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Passive noise reduction methods require thick and heavy barriers to be effective for low frequencies
and those clasical ones are thus not suitable for reduction of low frequency noise generated by devices.
Active noise-cancelling casings, where casing walls vibrations are actively controlled, are an interesting
alternative that can provide much higher low-frequency noise reduction. Such systems, compared to
classical ANC systems, can provide not only local, but also global noise reduction, which is highly expected
for most applications. For effective control of casing vibrations a large number of actuators is required.
Additionally, a high number of error sensors, usually microphones that measure noise emission from the
device, is also required. All actuators have an effect on all error sensors, and the control system must
take into account all paths, from each actuator to each error sensor. The Multiple Error FXLMS has very
high computational requirements. To reduce it a Switched-Error FXLMS, where only one error signal
is used at the given time, have been proposed. This, however, significantly reduces convergence rate. In
this paper an algorithm that uses multiple errors at once, but not all, is proposed. The performance of
various algorithm variants is compared using simulations with the models obtained from real active-noise
cancelling casing.
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1. Introduction

Low frequency noise generated by devices is a com-
mon problem. The effectiveness of passive noise reduc-
tion methods for low frequencies is limited by maxi-
mal barrier thickness and weight. Active Noise Con-
trol (ANC) methods have no such limitations. The
active reduction of sound transmitted through a bar-
rier, usually a thin plate (Leniowska, Mazan, 2015)
or a double panel wall (Morzyński, Szczepański,
2018; Pietrzko, 2009), has been the subject of sci-
entific interest for many years. This approach can
be extended to a whole casing (Fuller et al., 1994;
Mazur, Pawelczyk, 2015a), even for device casings
not designed for active control, like washing machine
(Mazur et al., 2019).

A large number of algorithms have been proposed
for active noise or vibration control and new algo-

rithms are still proposed (Sibielak et al., 2015; Le-
niowska, 2011). For vibration control, where actua-
tors and sensors are collocated, simple feedback con-
trol may be sufficient. Such an algorithm can be suc-
cessfully implemented using simple analog electronic
circuits (Cinquemani et al., 2018). ANC applications
usually require more complex algorithms due to com-
plex secondary paths. In such applications FXLMS al-
gorithm is very popular. In the simplest example each
plate of the multiplate casing can be controlled inde-
pendently, however, it can lead to problems with con-
trol system stability due to coupling between individ-
ual plates (Mazur, Pawelczyk, 2015b). Even for the
casing with heavy, rigid frame the coupling still ex-
ists due to interactions with the medium inside the
casing (Wyrwal et al., 2017). In case of error micro-
phones outside the casing the acoustic interactions in
the air outside the casing are also important. Addi-
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tionally, for microphone placements required for higher
frequencies (Mazur et al., 2018b), the number of er-
ror microphones is usually larger than the number of
plates, and for some microphones multiple plates can
have similar contribution. In that case it is not possible
to assign each error microphone to a single plate and
cross-coupling is even higher. It is then even harder to
maintain system stability.

Due to stability problems of independent per-plate
control systems, the casing should be controlled as
a whole. In case of adaptive feed-forward or IMC
control Multiple Error Filtered-x Least Mean Squares
(MEFXLMS) algorithm can be used (Elliott et al.,
1987). The disadvantage of MEFXLMS algorithm is
its high computational complexity, proportional to the
number of actuators mounted on the casing multiplied
by the number of error signals. Casings developed by
the authors have even 21 actuators and 21 error sen-
sors. In such system there are 441 secondary paths.
Fortunately, most of operations in such an algorithm
can be executed fully in parallel and it is possible to
execute it in realtime on a system with sufficient per-
formance using multiple microprocessors, Digital Sig-
nal Processors (DSP), Field Programmable Gate Ar-
rays (FPGA), or Graphics Processing Units (GPU)
(Lorente et al., 2014). However, for practical usage
lower computational complexity of the algorithm is
highly preferred. To reduce computational complexity
in this application a Switched-Error Filtered-x Least
Mean Squares (SEFXLMS) algorithm has been pro-
posed (Mazur, Pawelczyk, 2015b; Mazur et al.,
2018a). In the SEFXLMS only one error signal is ac-
tive at a time, and the active error is periodically
switched. The switching period is larger than the sec-
ondary path model length. The not needed filtered ref-
erence signals are not computed. This further reduces
computational demands. Such advantage does not ex-
ist if very fast, for instance in each sample, switch-
ing is used (Michalczyk, Wieczorek, 2011). The
computational demands can be reduced even further
by using partial update algorithms (Bismor, 2014).
Then, not only some errors are skipped, but also
some control filter parameters are not updated in each
step.

