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The nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention
is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound
mode and the entropy mode. The modes are determined by links between perturbations of pressure, den-
sity, and fluid velocity. This definition follows from the linear conservation equations in the differential
form and thermodynamic equations of state. The leading order system of coupling equations for interact-
ing modes is derived. It consists of diffusion inhomogeneous equations. The main aim of this study is to
identify the principle features of the interaction and to establish individual contributions of attenuation
(mechanical and thermal attenuation) in the solution to the system.
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1. Introduction

Nonlinear acoustics studies not only distortions of
sound itself but also interaction of different types of
fluid motion. The variety of interactions includes ex-
citation of the non wave modes (entropy and vortex
ones) by waves, scattering of waves on wires and ther-
mal inhomogeneities which may associate with the non
wave modes, and scattering of waves by waves. The
problems concerning interaction of modes go far be-
yond the fluid dynamics and belong to the general wave
theory. The similar problems arise in electrodynam-
ics, radiophysics, and solid state theory (Askaryan,
1966; Leble, Perelomova, 2018). In solids, fast and
slow waves may propagate, as well as in the mag-
netic fluids. This increases diversity of interactions.
Heterogeneity of a fluid always complicates definition
of wave modes and theoretical description of nonlin-
ear fluid dynamics. The features of interaction depend
on the ratio of magnitudes of specific perturbations.
Particularly, self-action of intense wave mode leads
to its nonlinear distortions in the course of propa-
gation.

The main goal of this study is to derive and analyse
simplified system of equations responsible for weakly
nonlinear interaction of modes in the case of the domi-

nant wave mode. We consider the simplest planar flow
with mechanical and thermal losses, which allows to
make general conclusions in more complex flows. The
key issue is to determine the modes of a flow. The ana-
lysis makes use of the linear definition of modes and
properties of projecting. The linear projecting of the
total field of perturbations into specific modes can
be provided algorithmically. It has been worked out
and applied by the author in various examples of fluid
flows. Definition of the modes in the correspondent to
conservation equations spectral problem is the founda-
tion of the theory. In a one dimensional flow, a mode
is determined by the links of velocity and two ther-
modynamic variables (excess pressure and density, for
example) for every type of possible motion in a fluid:
two acoustic and entropy modes. In a three dimen-
sional flow, there are five modes in general: two acous-
tic, two vortex, and one entropy mode (Chu, Kovasz-
nay, 1958; Pierce, 2019). Involving in consideration
relaxation processes, ionised media, multi-phase flows,
boundaries may increase the number of modes and
make their definition fairly difficult (Leble, Perelo-
mova, 2018; Perelomova, 2015; 2018). In spite of
this, the procedure of definition is algorithmic in all
cases, that is, it consists of a certain sequence of ac-
tions.
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Once the modes are determined accordingly to the
linear links of perturbations, the system of conserva-
tion laws in the differential form splits by means of
projecting into a system of nonlinear dynamic equa-
tions which govern specific perturbations. The sys-
tem accounts for weakly nonlinear interactions be-
tween modes. In the leading order, it is equivalent
to the initial system of conservation laws, but it is
much more convenient for the approximate solution
in many applications. The advantage of the method of
projecting is in consideration of every mode individ-
ually and making use of the first order partial differ-
ential equations with respect to time, which are much
simpler for analytical or numerical solution than the
higher order equations. The advantage is also in pos-
sibility of instantaneous description of modes inter-
action, without estimation of average over time and
reference to strictly periodic processes (Hamilton,
Blackstock, 1998; Pierce, 2019). Examples of var-
ious applications of projecting in the fluid mechanics
are discussed by Leble and Perelomova (2018) and
referenced there papers. Projecting is an algorithmic
and direct method which is exceptionally successful in
complex problems of nonlinear fluid flow. Most prob-
lems of nonlinear acoustics presuppose the dominant
sound, and perturbations in other modes are compara-
tively small (Makarov, Ochmann, 1996; Hamilton,
Blackstock, 1998). Over the temporal and spatial
domains, where it holds true, excitation of other modes
is described by the PDEs of the first order regarding
time with an acoustic source quadratic in the leading
order. The interaction of modes takes place exclusively
in the nonlinear flow with attenuation, and all source
terms which reflect interaction, are nonlinear. They are
proportional to viscous or thermal attenuation. Veloc-
ity in the dominant wave mode in a Newtonian flow
satisfies the Burgers dynamic equation (Rudenko,
Soluyan, 1977).

