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The aim of this paper is to present a way of ranking the nonlinearities of electro-
dynamic loudspeakers. For this purpose, we have constructed a nonlinear analytic
model which takes into account the variations of the small signal parameters. The
determination of these variations is based on a very precise measurement of the
electrical impedance of the electrodynamic loudspeaker. First, we present the ex-
perimental method to identify the variations of these parameters, then we propose
to study theoretically the importance of these nonlinearities according to the in-
put level or the input frequency. We show that the parameter which creates most
of the distortions is not always the same and depends mainly on both the input
level and the input frequency. Such results can be very useful for optimization of
electrodynamic loudspeakers.
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1. Introduction

The reference model describing the electrodynamic loudspeaker was designed
by Thiele and Small (1978). Their model was adapted to describe an electro-
dynamic loudspeaker as a linear system. This model is very useful because it is
very simple to use and its parameters can be conveniently presented in terms of
an electric analog circuit (Klippel, 1990). However, a loudspeaker shows nonlin-
earities that produce distortions. These nonlinearities have three major sources
(Borwick, 2001; Klippel, 2006): the suspensions, the diaphragm (Suzuki,
Tichy, 1981; Quaegebeur et al., 2009; Lemarquand, Bruneau, 2007) and
the motor (Dobrucki, 1994; Wright, 1990; Ravaud et al., 2009b). They have
been largely studied and there are many attempts to model them (Kaizer, 1987;
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Gander, 1981; 1986; Merit et al., 2009b; Leach, 2002; Clark, 1997; Van-
derkooy, 1989).

However, most of the papers dealing with the nonlinearities of electrodynamic
loudspeakers do not take into account the variations of the mechanical damping
Rms or the equivalent mass Mms. But these parameters are also nonlinear and
their variations must be taken into account in order to precisely characterize
the distortions created by electrodynamic loudspeakers. It can be noted that al-
ternative loudspeakers structure without iron have been proposed and studied
(Lemarquand, 2007; Merit et al., 2009a; Ravaud et al., 2008; Remy et al.,
2008), which use ferrofluid suspensions in order to delete the classical distor-
tions generated by electrodynamic loudspeakers (Ravaud, Lemarquand, 2009a;
2009b; Remy et al., 2009; Ravaud et al., 2009a).

This paper has two objectives. In the first part, we present an experimental
method which allows us to determine precisely the variations of the small signal
parameters according to the input current. Our experimental method is based
on a very precise measurement of the electrical impedance of the electrodynamic
loudspeaker. Indeed, the measurement accuracy is about 10−4 Ohm for both the
real and imaginary parts of the electrical impedance.

However, our approach does not use the classical definition of an electrical
impedance. An electrical impedance, commonly defined by its ratio U/I (in the
frequency domain) does not depend on the input current. Indeed, this electrical
impedance is only defined for linear systems.

However, our experimental measurement shows that this ratio U/I depends
on I. This can be easily verified experimentally by measuring the experimental
impedance for different input currents. Such a result is in fact known for scientists
involved in modeling of nonlinear systems: a nonlinear system depends generally
on the input level. In the case of an electrodynamic loudspeaker, the electrical
impedance (that is to say, the ratio U/I) depends on the input level.

We also show that there exists a bijective relation between the input current
I and the position of the voice coil X. This result is of great importance because
it shows that the nonlinear parameters describing an electrodynamic loudspeaker
(Bl(x), Rms(x) and Le(x)) can also be described as parameters depending on the
input current (in the time-domain or in the frequency-domain). It can be noted
that, strictly speaking, the force factor Bl which is commonly used in analog
circuits, represents the mean induction field times the length l of the voice coil
inside the air gap. Therefore, when the voice coil position x(t) is sinusoidal, in
complex notations, the force factor should be seen as a mean force factor B̃l.

In the second part, we discuss the behaviour of each nonlinearity according to
both the input level and the input frequency. It should be noted that all this part
is treated theoretically. Indeed, a very good agreement between our analytical
model and experimental measurements has confirmed that our model can be
used for modelling of the distortions created by an electrodynamic loudspeaker.
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We show here that the lumped parameter whose relative variation according to
input current is the most important, is not always the same and depends greatly
on both the input level and the input frequency.

