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Noise reduction inside waveguide systems has gained momentum owing to a great interest in it. To
attenuate the sound in a broad frequency range, this study aims to compare the effects of two acoustic
liners, a perforated plate backed by an air cavity (PP-Air cavity), or by a porous material (PP-PM), on the
acoustic behaviour of lined ducts using a numerical model to compute the multimodal scattering matrix.
From this matrix, the reflection and the transmission coefficients are computed and therefore the acoustic
power attenuation is deduced. Moreover, the effects of geometry of ducts with and without changes in
the section are investigated. The numerical results are obtained for five configurations, including cases
of narrowing and widening of a duct portion with sudden or progressive discontinuities. Accordingly,
numerical coefficients of reflection and transmission as well as the acoustic power attenuation show the
relative influence of acoustic liners in each type of configuration.
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1. Introduction

Noise reduction in waveguide systems is a topic of
considerable interest with respect to several applica-
tions, such as aircraft engines, compressors, and build-
ing ventilation systems. These systems encompass nu-
merous geometric forms as duct systems, which has an
important role in the studies of the behaviour of sound
waves. The acoustic propagation has been investigated,
first in rigid cylindrical, see (Auger, Ville, 1986),
and rectangular ducts, see (Muehleisen, 1996). Be-
sides, acoustics liners are used as a treatment of duct
walls. These liners consist of materials that are able
to reduce the transmission of sound along the ducts
and provide a good attenuation at medium and high
frequencies. Several methods were developed to extract
the acoustic impedance, the related acoustic liner prop-
erties, under grazing flow conditions such as those pre-
sented by Jones and Watson (2011; 2013), Jones
et al. (2013), Busse-Gerstengarbe et al. (2012;

2013). Some methods, afterwards, were improved to in-
corporate the effect of high temperatures, as proposed
by Kabral et al. (2014), Bodén and Kabral (2015).
These works were carried out with respect to ducts
without section change. Some waveguides can contain
many variations in cross-sections, called discontinu-
ities, which produce internal reflections of sound waves.
The discontinuity problem in ducts was firstly inves-
tigated by Miles (1946). He showed that the sud-
den discontinuity in a cylindrical duct is analogous
to lumped impedance. The transmission of sound in
the case where the walls of the duct with sudden area
expansion and extended inlet, treated by acoustically
absorbing materials of finite length, is investigated by
Demir (2016). In another work Demir (2017) defined
the scattering matrices with the help of the Wiener-
Hop technique in a non-uniformly lined duct with an
inserted expansion chamber. Measurement of acous-
tic transmission matrix and acoustic power dissipation
of duct discontinuity was described in (Sitel et al.,
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2003). The analysis of discontinuities in rectangular
ducts and higher order mode excitations using trans-
mission line matrix (TLM) method and finite element
method (FEM) is studied in (Masri, 2004).

The scattering matrix method has been widely used
to characterise ducts with geometric discontinuities
and ruptures wall impedance. This matrix provides
a characterisation of lined duct, independently of the
upstream and downstream conditions. The scattering
matrix coefficients give an insight into transmission
and reflection in a multimodal context. This latter
can describe the energetic state of the duct element.
The scattering matrix has been obtained in some pre-
vious works, using experimental approaches such as
(Ville, 2014; Taktak et al., 2008). Some other works
dealt with calculation of the scattering matrix through
numerical methods. The finite element method was
indeed used to model a 3D axisymmetric duct, see
(Taktak et al., 2010). Therefore, this matrix was used
to evaluate the effect of temperature on the acoustic
behaviour of the duct element lined with porous ma-
terials (Ben Jdidia et al., 2014). Besides, the effect of
liner characteristics composed of a perforated plate and
absorbing porous material backed by a rigid plate on
the acoustic performance of a duct element was investi-
gated in (Othmani et al., (2015). Some works used ex-
perimental methods to describe the duct discontinuity
for higher order acoustic duct mode propagation, such
as (Sitel, Ville, 2006) that developed a procedure
for measuring the scattering matrix of straight and re-
active type silencer duct configurations. The effect of
duct diameter increase and duct diameter decrease on
the acoustic behaviour of the wall or lined duct was
examined numerically by Masmoudi et al., 2017. The
numerical method was developed to incorporate the
flow effect in (Taktak et al., 2012; 2013). To compute
the propagation in the case of 2D lined duct with the
flow, Aurégan et al. (2004) proposed to couple an an-
alytical model and measurements scattering matrix in
the hard wall ducts.