The main problem is to solve the system of PDEs
with the inhomogeneity representing the quadratic
terms of the dominant mode and proper interpreta-
tion of results. The perturbations specifying sound are
quasi isentropic, if they are determined by the linear
links. They need to be corrected by quadratic terms
going to studies of nonlinear effects associating with
sound which are also quadratic in the leading order.
The modes determined by linear links of perturbations
are nearly progressive or quasi stationary only in the
frames of a linear flow. The directivity property fails
even in a weakly nonlinear flow. As for the self action of
the dominant mode, when the linear dynamic equation
is supplemented by a quadratic term of the dominant
perturbation, the directivity property is preserved. It
turns out that the excited perturbations in the lead-
ing order consist of parts which propagate with their
own linear speed and speed of the dominant mode.
This must be paid attention to in evaluations of to-

tal secondary fields. This study clarifies the postulate
and takes into account viscous and thermal attenua-
tion, that is, it considers solutions to the diffusion inho-
mogeneous equations. The individual contributions of
thermal conduction and shear viscosity in the context
of excitation of the secondary modes are discussed.

2. Foundations of weakly nonlinear projecting

In this section, we remind briefly the definition of
modes and relating to them projectors in accordance
to the author’s results (Leble, Perelomova, 2018;
Perelomova, 2003; 2006). We start from the set of
conservation equations in the planar flow of a ther-
moconducting Newtonian fluid in the differential form.
They are: the momentum equation, the energy balance
equation, and the continuity equation:

ρ(∂v
∂t

+ v ∂ρ
∂x

) + ∂p
∂x

= 4µ

3

∂2v

∂x2
,

ρ(∂e
∂t

+ v ∂e
∂x

) + p∂v
∂x

= χ∆T + 4µ

3
(∂v
∂x

)
2

, (1)

∂ρ

∂t
+ (∂ρv)

∂x
= 0,

where x, t are the spatial coordinate and time, and
ρ, p, v, e, T denote density, pressure, velocity, inter-
nal energy, and temperature of a fluid. χ, µ are ther-
mal conductivity and shear viscosity, both assumed to
be constants. Thermodynamic equations of state of an
ideal gas supplement the system (1). Its internal energy
and temperature are related as

e = CvT = p

(γ − 1)ρ
,

with Cv denoting the heat capacity under constant
volume per unit mass. γ = Cp/Cv is the ratio of
specific heats. Fluids obeying the equations of state
differing from that for an ideal gas, may be readily
considered (Leble, Perelomova, 2018). We make
use of excess quantities which are denoted by primes
p′ = p − p0, ρ

′ = ρ − ρ0. The equilibrium quantities are
indicated by the lower index 0. A gas is static in equi-
librium, v0 = 0.

A linear fluid flow, that is, a flow of infinitely small
magnitude of perturbations, is represented by the lin-
earised version of the system (1) with zero right-hand
side, which may be rearranged as

∂ψ

∂t
+Lψ = 0, (2)

where

ψ =
⎛
⎜
⎝

v
p′

ρ′

⎞
⎟
⎠
, L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−δ1
∂2

∂x2

1

ρ0

∂

∂x
0

γp0
∂

∂x
γδ2
γ−1

∂2

∂x2
− c

2
0δ2
γ − 1

∂2

∂x2

ρ0
∂

∂x
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,



A. Perelomova – Nonlinear Interaction of Modes in a Planar Flow of a Gas with Viscous. . . 553

and

δ1 =
4µ

3ρ0
, δ2 =

χ

ρ0
( 1

Cv
− 1

Cp
) , c0 =

√
γp0

ρ0
.

The vectors as follows describe all possible types of
perturbations in a linear flow:

ψi =
⎛
⎜
⎝

vi
pi
ρi

⎞
⎟
⎠
, i = 1,2,3,
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2c20
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v1,
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−ρ0
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+ β

2c20
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ψ3 =

⎛
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− δ2
(γ − 1)ρ0

∂

∂x

0

1

⎞
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⎠

ρ3.