Another drawback known in electrodynamic loudspeakers is that it is a time-
varying system. In fact, the electrical resistance increases with time and the
mechanical compliance of the outer rims depends also on time. These dependences
have been studied with a similar approach in previous papers. In this paper,
some care has been taken in the experimental measurements for omitting these
temporal effects.

This paper proposes a way of ranking the nonlinearities of electrodynamic
loudspeakers. To our knowledge, this way of characterizing these nonlinearties has
never been used for electrodynamic loudspeakers. However, many new phenomena
can be seen by using such an experimental approach. This is why such results are
very interesting for many manufacturers involved in the design of electrodynamic
loudspeakers. We precise here that we use in the rest of this paper the small
letter notations x(t) and i(t), the displacement of the voice coil and the input
current in the voice coil in the time-domain, and the capital letters (X, I, U) in
the frequency domain. We also precise that U is the input voltage.

2. Classical description of a loudspeaker and its limits

2.1. The small signal model using lumped parameters

A common way of characterizing an electrodynamic loudspeaker is to measure
its electrical impedance Ze. Its theoretical expression is well-known and is given
by Eq. (1):

Ze = Re +
jLewRµ

jLew + Rµ
+

Bl2

Rms + jMmsw +
1

jCmsw

, (1)

where all the parameters are defined below.
Bl – electrodynamic driving parameter [T·m],
Rms – mechanical damping, drag force [N· s·m−1],
Cms – mechanical compliance of suspension (spider, outer rim) [N−1·m],
Le – inductance of voice coil [H],
Mms – equivalent mass of moving voice coil, cone and air [kg],
Re – electrical resistance of voice coil [Ω],
Rµ – eddy current resistance [Ω],
w – angular frequency [rad· s−1].

These parameters can be represented in terms of an analog circuit in Fig. 1.
According to (1), the electrical impedance Ze does not depend on I. How-

ever, an experimental measurement shows the contrary. Indeed, the real part
and the imaginary part of this electrical impedance are represented by using the
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Fig. 1. Representation of the lumped parameters in terms of an analog circuit.

Nyquist diagram in Fig. 2 and we see that this electrical impedance depends on
the input current. Consequently, this eletrical impedance can be seen as a non-
linear electrical impedance. We denote it Z

(NL)
e (I). In short, we can say that the

classical electrical impedance Ze characterizing an electrodynamic loudspeaker is
not constant when the input current varies. Consequently, we use the notation
Z

(NL)
e (I) to describe the electrical impedance. However, strictly speaking, the

term “electrical impedance” should not be used to describe a nonlinear system
like an electrodynamic loudspeaker.

Fig. 2. Experimental representation in the complex plane of the electrical impedance of the
electrodynamic loudspeaker for four coil current levels (5 mA, 50 mA, 100 mA, 200 mA).

As a consequence, the lumped parameters defined in Eq. (1) depend on the
input current. The main problem is thus to know how to characterize their depen-
dence according to the input current. According to the current state of art, cited
in the introduction of this paper, the dominant nonlinearities in electrodynamic
loudspeakers are Bl(x), Cms(x) and Le(x). However, there exists a relation be-
tween the voice coil position x and the input current i. This relation is shown in
the next section. Consequently, it can be noted that these nonlinearities can de-
pend on x or i: it is in fact equivalent. In this paper, we choose to work directly
with the input current i because Z

(NL)
e (I) is easier to determine experimen-

tally. Consequently, thanks to this very precise experimental measurement, the
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variations of the lumped parameters can be determined according to the input
current i.