Due to switching, the SEFXLMS is slower than
MEFXLMS, especially when a large number of error
signals is used. For stationary noises the convergence
rate is not important. However, if the noise is non-
stationary fast convergence rate may be important.

In this paper, an extension to the Switched-
Error FXLMS algorithm, the Switched Multiple Er-
ror FXLMS (SMEFXLMS) algorithm, is proposed to
improve its convergence rate at cost of higher, but
still smaller than in MEFXLMS, computational load.
Multiple errors are used at once. The performance of
various algorithm variants is compared using simula-
tions with the models obtained from real active-noise

cancelling casing: a dedicated lightweight casing and
a washing machine.

2. Control algorithm

Figure 1 presents a control system block diagram.
The control system reduces noise at NE error signals,
e(i). Two subsystems contribute to noise: uncontrolled
primary paths P and controlled secondary paths S.
Due to a large number of actuators the control algo-
rithm is explicitly partitioned into P tasks (Mazur
et al., 2018a), each tasks controls up to C actuators,
thus the total number of control signals is P ×C.

Fig. 1. Control system block diagram.

Linear control filters are used to generate the con-
trol signals, c-th control signal on p-th task is calcu-
lated according to:

up,c(n + 1) = wp,c(n)
Txu(n), (1)

where wp,c(n)=[wp,c,0(n),wp,c,1(n), ...,wp,c,NW−1(n)]
T

is a vector of control filter weights, xu(n) =

[x(n), x(n − 1), ..., x(n − (NW − 1))]T is a vector
of the regressors of the reference signal, x(i). For
active noise-cancelling casings, where the reference
microphone is close to actuators, acoustic feedback
compensation (F̂) is usually needed. With acoustic
feedback compensation also an error microphone
can be used as a reference microphone. This config-
uration is equivalent to the IMC system (Mazur,
Pawelczyk, 2016).

3. Adaptation

The key element of the control system is the adap-
tation of wp,c(n) control filter weights. In this paper
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FXLMS-based algorithm is used. Control filter weights
are updated according to:

wp,c(i+1) = αwp,c(i)−
NE−1

∑
j=0

µp,c,j(i)rp,c,j(i)ej(i), (2)

where 0 ≪ α ≤ 1 is a leakage coefficient, µp,c,j(i) is
an LMS algorithm step size, rp,c,j(i) is a vector of re-
gressors of filtered reference signals, ej(i) is the j-th er-
ror signal. For α = 1 and µp,c,j(i) = µ classical Multiple
Error FXLMS algorithm is obtained (Elliott et al.,
1987). In this algorithm the step size µ is extended
to a non-stationary matrix with µp,c,j(i) coefficients.
Most of those coefficients are equal to zero to reduce
computational load.

The filtered reference signals are calculated accord-
ing to:

rp,c,j(i) = ŝp,c,j(i)Txs(i), (3)

where xs(i) = [x(i), x(i − 1), ..., x(i − (NS − 1))]T

is a vector of regressors of the reference signal,
and ŝp,c,j(i) = [ŝp,c,j,0(i), ŝp,c,j,1(i), ..., ŝp,c,j,NS−1(i)] is
a model of the c-th secondary path for the p-th task
to the j-th error microphone. NS is the length of the
FIR filters used to model secondary paths.

In active control, where the noise power is usu-
ally not known in advance, variable step-size LMS al-
gorithms are usually used. There are many variable
step-size algorithms (Bismor et al., 2016). In this pa-
per a per-task normalised FXLMS is used (Mazur,
Pawelczyk, 2015b):

µp,c,j(i) = (Pp(i) + ζ)
−1
qj(i)µn, (4)

where q(i) = [q0(i), q1(i), ..., qNE−1(i)]
T is a vector of

error enable signals. If the j-th error is enabled in i-th
sample then qj(i) = 1; qj(i) = 0 otherwise. For Multiple
Error FXLMS qj(i) = 1 for any j. The Pp(i) is the
power of reference signals:

Pp(i) =
NC−1

∑
l=0

NE−1

∑
m=0

NS−1

∑
o=0

(rp,l,m(i − o))
2
. (5)

Such normalisation, unfortunately, requires all filtered
reference signals, even for error signals that are dis-
abled. If those signals are skipped different error signals
may use different step size, which is equivalent to us-
ing different weight for different error signals. To avoid
that in case of proposed SMEFXLMS an exponential
weighting is used:

Pp(i) = (1 − β)Pp(i − 1)

+β (
NC−1

∑
l=0

NE−1

∑
m=0

(qm(i)rp,l,m(i))
2
), (6)

where 0 < β < 1 is an exponential window param-
eter. This exponential window roughly approximates

a rectangular window with β−1 length. To avoid differ-
ent step sizes for different errors this length should be
larger than the total switching period.