The vectors represent modes with the ordering num-
bers i (i = 1,2,3), where v1, v2 are velocities of a fluid
which associate with the first and second wave modes,
ρ3 is an excess density which specifies the entropy
mode, and β = δ1 + δ2 denotes the total attenuation.
They correspond to the well known dispersion relations
(Rudenko, Soluyan, 1977):

ω1 = c0k + i
βk2

2
, ω2 = −c0k + i

βk2

2
,

ω3 = i
δ2k

2

γ − 1
,

(4)

where k is the wave number. Three linearly indepen-
dent vectors (3) reflect three kinds of a fluid motion in
a planar flow: two first are acoustic ones, propagating
in the positive and negative directions of axis x, and
the third one is the entropy mode. The reference quan-
tities v1, v2, ρ3 determine the overall perturbations v,
p′, ρ′ in a one-to-one way:

ψ =
3

∑
i=1

ψi.

The specific velocities may be extracted from the vec-
tor of total perturbations by means of projecting rows:

Miψ = vi, i = 1,2,3. (5)

These rows take the forms

M1 = (1

2
− a∗ 1

2c0ρ0
− δ2

2b∗
∂

∂x

δ2
2c∗

∂

∂x
) ,

M2 = (1

2
+ a∗ − 1

2c0ρ0
− δ2

2b∗
∂

∂x

δ2
2c∗

∂

∂x
) , (6)

M3 = (0
δ2
b∗

∂

∂x
− δ2
c∗

∂

∂x
) ,

where

a∗ = δ1 − δ2
4c0

∂

∂x
, b∗ = (γ − 1)c20ρ0, c∗ = (γ − 1)ρ0.

Obviously,
3

∑
i=1

Mi = (1 0 0).

The important property of projecting rows Mi is to
extract the linear dynamic equation for vi when they
apply at Eq. (2). For example,

M1 (∂ψ
∂t

+Lψ) = ∂v1

∂t
+ c0

∂v1

∂x
− β

2

∂2v1

∂x2
= 0.

The projecting rows (6) lead to the system of dy-
namic equations accounting for nonlinear interaction
of modes. When they apply at Eq. (1), they yield the
leading order dynamic equations with cross quadratic
nonlinear terms forming the “forces” responsible for
interaction between modes. Meaning the dominance of
sound, only terms belonging to the acoustic modes can
be considered. They are of order of the squared Mach
number, M2. Hence, the dominant wave modes must
theirselves be corrected in order to hold adiabaticity
within accuracy up to terms proportional to M2. In
particular, if the rightwards progressive mode is dom-
inant, the relations take the forms

ψ1=

⎛
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⎝
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∂
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1

⎞
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⎠

v1 +

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0

(γ + 1)ρ0

4

−(γ − 3)ρ0

4c20

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

v2
1 . (7)

Equation (7) in fact is the leading order series of
the links which specify the simple wave (Rudenko,
Soluyan, 1977). Additionally, they take into account
attenuation. We make use of relation (7) going to study
the weakly nonlinear flow. They have impact on the
coupling of modes and dynamic equations taking into
account interaction between modes. Velocity specify-
ing the first acoustic mode satisfies the Burgers equa-
tion

∂v1

∂t
+ c0

∂v1

∂x
+ (γ + 1)

2
v1
∂v1

∂x
− β

2

∂2v1

∂x2
= 0. (8)
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It may be obtained by applying of M1 at the system (1)
for ψ1 taken alone among all nonlinear terms. Equa-
tion (8) may be rearranged into the linear diffusion
equation and hence may be solved analytically with
the proper initial and boundary conditions (Rudenko,
Soluyan, 1977).

3. Excitation of the secondary perturbations
in the field of one dominant sound mode

To derive an equation which takes into account
coupling of the first and second sound modes, let
us suppose that the first mode is dominant. Hence,
we consider exclusive contribution of v1 among all
quadratic terms forming a “driving force”. Applying
M2 at Eqs (1) and making use of ψ1 (Eq. (7)) and
ψ2 (Eqs (3)), we arrive at the leading order dynamic
equation:

∂v2

∂t
− c0

∂v2

∂x
+ (γ + 1)c0

2ρ0
v2
∂v2

∂x
− β

2

∂2v2

∂x2
=

−β(3γ − 5)
8c20

(∂v1

∂x
)

2

−β(γ + 1)
8c20

v1
∂2v1

∂x2
= F2(x, t). (9)

The “acoustic force” in the right hand side of equation
F2 is nonlinear (quadratic in the frames of accepted ac-
curacy) and proportional to the total attenuation. This
reflects the necessary conditions for modes coupling,
namely, nonlinearity and attenuation. It is important
to note that both nonlinear distortions of dominant
mode and nonlinear excitation of the perturbations in
the second mode depend exclusively on the total at-
tenuation, not on its parts associating with mechani-
cal and thermal attenuation. Excitation of an excess
density in the entropy mode is described by equation