2.2. Relation between the input current I and the voice coil position X
according to the Thiele and Small model

This section presents the relation between the input curreent I and the voice
coil position X with the linear approximation of the Thiele and Small model.
It is noted here that the aim of this section is merely to show that there exists
a bijective relation between the input current I and the voice coil position X. To
find this relation, we use one differential equation describing the electrodynamic
loudspeaker and we use complex notations. We find:

(
Mms(jw)2 + Rms(jw) +

1
Cms

)
X = BlI. (2)

So, we can write:

X =
Bl(

Mms(jw)2 + Rms(jw) +
1

Cms

) I. (3)

Therefore, we see that Eq. (3) is the bijective relation between the input cur-
rent I and the voice coil position X, in complex notation. This relation shows
that we can work either with the input current I or with the voice coil posi-
tion X, so as to describe the nonlinear variations of the Thiele and Small para-
meters.

2.3. Relation between the input current I and the voice coil position X
according to the nonlinear model used in this paper

Strictly speaking, the relation between the input current I and the voice coil
position is nonlinear. Indeed, all the small signal parameters depend on the input
current. It is emphasized here that the transfer function describing the ratio U/I
is considered as the ratio of the part of response with fundamental frequency w
to the excitation. We call it a nonlinear electric impedance in this paper but
it is useful to precise that nonlinear systems cannot be described with complex
notations.

We describe in the next section a way of determining the nonlinear laws of all
the small signal parameters. Therefore, we precise here for the rest of this paper
that (3) can be written in the frequency-domain as follows:

X =
Bl(I)(

Mms(jw)(I)2 + Rms(I)(jw) +
1

Cms(I)

) I. (4)



54 R. Ravaud et al.

It is noted that the determination of the small signal parameters can be
determined in the frequency domain. We explain in the next section how to find
these variations.

3. Determination of the nonlinear variations of the lumped parameters

3.1. Principle of the measurement

We have shown in the previous section that the nonlinear variations of the
lumped parameters describing an electrodynamic loudspeaker depend on the in-
put current. We explain now how to find these variations.

The electrodynamic loudspeaker used is a boomer (mark: Eminence, number:
beta 15). We use the electrical impedance of the electrodynamic loudspeaker be-
cause its measurement is very precise. Our measurement device is a Wayne–Kerr
bridge which has an excellent precision (10−4 Ω). This experimental devices is
dedicated to the impedance measurement and functions as a classical impedance
bridge.

In order to measure the electrical impedance of a loudspeaker, it is mounted
in a normalized plane in an anechoic room (I.E.C, 2007). Dalmont (2001) has
shown that the acoustical impedance in these conditions is the same as the one
when the loudspeaker is mounted in an infinite baffle in an anechoic room. We
measure the electrical impedance by varying the frequency and the coil cur-
rent. So, we build an experimental impedance layer by using a Runge–Kutta
algorithm to determine all the experimental measured points. In other words,
this measurement algorithm chooses the best measurement point according to
the gradient method. Such a measurement method allows us to detect all the
subtle effects due to the nonlinearities in electrodynamic loudspeakers. This al-
gorithm has been improved in relation to the one used in a previous paper.
In the previous paper, the algorithm took some experimental points by using
constant intensities. In other words, our measurement system used the algo-
rithm of gradient only in two dimensions for one intensity and then it was re-
peated for another intensity. For example, an intensity was fixed (for example
50 mA), and a two-dimensional algortihm allowed us to determine the measure-
ment points, that is to say, our algorithm automatically settled one intensity and
took some experimental points by using a method based on the gradient method.
In this paper, the algorithm uses a Runge–Kutta algorithm in three dimensions
(Ze, I, f) and we can rapidly obtain an impedance layer which is very precise.
Consequently, the temporal effects can be neglected. A two-dimensional repre-
sentation of the electrical impedance is shown in Fig. 2: the imaginary part is
a function of the real part (it is a Nyquist diagram for different coil currents).
We can say that the Wayne Kerr bridge cannot supply currents greater than
0.2 A. Consequently, the parameter variations are determined in this current
interval.
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Fig. 3. Experimental three-dimensional representation of the modulus of electrical impedance of
the electrodynamic loudspeaker (x: coil current 0–0.2 A) (y: frequency 0–1000 Hz) (z: impedance

0–30 Ω).

Figure 3 confirms that the electrical impedance is a function of the input
current.