Error signals are sequentially switched in a round-
robin fashion:

q(i) = qa(i), (7)

where a(i) = ⌊ i
NA

⌋ mod NB , NA ≥ NW is an error
switching period, NB is a number of different error
sets. Different error sets form a switching matrix:

Q = [q0,q1, ...,qNB−1] . (8)

Different columns of the Q matrix are used sequen-
tially. The sum of elements in each row should be equal
and non-zero, otherwise different errors will have un-
even impact on adapation, or even some errors will
have no impact on the adaptation. If the noise signal
is non-stationary switching may cause uneven impact
of different errors on adaptation or even can lead to
instability for cyclostationary input signals (Bismor,
2016). Such problems can be avoided if active column
of this matrix is selected randomly, a(i) sequence is
random. The order of rows should not affect the per-
formance of the algorithm, assuming that the switch-
ing is fast enough. To maximise switching frequency
the NB should be minimal.

Since, usually, the number of active errors is low,
a large number of qj(i) coefficients is equal to zero. If
qj(i) is equal to zero all µp,c,j(i) coefficients for the
same j are equal to zero. This significantly reduces
the number of required computations in the adapta-
tion equation (Eq. (2)). Additionally, the rp,c,j(i) vec-
tor is not needed to update control filter weights be-
cause it is multiplied by zero, and to reduce computa-
tional load its computation can be skipped. However,
the computation of the whole rp,c,j(i) vector in a sin-
gle step is costly, and a single rp,c,j(i) coefficient is
computed in each iteration (Eq. (3)). Thus, if the full
rp,c,j(i) vector will be required soon in the future, its
calculation must start earlier, at least NW − 1 sam-
ples earlier. So in each step rp,c,j(i) must be calcu-
lated if: ∃0≤k<NW {qj(i + k) = 1}. If NA = NW , it means
that rp,c,j(i) vector must be calculated for the cur-
rent active errors, qa(i), and for the next active errors,
qa(i+NA−1).

4. Simulation

The convergence rate of the SMEFXLMS algorithm
has been tested on models of two active casings: a ded-
icated lightweight noise-cancelling casing (Mazur,
Pawelczyk, 2016) with 21 actuators mounted on
5 walls with 5 error microphones, and on a real wash-
ing machine (Mazur et al., 2018b) with 13 actuators
mounted on 4 walls with 8 error microphones (Fig. 2).
In both cases every electroacoustic path in the con-
trol system, from each output (actuators, primary path
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loudspeaker) to each input (reference and error mi-
crophones), was modelled using 256 parameter FIR
model. The parameters of FIR models were obtained
during the identification experiment.

Fig. 2. Dedicated lightweight casing (left) and the real
washing machine (right).

In case of the lightweight casing with 5 errors the
results for the following cases are presented:
1) One active error at once, SEFXLMS:

Q1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

The Q1 matrix leads to the switching scheme pre-
sented in Fig. 3. One error signal is used for adap-
tation, and filtered references for two error signals
are computed, for the error required for adaptation
and also next error.

⌊
i

NA
⌋ 0 1 2 3 4 5 6 7 8 . . .

s(i) 0 1 2 3 4 0 1 2 3 . . .

e0 + − − − FX + − − − . . .

e1 FX + − − − FX + − − . . .

e2 − FX + − − − FX + − . . .

e3 − − FX + − − − FX + . . .

e4 − − − FX + − − − FX . . .

Fig. 3. Error switching scheme for the Switched-Error
FXLMS algorithm with single error, variant Q1 (“+” – en-
abled error, “FX” – disabled adaptation, enabled filtered-

reference; “−” – disabled adaptation).

2) Two active errors, but only one error is changed
during the switch:

Q2A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

The Q2A matrix leads to the switching scheme pre-
sented in Fig. 4. Two error signals are used for adap-
tation, and filtered references for three error signals
are computed.

⌊
i

NA
⌋ 0 1 2 3 4 5 6 7 8 . . .

s(i) 0 1 2 3 4 0 1 2 3 . . .

e0 + − − FX + + − − − . . .

e1 + + − − FX + + − − . . .

e2 FX + + − − FX + + − . . .

e3 − FX + + − − FX + + . . .

e4 − − FX + + − − FX + . . .

Fig. 4. Error switching scheme for the SMEFXLMS algo-
rithm with two errors, variant Q2A (“+” – enabled error,
“FX” – disabled adaptation, enabled filtered-reference; “−”

– disabled adaptation).

3) Two active errors, both changed in each step:

Q2B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0
1 0 0 1 0
0 1 0 1 0
0 1 0 0 1
0 0 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

The Q2B matrix leads to the switching scheme pre-
sented in Fig. 5. Two error signals are used for adap-
tation, like for Q2A matrix, but filtered reference
signals for one more error signal are computed.