∂ρ3

∂t
− δ2
γ − 1

∂2ρ3

∂x2
= β(γ − 1)ρ0

2c20
(v1

∂2v1

∂x2
− (∂v1

∂x
)

2

)

= F3(x, t). (10)

An excess density ρ3 is used as a reference variable
since the velocity associating with the entropy mode is
fairly small, and specific excess pressure equals zero in
the leading order. The solution to Eq. (10) depends on
both δ1 and δ2. We will consider solutions to Eqs (9)
and (10) at the infinite axis x which satisfy zero initial
conditions,

v2(x,0) = 0, ρ3(x,0) = 0. (11)

3.1. Preliminary remarks concerning the structure
of excited perturbations at the infinite axis

Equations (9) and (10) are instantaneous. The pre-
liminary conclusions of nonlinear interaction may be
drawn out from the simplified dynamic equations

∂v2

∂t
− c0

∂v2

∂x
= F2(x, t), (12)

∂ρ3

∂t
= F3(x, t), (13)

following from Eqs (9) and (10) if attenuation and non-
linearity in the left hand linear sides of equations are
omitted. An exact solution to Eq. (12) with accounting
for Eq. (11) is

v2(x, t) =
t

∫
0

F2(c0(t − τ) + x, τ)dτ. (14)

For the first approximation, velocity in the dominant
mode is a function of x − c0t, F2(x − c0t). In this case,
the solution is

v2(x, t) =
1

2c0
(Φ2(x + c0t) −Φ2(x − c0t)) , (15)

where Φ2 is a primitive function to F2. So, v2 in general
consists of planar waves of the same shape propagating
with velocities c0 and −c0. The solution to (13), which
satisfies zero initial condition, takes the form

ρ3(x, t) =
1

c0
(Φ3(x) −Φ3(x − c0t)) , (16)

if F3 is a function of x − c0t, and Φ3 is a primitive
function to it.

3.1.1. Harmonic excitation

Let us consider an example of harmonic solution
to the wave equation without account for nonlinearity
and attenuation, that is,

v1 = V0 sin(kc0t − kx), (17)

where the wave number k relates to the frequency ω as
k = ω/c0. The “acoustic forces” for this exciter equal

F2 = −
βk2V 2

0 [γ − 3 + 2(γ − 1) cos(2k(x − c0t))]
8c0

,

F3 = −
βk2V 2

0 (γ − 1)ρ0

2c20
.

(18)

The solutions to the Cauchy problem with zero initial
conditions in the dimensionless values

X = kx, T = kc0t, B = βk
c0
, M = V0

c0
(19)

take the forms
v2

c0
= −BM

2(γ − 3)T
8

− BM
2(γ − 1)
16

⋅ (sin(2T − 2X) + sin(2T + 2X)) , (20)

ρ3

ρ0
= −BM

2(γ − 1)T
2

. (21)

Oscillation frequency of perturbations in the excited
wave mode doubles due to nonlinear effects, and
non oscillating parts of perturbations enlarge in time
poportionally to T .
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3.1.2. Gaussian impulse

The next example concerns an impulse

v1 =Mc0 exp((X − T )2). (22)

This case corresponds to impulsive “acoustic forces”
F2 and F3:

F2 = −
Bkc20M

2e−2(X−T )2

4
((γ−1)(8(X−T )2) − (γ+1)) ,

(23)
F3 = −B(γ−1)kc0M2ρ0e

−2(X−T )2

.

The impulse excites perturbations as follows:

v2

c0
= BM2

32
[8(γ − 1)((T −X) exp(−2(T −X)2)

+ (T +X) exp(−2(T +X)2)) (24)

⋅ (γ − 3)
√

2π(Erf(
√

2(X − T ))

−Erf(
√

2(X + T )))],

ρ3

ρ0
= − d∗

2
√

2
,

where

d∗ = BM2(γ−1)
√
π [Erf(

√
2X) −Erf (

√
2(X − T ))] .