3.2. Determination of the nonlinear electrical impedance

The next step is thus to determine the dependence of the small signal para-
meters with the coil current so as to construct the nonlinear transfer function.
For this purpose, we use the Nyquist diagram constructed previously. Five pa-
rameters (Bl(I), Rms(I), Cms(I), Mms(I), Le(I)) are assumed to vary with the
coil current. Indeed, the electrical resistance does not depend on input current
because our experimental measurements have been done with a stabilized tem-
perature (the electrodynamic loudspeaker has been run during 24 hours before
the experiment) and the eddy current resistance does not seem to vary with
the input current I. In the first approximation, we use a polynomial writing to
represent the dependence of the parameters on the coil current. We write:

Bl(I) = Bl(1 + µBlI + µ2
BlI

2 + ... + µn
BlI

n), (5)

Rms(I) = Rms(1 + µRmsI + µ2
Rms

I2 + ... + µn
Rms

In), (6)

Cms(I) = Cms(1 + µCmsI + µ2
Cms

I2 + ... + µn
Cms

In), (7)

Mms(I) = Mms(1 + µMmsI + µ2
Mms

I2 + ... + µn
Mms

In), (8)

Le(i) = Le(1 + µLeI + µ2
Le

I2 + ... + µn
Le

In). (9)
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So the electrical impedance becomes:

Ze(I) = Re +

n∑
s=0

jLewRµ(µLeI)s

Rµ +
n∑

s=0
jLew(µLeI)s

+

(
n∑

s=0
Bl(µBlI)s

)2

n∑
s=0

jMmsw(µMmsI)s +
n∑

s=0
Rms(µRmsI)s +

1
n∑

s=0
jwCms(µCmsI)s

. (10)

We use the least square method to identify all the parameters; this method is
based on the Simplex algorithm. The Simplex method is a systematic procedure
which selects the variable that will produce the largest change towards the min-
imum solution. This algorithm selects the best choice at each iteration, without
needing information from previous and future iterations. In our case, the princi-
ple of this algorithm is to minimize the difference D between the experimental
and the theoretical Nyquist diagrams. Consequently, the two parameters which
are minimized are the real part Real(I) and the imaginary part Imag(I) of the
electrical impedance defined by Eq. (11):

Z(NL)
e (I) = Real(I) + jImag(I). (11)

When the algorithm converges, we obtain the values of the parameters of the
Eqs. (5)–(9).

4. Experimental results

When we take into account the variations of the small signal parameters with
the coil current, the mean the difference between the experimental and the the-
oretical values is 0.4 Ω whereas the mean difference is 2.0 Ω with the Thiele and
Small model with constant parameters. We present in Table 1 the laws of varia-
tions of the five parameters that vary according to the coil current, and we give
for each parameter the sensitivity to the least square. We propose a ranking of
these parameters based on the criterion D. To obtain this ranking, we proceed as
follows: we write that one parameter (Le, Rms, Mms, Bl or Cms) is a function
of the coil current. We input the polynomial in the theoretical impedance and
we use the least square algorithm to determine the value of the mean difference
between the experimental impedance and the theoretical impedance. We obtain
in this case the ranking shown in Table 1. Moreover, the value of the eddy cur-
rent resistance is 2.2 Ω and the value of the electrical resistance is 3.3 Ω. The
Table 2 shows the laws of variations of the Thiele and Small parameters. The
representations of these variations are given in Figs. 4–8.
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Table 1. Ranking of the parameters according to their sensitivity to the least square algorithm.

Ranking Parameter Law of variation (100 Hz) D [Ω](100 Hz)

1 Rms 1.1(1 + 4.09I − 8.36I2) 1.24

2 Bl 5.5(1 + 0.33I − 1.02I2) 1.67

3 Mms 0.009(1 + 0.56I − 0.22I2) 1.74

4 Cms 0.00013(1 + 2.02I − 9.3I2) 1.86

5 Le 0.0017(1− 1.68I + 7.58I2) 1.98

Table 2. Ranking of the parameters according to their created distortions
(the frequency of excitation is 50 Hz).