⌊
i

NA
⌋ 0 1 2 3 4 5 6 7 8 . . .

s(i) 0 1 2 3 4 0 1 2 3 . . .

e0 + FX + − FX + FX + − . . .

e1 + − FX + FX + − FX + . . .

e2 FX + FX + − FX + FX + . . .

e3 FX + − FX + FX + − FX . . .

e4 − FX + FX + − FX + FX . . .

Fig. 5. Error switching scheme for the SMEFXLMS algo-
rithm with two errors, variant Q2B (“+” – enabled error,
“FX” – disabled adaptation, enabled filtered-reference; “−”

– disabled adaptation).

4) Three active errors, but only one error is changed
during the switch:

Q3A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)
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Figure 6 shows error microphone signals power for
150 Hz tonal primary noise for different control algo-
rithms. The same normalised step size, µn = 0.005,
is used for all algorithms. The high power variations
in SEFXLMS and SMEFXLMS algorithms are ob-
served due to error switching. When the control sys-
tem tries to minimise a set of errors, noise reduction
for other errors slightly drops. In case of slow adap-
tation, small µn, the drops are not noticeable because

Fig. 6. Error microphone signals power for different control algorithms. At t = 0 s, the active control is turned on.
Primary noise – 150 Hz tone (µn = 0.005, lightweight casing).

Fig. 7. Time required by different adaptation algorithms to obtain 20 dB or 40 dB noise reduction at all error microphones
(lightweight casing).

very small weights change is performed in each step.
The differences in convergence rate are clearly visible
at left and right error microphones, SEFXLMS with
a single error is clearly the slowest algorithm. In case
of two algorithms with two error signals, variant Q2B

is clearly better.
Because optimal performance for different algo-

rithms may need different µn the time required for
adaptation was tested for different µn values (Fig. 7).
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Fig. 8. Error microphone signals power for different control algorithms. At t = 0 s, the active control is turned on.
Primary noise – 114 Hz tone (µn = 0.003, washing machine).

The presented time is a time needed by the adaptation
algorithm to obtain at least 20 dB or 40 dB reduction
at all error microphones. Using multiple errors instead
of one significantly decreases the required time. It also
allows for higher step size without performance degra-
dation. The performance degradation for higher step
sizes is caused by too fast adaptation for selected er-
ror/errors at cost of reduction of performance on other
errors. The Q2B system in most cases provides better
convergence time than the Q3A system.

The second system is a real washing machine,
with 4 actively controlled walls and 8 error sensors.
Figure 8 shows error microphone signals power for
114 Hz tonal primary noise, the dominating tone dur-

ing 1200 rpm spinning phase, for different control al-
gorithms.

The following cases are presented:
1) One active error at once, SEFXLMS:

Q1B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)



K. Mazur et al. – FXLMS with Multiple Error Switching for Active Noise-Cancelling Casings 781

2) Two active errors, but only one error is changed
during the switch:

Q2C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

3) Three active errors, but only one error is changed
during the switch:

Q3C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

4) Two active errors, both changed in each step:

Q2D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

. (16)

Fig. 9. Time required by different adaptation algorithms to obtain 10 dB or 20 dB noise reduction at all error microphones
(washing machine).

Fig. 10. Time required by different adaptation algorithms to obtain 10 dB or 20 dB noise reduction at all error microphones
(washing machine).

5) Four active errors, all 4 changed in each step:

Q4D = [
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

T

. (17)

Figures 9 and 10 show the time required for adap-
tation for different µn. As for lightweight casing, the
Q2B system in most cases provides better convergence
time than the Q3A system.

5. Conclusions

In this paper a new SMEFXLMS algorithm has
been proposed. This algorithm is an extension to the
SEFXLMS. The goal of SMEFXLMS is to increase
convergence rate compared to SEFXLMS at cost of in-
creased computational load. By using two error signals
at once, instead of one, the convergence rate can be in-
creased by more than twice, because not only more er-
rors are used with the same step size, but also a higher
step size can be used, at cost of twice the number of op-
erations needed for adaptation. Faster switching allows
also for smaller β. In some cases the SMEFXLMS pro-
vides even faster adaptation than MEFXLMS. How-
ever, such behavior is due to differences in the reference
signal power estimation during normalisation. Gener-
ally, the SMEFXLMS provides slower adaptation than
MEFXLMS, but its computational load is significantly
reduced.
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The SMEFXLMS algorithm can be used, at cost
of reduced convergence rate, in many applications
where Multiple Error FXLMS algorithm is used. It
can be used in applications where noise is stationary
or changes in noise signal properties are slower than
adaptation speed and switching period. Additionally,
for non-stationary signals the switching should be ran-
domised to avoid uneven influence of error signals on
adaptation and possible problems with instability.
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