We may conclude that v2 is symmetric with respect to
the straight line X = 0, and ρ3 is symmetric with re-
spect to the line X = T /2. The head front of ρ3 moves
with the speed c0, and its back front is motionless. As
for the summary perturbation of density excited by
the dominant sound, it is a sum of individual parts,
ρ2 ≈ −ρ0v2

c0
and ρ3. In all evaluations, γ = 1.4. They

were carried out in Mathematica. The total excited
perturbations of density and pressure are negative and
diverge along the axis x with different speeds. They are
shown in Fig. 1. All figures have been plotted in Math-
ematica. In view of links established by ψ3, the “acous-
tic force” producing velocity which associates with this
mode equals − δ2

(γ−1)ρ0

∂F3

∂x
, that is, is the quantity of or-

der β2 and hence is negligible.

3.1.3. The shock wave

As an exciter, the stationary solution of the Burgers
Eq. (8) is considered:

v1 =Mc0 tanh (Re (T −X)) , (25)

where Re is the Reynolds number which expresses the
ratio of nonlinear and viscous effects,

Re = M(γ − 1)
B

. (26)

Fig. 1. Summary perturbations of density (top panel) and
pressure (bottom panel) in secondary modes excited by the
dominant wave mode. Case of impulsive excitation (22).

The “acoustic forces” in this case take the forms

F2 =
(γ − 1)c20kM3Re

8 cosh4(Re (T −X))

⋅ [4 − 4γ + (γ + 1) cosh(2Re (T −X))] ,

F3 = −
(γ − 1)2c0kM

3Reρ0 cosh(2Re (T −X))
2 cosh4(Re (T −X))

.

Hence, the shapes of excited perturbations depend on
the Reynolds number, but their magnitudes are pro-
portional to M3, not to M2B. Evaluations in Mathe-
matica lead to the following excited perturbations:

v2

c0
= M

3

48
(γ − 1){[9 − 7γ + 2(3 − γ) cosh(2Re (T −X))]

⋅ cosh−2[Re (T −X)] tanh[Re (T −X)]
+ [9 − 7γ + 2(3 − γ) cosh(2Re (T +X))]
⋅ cosh−2[Re (T +X)] tanh[Re (T +X))]},

ρ3

ρ0
= −M

3

6
(γ − 1)2(cosh−3(Re (T −X))

⋅ sinh(3Re (T −X)) + cosh−3(ReX) sinh(3ReX)).

The excited secondary perturbations are shown in
Fig. 2.
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Fig. 2. Top row: velocity in the second mode excited by the shock wave (25). Bottom row: excess density in the third
mode excited by the shock wave (25). Re = 0.1 (left panels) and Re = 1 (right panels).

3.2. Solutions to the diffusion equation
at the infinite axis

One may expect that the main features of inter-
mode’s excitation are similar to those discovered in
the previous subsection. The Burgers Eq. (8) readily
rearranges into the linear diffusion equation by means
of the Hopf-Cole transformation. Equation (9) may be
also rearranged into the inhomogeneous diffusion equa-
tion. We focus on the equation with the omitted non-
linearity in the left hand side,

∂v2

∂t
− c0

∂v2

∂x
− β

2

∂2v2

∂x2
= F2(x, t). (27)

Let us consider the Cauchy problem with zero initial
condition at the infinite axis x. It is convenient to re-
arrange the equation in the variables x1 = x + c0t, t:

∂v2

∂t
− β

2

∂2v2

∂x2
1

= F2(x1 − c0t, t). (28)

The solution to Eq. (28) takes the form

v2(x1, t) =
t

∫
0

∞

∫
−∞

e−
(x1−ξ)2
2β(t−τ)

√
2β(t − τ)

F2(ξ−c0τ, τ)dξ dτ. (29)

The solution to (10) which satisfies the zero initial con-
dition, is

ρ3(x, t) =
√
γ − 1

t

∫
0

∞

∫
0

e
− (x−ξ)

2(γ−1)
4δ2(t−τ)

2
√
πδ2(t − τ)

F3(ξ, τ)dξ dτ.