Ranking (50 Hz) Parameter (harmonic 2) log [x]

1 Le −3.2

2 Mms −4.9

3 Rms −6.8

4 Cms −7.7

5 Bl −7.8

Fig. 4. The ratio Le/Le0 is a function of the coil current (x: coil current 0–0.2 A) (f = 100 Hz);
Le0 = 0.0017 H.

Fig. 5. The ratio Bl/Bl0 is a function of the coil current (x: coil current 0–0.2 A) (f = 100 Hz);
Bl0 = 5.5 Tm.
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Fig. 6. The ratio Cms/Cms0 is a function of the coil current (x: coil current 0–0.2 A)
(f = 100 Hz); Cms0 = 0.00013 m/N.

Fig. 7. The ratio Rms/Rms0 is a function of the coil current (x: coil current 0–0.2 A)
(f = 100 Hz); Rms0 = 1.1 kg/s.

Fig. 8. The ratio Mms/Mms0 is a function of the coil current (x: coil current 0–0.2 A)
(f = 100 Hz); Mms0 = 0.009 kg.

4.1. Discussion

The most sensitive parameter to the variations of the coil current is the equiv-
alent damping parameter Rms. The parameter which is less sensitive to the varia-
tions of the coil current is the inductance Le of the voice coil. However, though this
inductance sensitiveness is rather weak, the relative variation of the inductance



Ranking of the Nonlinearities of Electrodynamic Loudspeakers 59

Le is rather important. In other words, even if the inductance Le is a parameter
that contributes just a little to the variation of its electrical impedance, we see
that its relative variation is important. Another interesting point can be adressed.
With the values found in this paper, at 200 Hz, we see that the eddy current re-
sistance Rµ equals roughly wLe. We can conclude that the effects of the eddy
currents become important from 200 Hz for this electrodynamic loudspeaker.

5. Study of the distortions created by the electrodynamic loudspeaker

5.1. Obtaining the nonlinear differential equation

The nonlinear differential equation describing the electrodynamic loudspeaker
is given by Eq. (12). We use the parameter k = 1/Cms to solve it.

a(i)
d3x(t)
dt3

+ b(i)
d2x(t)
dt2

+ c(i)
dx(t)
dt

+ d(i)x(t) = u(t), (12)

with

a(i) =

(
Mms(1 + µMmsi + µ2

Mms
i2)

) (
Le(1 + µLei + µ2

Le
i2)

)

Bl(1 + µBli + µ2
Bli

2)
, (13)

b(i) =

(
(Mms(1 + µMmsi + µ2

Mms
i2)Re

)

Bl(1 + µBli + µ2
Bli

2)

+

(
Rms(1 + µRmsi + µ2

Rms
i2)Re

)

Bl(1 + µBli + µ2
Bli)

, (14)

c(i) =
Re

(
Rms(1 + µRmsi + µ2

Rms
i2)

)
+

(
Bl(1 + µBli + µ2

Bli
2)

)2

Bl(1 + µBli + µ2
Bli

2)

+

(
Le(1 + µLei + µ2

Le
i2

)
)k(1 + µki + µ2

ki
2)

Bl(1 + µBli + µ2
Bli

2)
, (15)

d(i) =
Re

(
k(1 + µki + µ2

ki
2)

)

Bl(1 + µBli + µ2
Bli

2)
. (16)

5.2. Solving the nonlinear differential equation

The relation between the coil current i and the position of the voice coil x is
nonlinear (Eq. (4)). Each small signal parameter is a function of the voice coil
position and we obtain, for example, for one parameter:
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Rms(x) = Rms(1 + µ̃Rmsx + µ̃2
Rms

x2) (17)

with
∣∣µ̃2

Rms

∣∣ ¿ |µ̃Rms | ¿ 1 .
If we assume that the input voltage u(t) is sinusoidal, in this case, the solution

of the nonlinear differential equation is a trigonometric expansion. The solution
can be developed until the order 2 (µ2):

x(t) = x0(t) + µx1(t) + µ2x2(t) + ... , (18)

where x0(t) is the solution of the nonlinear differential equation of the electrody-
namic loudspeaker when we neglect the terms with orders higher than zero, x1(t)
is the solution of the nonlinear differential equation when we omit the terms with
orders higher than one and smaller than one, x2(t) is the solution of the nonlin-
ear differential equation of the electrodynamic loudspeaker when we neglect the
terms with orders smaller than two and higher than two.

