shown in Fig. 6 for
loudness, sharpness, roughness and tonality metrics.
According to the figures, the prediction outputs of the
BPNN model show good agreement with the real data.
Better conformity can be found for the loudness and
sharpness results. Since the roughness and tonality val-
ues of the applied sound data are relatively small, the
corresponding graphs exhibit a lot of compaction.

a)

b)

c)

d)

Fig. 6. Comparison between real and predicted SQE model
for: a) normalized loudness, b) normalized sharpness,

c) normalized roughness, and d) normalized tonality.
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Three typical sound samples (Signals 1 to 3) includ-
ing cry, laughter, and neutral vocalizations of adults
are selected. Based on the presented algorithm in
Fig. 3, the feature matrix is computed for each sound
signal and then fed to the presented model. Table 8
presents the corresponding mean percent error and
RMS error to each signal for each optimized model
in the simulation phase.

The maximum mean percent error for loudness
is 6.2729%, with a maximum RMS of 0.1443, while
the highest mean error for sharpness is 6.7971% with
a maximum RMS of 0.1524. The corresponding val-
ues to roughness are 6.3741% and 0.1480, respectively,
while those of tonality are 6.5799% and 0.1574, respec-
tively. The highest mean percent error is that of PSO-
BPNN (4.4726%), which is 0.9182% lower than that of
ICA-BPNN model (5.3908%), 1.0152% lower than that
of GA-BPNN model (5.4878%), and 1.8122% lower
than that of the BPNN model (6.2848%). In addition,
the highest mean RMS of PSO-BPNN is calculated to
be 0.1006, i.e. 22%, 28%, and 45% lower than those of
ICA-BPNN (0.1228), GA-BPNN (0.1288), and BPNN
model (0.1464), respectively. An overview of the results
demonstrates that maximum mean percent error of the
developed models is 6.3%, indicating very good accu-
racy for calculating the loudness, sharpness, roughness
and tonality indices.

Based on the above reviews, it can be concluded
that, among others, the multi-level node selection of

Table 8. Loudness, sharpness, roughness, and tonality errors between real data and predicted values using the presented
models for three selective signals.

Model
Loudness Sharpness Roughness Tonality Mean

Mean [%] RMS Mean [%] RMS Mean [%] RMS Mean [%] RMS Mea [%] RMS

BPNN 6.2729 0.1400 6.7971 0.1524 5.7872 0.1480 6.2820 0.1453 6.2848 0.1464

GA-BPNN 5.7456 0.1336 5.1816 0.1231 6.2719 0.1392 4.7522 0.1194 5.4878 0.1288

ICA-BPNN 4.8549 0.1138 5.6464 0.1244 5.6732 0.1250 4.4641 0.1114 5.1597 0.1187

PSO-BPNN 3.6269 0.0819 3.2486 0.0778 4.2600 0.0980 3.2578 0.0806 3.5983 0.0846

BPNN 5.9475 0.1390 5.3186 0.1280 6.2028 0.1465 6.5799 0.1449 6.0122 0.1396

GA-BPNN 5.6212 0.1286 5.8412 0.1317 6.1609 0.1408 4.1354 0.1006 5.4396 0.1254

ICA-BPNN 5.5848 0.1236 5.4748 0.1255 5.8174 0.1334 4.6864 0.1085 5.3908 0.1228

PSO-BPNN 4.4812 0.1031 4.5459 0.1015 3.6822 0.0869 3.5839 0.0812 4.0733 0.0932

BPNN 6.1599 0.1443 6.6779 0.1348 6.3741 0.1423 5.6989 0.1574 6.2277 0.1447

GA-BPNN 5.3350 0.1251 5.3076 0.1226 4.7834 0.1154 4.7828 0.1205 5.0522 0.1209

ICA-BPNN 5.4491 0.1226 4.5428 0.1092 4.7462 0.1105 4.9357 0.1198 4.9184 0.1155

PSO-BPNN 5.4239 0.1157 4.2089 0.0971 4.1514 0.0972 4.1063 0.0924 4.4726 0.1006

Table 9. The computational time of calculating loudness, sharpness, roughness, and tonality in various
models for another test cry vocalization of adult “Adultfemale cry02”.

Psychoacoustic
Metrics Code

MATLAB Code
(mathematical models)

LabVIEW Sound
and Vibration Toolkit

Proposed model

Computational time [s] 1.6659 1.5609 0.7141

the WPT combined with the PSO-BPNN is the most
accurate model for predicting the SQ of the signal, al-
though the convergence rate of ICA-BPNN is faster,
as seen in Fig. 5. The developed prediction mod-
els are considerably superior over traditional models
for computing psychoacoustic indices and have good
generalizability for direct SQE. By applying the pre-
sented models, especially for non-stationary signals,
the SQE can be carried out conveniently rather than
performing the complex subjective evaluations and
time-consuming and costly tests. To compare the com-
putational load in computing the psychoacoustic in-
dices, the calculating times of four metrics including
loudness, sharpness, roughness, and tonality between
the traditional algorithms, commercial software and
the proposed model are shown in Table 9. A com-
puter with processor Intel(R) Core(TM) 2 Duo CPU
2.66 GHz and RAM 4 GB performs all psychoacoustic
calculations. The results clearly demonstrate the su-
periority of the proposed method in reducing the com-
putational burden for predicting the quality of non-
stationary sounds.

In addition, the computed psychoacoustic indices
for Signal 1 are compared with the results from the
corresponding mathematical models in Fig. 7. The fig-
ure shows that there is a good agreement in the varia-
tion tendencies between BPNN model outputs and the
results from mathematical models.
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a)

b)

c)

d)

Fig. 7. Comparison of time-varying SQE results between corresponding mathematical model outputs
and the presented model outputs for another test cry vocalization of adult “Adultfemale cry02”:

a) loudness, b) sharpness, c) roughness, and d) tonality.

5. Conclusion

In this paper, a modified intelligent model was pre-
sented to determine objective sound metrics for using

in SQE directly by combining the WPT method and
an optimized ANN. This model can be combined with
current microphones using embedded FPGA boards
to measure sound quality in various applications. The
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main advantages of the proposed model are in its low
computational cost and high accuracy compared to
previous models. These advantages lead to using this
measuring technique in real-time applications. Multi-
level nodes selection in the WP tree was used to ex-
tract feature matrices of sound signals corresponding
to human auditory critical bands. The feature matrices
include energy, mean and standard deviation values of
the sub-signals. Then, these features were fed to the
ANN in order to predict the sound quality metrics.
Various optimization algorithms including BP, GA,
PSO, and ICA were studied to find the best primary
weights and thresholds in the ANN. Results demon-
strate that the PSO is the most effective algorithm in
finding the optimum. The overall comparison between
the developed model outputs and the corresponding
psychoacoustic models show that maximum mean er-
ror is as low as 6.3% and the correlation coefficient is
more than 0.9, while the computational cost is lower
than the previous models. The newly presented model
provides an important and effective tool in analyzing
SQ in real-time applications such as incorporating with
ASQC of nonstationary noises and gives a reliable tech-
nique for studies related to human hearing.
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