(30)

3.2.1. Harmonic excitation

In the case of harmonic dominant perturbations
(17), evaluations for “forces” given by Eqs (18) in
Mathematica, result in

v2

c0
= −BM

2(γ−1)
8(4+B2)

[Be2BT cos(4T −2X1)−B cos(2X1)

+2e2BT sin(4T − 2X1) + 2 sin(2X1)]

−BM
2(γ − 3)T

8

≈ −BM
2(γ − 3)T

8
− BM

2(γ − 1)
16

⋅ (e2BT sin(2T − 2X) + sin(2T + 2X)) , (31)

where X1 = kx1. In view of weak attenuation over the
sound period, B ≪ 1. The conclusion is as before, that
is, the excited perturbation includes a part following
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the dominant mode and a part propagating with its
own linear speed. At large number of sound periods,
T ≫ 1, the difference in solutions Eqs (31) and (20) en-
hances in their parts following the dominant mode. At
small times, Eqs (31) and (20) coincide in the leading
order. The solution ρ3 coincides with Eq. (21). There is
no difference between the solutions to diffusion equa-
tion, Eqs (30) and (13), due to spatial homogeneity
of ρ3.

3.2.2. Gaussian impulse

As for the impulse excitation Eq. (22), the “acous-
tic forces” are determined by Eqs (23). The numeri-
cal solutions to Eq. (29) are shown in Fig. 3 in the
cases of weak and strong attenuation. There is only
a small difference between the cases of weak and strong
attenuation as for the shapes of surfaces. Obviously,
magnitudes of excited perturbations are proportional
to M2B. The surface in the left panel of Fig. 3 almost
overlaps the surface established by Eq. (24).

Fig. 3. Velocity in the second mode which is excited by the
Gaussian impulse (22). B = 0.001 (top panel) and B = 0.3

(botoom panel).

An excess density in the entropy mode is nega-
tive. This corresponds to losses in acoustic energy and
positive excess temperature produced during isobaric
acoustic heating. Excitation of the entropy mode de-

Fig. 4. Excess density in the entropy mode which is excited
by the Gaussian impulse (22). δ2c0k

γ−1
= 0.001 (top panel)

and δ2c0k
γ−1

= 0.1 (bottom panel).

pends on β but actually very weakly on δ2 individually.
This is shown in Fig. 4.

The plots in Figs 3 and 4 represent Eqs (29)
and (30). Both double integrals reduce analytically to
integrals over time by means of Mathematica. The in-
tegrands are too long to fit in the text. The latter in-
tegrals were evaluated numerically.

4. The dominant entropy mode

Similarly, other kinds of excitation may be consid-
ered. Among them, there are problems relating to gen-
eration of bulk flows and the entropy mode in bounded
volumes and resonators, where perturbations in the
counterpropagating wave modes are of the same order.
In this case, quadratic cross terms form the “acoustic
forces”. As usual, these terms are averaged over the
sound period. In the leading order, the counterpropa-
gating periodic waves do not nonlinearly interact. This
has been proved by Kaner et al. (1977) and Ruder-
man (2013). This considerably simplifies evaluations
but allows to consider only periodic exciters and av-
eraged secondary perturbations. Non wave modes also



558 Archives of Acoustics – Volume 44, Number 3, 2019

may be dominant. Applying M3 from Eqs (6) at the
system (1) and taking into account links (3), one ar-
rives at the instantaneous system of equations for ex-
citation of the wave perturbations by the dominant
entropy mode:

∂v1

∂t
+ c0

∂v1

∂x
= F1(x) =

δ2c0
2ρ2

0(γ − 1)
∂2ρ2

3

∂x2
,

∂v2

∂t
− c0

∂v2

∂x
= F2(x) = F1(x) =

δ2c0
2ρ2

0(γ − 1)
∂2ρ2

3

∂x2
.

(32)

At the infinite axis x it has solutions

v1 =
1

c0
(Φ1(x) −Φ1(x − c0t)) ,

v2 = −
1

c0
(Φ1(x) −Φ1(x + c0t))

satisfying zero initial conditions,

v1(x, t = 0) = v2(x, t = 0) = 0,

where Φ1 is the primitive function to F1,

Φ1 =
δ2c0

2ρ2
0(γ − 1)

∂ρ2
3

∂x
.

Other specific perturbations develop in the following
way, in accordance to the links (3):

p1 = ρ0 (Φ1(x) −Φ1(x − c0t)) ,

p2 = ρ0 (Φ1(x) −Φ1(x + c0t)) ,

ρ1 =
ρ0

c20
(Φ1(x) −Φ1(x − c0t)) ,

ρ2 =
ρ0

c20
(Φ1(x) −Φ1(x + c0t)) .

The main conclusion is that the excitation is possible
only in fluids with thermal conduction. The magni-
tudes of the secondary counterpropagating perturba-
tions are equal.