It can be noted that some methods like the Volterra Series are interesting
but do not show which parameters are really nonlinear. The way of solving the
nonlinear differential equation is very important but we think that it is not the
most important thing for characterizing the electrodynamic loudspeakers. The
real problem is to know what parameters vary and how. Furthermore, the rank-
ing of these parameters according to the input current or frequency is of great
importance. Indeed, we can think that if the structure of an electrodynamic
loudspeaker must be improved, we must know all the defects in the motor or the
suspensions.

Let us consider now Eq. (12). The denominator in Eq. (12) contains a non-
linear term. Consequently, it is very difficult to solve this nonlinear differential
equation with a nonlinear denominator. One possible solution is to approximate
this denominator as follows:

1
Bl(x)

= B̃l0 + B̃l1x + B̃l2x
2 + ... (19)

The previous relation is used as a simplification for solving numerically the
nonlinear differential equation. Moreover, we can use a classical trigonometric
expansion to solve Eq. (12). In short, the solution of the nonlinear differential
equation of the electrodynamic loudspeaker is

x(t) = A cos(wt) + B sin(wt) + C cos(2wt) + D sin(2wt) + ... (20)

All the terms A, B, C, D,... are found numerically but an analytical solution
is possible if the force factor is approximated. Indeed, the terms A and B can be
found by inserting A cos(wt) + B sin(wt) in the Eq. (12) with an excitation u(t)
equal to P sin(wt) where P is an amplitude. The terms C and D can be found
by taking the terms with orders higher than one into account, etc...
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5.3. Theoretical results and position of the small signal parameters according
to their created distortions

We present the position of the small signal parameters according to their cre-
ated distortions. For this purpose, we solve the nonlinear differential equation
by using the serial expansion presented in the previous section but we take into
account only one variation of a parameter at a time. Figure 9 shows the created
distortions by each Thiele and Small parameter. The level of the input voltage is
10 V and the frequency of excitation is 50 Hz. We can see that for this electro-
dynamic loudspeaker, the nonlinear parameter which creates the most important
second-harmonic is the inductance Le of the voice coil, and the nonlinear para-
meter which creates the most important third-harmonic is the equivalent damp-
ing parameter Rms. However, when the frequency of excitation increases, the
nonlinear parameters which create more distortions are not the same. Figure 10
presents the created distortions by each Thiele and Small parameter when the

Fig. 9. Theoretical spectrums of Thiele and Small parameters: the frequency of excitation
is 50 Hz and the input voltage is 10 V.

Fig. 10. Theoretical spectrums of Thiele and Small parameters: the frequency of excitation
is 150 Hz and the input voltage is 10 V.
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frequency of excitation is 150 Hz. As shown in the previous figure, the level of
the input voltage is 10 V and the frequency of excitation is 150 Hz. We see that
the nonlinear parameter which creates the most important second-harmonic is
the equivalent mass Mms and the nonlinear parameter which creates the more
important third-harmonic is the damping parameter Rms. We sum up all the
results in Tables 2–5.

Table 3. Ranking of the parameters according to their created distortions
(the frequency of excitation is 50 Hz).

Ranking (50 Hz) Parameter (harmonic 3) log [x]

1 Rms −11

2 Bl −12.5

3 Cms −12.6

4 Le −12.9

5 Mms −14.6

Table 4. Ranking of the parameters according to their created distortions
(the frequency of excitation is 150 Hz).

Ranking (150 Hz) Parameter (harmonic 2) log [x]

1 Mms −5.3

2 Le −6.4

3 Rms −7.7

4 Cms −8.2

5 Bl −8.4

Table 5. Ranking of the parameters according to their created distortions
(the frequency of excitation is 150 Hz).

Ranking (150 Hz) Parameter (harmonic 3) log [x]

1 Rms −11.7

2 Le −12.6

3 Cms −14.2

4 Bl −15

5 Mms −15.1

5.4. Discussion

The previous section shows that the nonlinear parameters which create the
most distortions are not those which are the most nonlinear according to the coil
current. For example, Fig. 7 shows that the equivalent damping parameter Rms
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is the most nonlinear parameter (Rms varies a lot with the coil current), but it
is not the parameter which creates the most distortions. On the contrary, the
inductance Le of the voice coil varies very little with the coil current, but at low
frequency this parameter creates important distortions. Moreover, we see that
the mechanical compliance Cms is not an important nonlinear parameter since it
does not create important distortions. In addition, ranking of these nonlinearities
depends also on the input frequency. Such results are interesting for the design
of electrodynamic loudspeakers.

6. Behavior of the created distortions according to the variations
of the input voltage

The previous section presents the ranking of the nonlinear Thiele and Small
parameter according to the variation of the frequency excitation. The aim of
this section is to show that the distortions created by the nonlinear parameters
are more sensitive than the fundamental component according to the variation
of the input voltage. To show this, we solve the nonlinear differential equation
of the electrodynamic loudspeaker (12). We solve this equation by taking four
different amplitudes for the excitation (1 V, 5 V, 10 V, 50 V) and we represent
the spectrum in Fig. 11. The frequency of excitation is 100 Hz.

Fig. 11. Theoretical spectrum: influence of the input voltage on the created harmonics.

Table 6. Ranking of the parameters according to their created distortions
(the input frequency is 100 Hz).

Harmonics 1 V 5 V 10 V 50 V

first-harmonic −3.8 −3 −2.8 −2.7

second-harmonic −5.9 −5.6 −4.2 −3.4

third-harmonic −15.8 −13.5 −13 −11.4
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7. Conclusion

The aim of this paper was the study of the spectrum of the electrodynamic
loudspeaker. The experimental method, based on the impedance measurement of
an electrodynamic loudspeaker, allows us to find all the variations of the Thiele
and Small parameters. We can say that this experimental method can be used
to characterize many transducers which are described with their electrical im-
pedance. Indeed, an electrical impedance can be seen as a nonlinear transfer
function which varies with the input current or the input voltage (Gille et al.,
1981). In Sec. 2, we have presented a method to derive the coefficients of the
nonlinear parameters based on the Simplex algorithm. It is noted that a simpli-
fying method was used in a previous paper (Ravaud et al., 2009b) and has been
improved in this paper.

The small signal coefficients, inserted in the differential equation of the elec-
trodynamic loudspeaker, enable us to find the generated harmonics. Many new
results are discussed. The equivalent damping parameter is the parameter which
is the most nonlinear if we look at its relative variation according to the input
current. However, it is not the parameter which creates the most important dis-
tortions. This result is important because it gives information about the way of
manufacturing an electrodynamic loudspeaker.

More generally, when we take into account the variations of the small signal
parameters with the coil current, the mean difference between the experimental
and the theoretical values is 0.4 Ω, whereas the mean difference is 2.0 Ω with
Thiele and Small model with constant parameters.

Another interesting result is the weak variation of the electrical inductance
with the input current. It is noted that the electrodynamic loudspeaker charac-
terized in this paper is a good one and is less nonlinear than a bad loudspeaker.
However, we see that this weak variation creates important distortions. This is
why it can be very important to try to build electrodynamic loudspeakers with
constant inductance.

Furthermore, we have seen that these generated harmonics become more and
more important when the input voltage increases. This result is in fact consistent
with all the studies dealing with modeling of nonlinear systems.

This paper is a first step to derive and class the defects of electrodynamic
loudspeakers. The experimental approach taken is certainly more precise for char-
acterizing the variation of a nonlinear transfer function according to the input
level. We can say that such defects are very important to determine because they
lower the quality of loudspeakers.
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