5. Concluding remarks

Equations which take into account distortions of
wave caused by different obstacles, including thermal
inhomogeneities of a medium and wires, are of perma-
nent interest in the wave theory. As usual, the linear
wave equation is supplied by some inhomogeneity and
takes the form

∂2v

∂t2
− c20∆v − β ∂

∂t
∆v = F (x, y, z, t). (33)

The solution to it is a sum of the general solution to
the homogeneous equation and a partial solution to the

inhomogeneous equation. Often, the inviscid version of
Eq. (33) with zero β is paid attention to (Tikhonov,
Samarski, 2011). Two initial conditions are necessary
in the one dimensional flow along the infinite axis,

v(x,0) = φ(x),

∂v

∂t
(x,0) = ψ(x).

The initial conditions relate to the total velocity v.
Equation (33) does not differentiate between branches
of a sound, and does not make use of difference in mag-
nitude of their perturbations. The proper interpreta-
tion of terms belonging to different branches is not ob-
vious. Also, velocity associating with the entropy and
vortex modes is not considered by the wave Eq. (33) at
all. Equation (33) does not provide information about
perturbations of thermodynamic variables (pressure,
density). Correct determination of the source function
F is an important issue.

Hence, essence, meaning and applicability of
Eq. (33) and the system (9), (10) are fairly different.
Equations (9) and (10) are derived with account for
the ratio of magnitudes of specific perturbations, and
they consider excitation of both secondary modes, first
of them being the wave mode, and the second one
being the entropy mode. Equations (9) and (10) de-
termine all individual and total perturbations in view
of the links (3), not only velocity in the wave pro-
cesses. They describe nonlinear interaction of modes
in the frames of the method which has been worked
out by the author. The modes are understood as re-
lations between specific perturbations in a linear flow.
With respect to weakly nonlinear flow, these relations
still define modes. We mainly consider the rightwards
propagating sound as the dominant mode in this study.
Equations (9) and (10) are PDE equations which con-
tain the first order derivatives with respect to time
and account for nonlinearity and attenuation in the
“forces” of interaction. They require two initial con-
ditions (11) (or maybe non zero ones) for every sec-
ondary mode individually. The method allows to fol-
low individual dynamics of the modes (including the
entropy mode) and the total perturbations in pressure
and density, in contrast to the inhomogeneous wave
equation – Eq. (33). One of the main conclusions is
that the property of directivity of the secondary modes
is broken. This should be taken into account in evalua-
tions of the total perturbations. In particular, pertur-
bations in the secondary wave mode consist of parts
which propagate with speeds c0 and −c0. This follows
from Eq. (14) which in turn supposes that the dom-
inant perturbations propagate with the speed c0. In
nonlinear flows with attenuation and dispersion, the
dominant mode may be stationary with speed c̃ differ-
ent from c0 (the shock waves in Newtonian flows and
solitons in dispersive flows). If so, the secondary per-
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turbations are given by formulas correcting Eqs (15)
and (16):

v2 =
1

c0 + c̃
(Φ2(x + c0t) −Φ2(x − c̃t)) ,

ρ3 =
1

c̃
(Φ3(x) −Φ3(x − c̃t)) .

We have considered individual contributions of ther-
mal conduction and mechanical viscosity in a flow
with a dominant sound. It turns out that the thermal
conduction influences the shape of excited perturba-
tions only weakly. In this context, it may be ignored,
Eq. (10) is significantly simplified and may be solved
by direct integration of the “acoustic force” over time.
Solution to Eq. (9) may be obtained without the lin-
ear therm proportional to the total attenuation in its
linear part with the exception of large times of har-
monic excitation. The conclusions give hope for sim-
ple solutions in more complex cases of nonlinear in-
teractions in a flow. In spite of the fact that the the-
ory is based on the modes which are determined ac-
cordingly to linear links between perturbations, modes
may be redefined in accordance to directivity proper-
ties in a weakly nonlinear flow. That can be carried
out by summing up parts propagating with similar
speeds.

The theoretical results may be useful for technical
and medical applications dealing with intense sound.
In particular, they may be useful in evaluations of per-
turbations in the reflected sound wave and variations
in temperature associating with the entropy mode. The
theory considers time limited exciters and allows to fol-
low development of the secondary perturbations. This
is of importance in therapeutic applications of high
intensity focused ultrasound (HIFU), where the tem-
perature of tissue should be strictly controlled (Duck
et al., 1998). The theory may be useful in exciter’s
selection meeting the conditions and goals of treat-
ment.
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