In this paper we extend our previous work
(Taktak et al. 2010) to study the effect of geometry
of ducts treated by acoustic liners. Therefore, a com-
parison between acoustic liners’ effects on the acoustic
performance of different lined ducts’ configurations is
presented. This investigation is based on the compu-
tation of the reflection, transmission, and the acous-
tic power attenuation for each configuration, through
the calculation of the scattering matrix. This aim is
achieved by studying two types of liners: a perforated
plate backed by an air cavity, or by a porous material.
The numerical results are obtained for various config-
urations, including cases of narrowing and widening
of a portion duct with sudden or progressive disconti-
nuities. The paper is structured as follows: in Sec. 2,
the numerical computation of the multimodal scatter-
ing matrix is presented. Section 3 displays the acoustic

power attenuation computation. Section 4 evinces the
models of locally reacting impedance for the studied
liners. Finally, the numerical results are presented and
discussed in Sec. 5.

2. Configurations of the studied ducts

Geometry of the studied ducts is depicted in Fig. 1.
A shape of each duct under consideration is a rigid-
lined-rigid cylindrical duct located between two axial
coordinates ZR and ZL.

Fig. 1. Geometry of the ducts: A – straight duct; B – sym-
metric part of ducts, having a narrowing of a portion with
two types of discontinuities under consideration: f = 0, sud-
den discontinuity, and f ≠ 0, progressive discontinuity; C –
symmetric part of ducts, having a widening of a portion
with two types of discontinuities under consideration: f = 0,
sudden discontinuity, and f ≠ 0, progressive discontinuity.
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The scattering matrix is computed in each duct ele-
ment of length L = 1 m and radius changing depending
on the configuration type. The radius a = R = 0.075 m
for the first configuration A (wherein a constant circu-
lar section) and for the geometry B1 and B2 of a sud-
den and progressive narrowing in a portion of duct ele-
ment. The radius a = ρ = 0.055 m for the geometry C
of a sudden or progressive widening in a portion of the
duct element. The duct diameter increases in the case
of widening of the portion duct, and the duct diame-
ter decreases in the case when the narrowing of a por-
tion duct is 0.02 m. The edge of the studied ducts is
composed of four parts: the rigid wall duct part ΓWD ,
the lined duct part ΓLD , the left transversal boundary
ΓL, and the right transversal boundary ΓR are char-
acterised, respectively, by their normal vectors n. In
the lined part of the duct, the liner is modelled by two
acoustic impedances Za and Zb.

3. Computation of the multimodal scattering
matrix

3.1. Definition of the scattering matrix

The multimodal scattering matrix S2N×2N of the
element duct relates the outcoming pressure waves ar-
ray Pout

2N = ⟨P I−00 , ..., P I−PQ, P II+
00 , ..., P II+

PQ ⟩T
N

to the in-
coming pressure waves array Pin

2N = ⟨P I+00 , ..., P I+PQ,
P II−
00 , ..., P II−

PQ ⟩T
N

(Fig. 1) (Abom, 1991; Taktak et al.,
2010) as follows:

Pout
2N = S2N×2NPin

2N = [
RI
N×N TI

N×N

TII
N×N RII

N×N
]
2N×2N

Pin
2N , (1)

where (P I+mn, P I−mn) and (P II+
mn , P

II−
mn ) are the modal

pressure coefficients associated with the (m, n) mode
travelling, respectively, in the positive and negative
directions in the region I and II. m and n are, re-
spectively, the azimuthal and the radial mode num-
bers, N is the number of modes in both cross sections,
P and Q are, respectively, the angular and radial wave
numbers associated with the N -th propagating mode
(m ≤ P and n ≤ Q).

The boundary effects at the inlet and outlet of the
duct are neglected. The acoustic pressure p in each
cylindrical duct is the solution of the system, con-
taining the Helmholtz equation with boundaries condi-
tions, respectively, at ΓWD (rigid wall duct part) and
ΓLD (lined duct part), as presented in a previous work
(Taktak et al., 2010):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆p + k2p = 0 (Ω) ,

Z
∂p

∂nLD
= iωρ0p (ΓLD) ,

∂p

∂nWD
= 0 (ΓWD) ,

(2)

where k is the total wave number, ρ0 is the density
of the air conditioning and ω is the pulsation. The
acoustic pressure fields at the left section ΓL and the
right section ΓR (Fig. 1) are given as follows:

PL =
Nr

∑
n=1

nL (P I+mneikmn(z−zL)

+P I−mneikmn(z−zL))Jm (χmn
a

r),

PR =
Nr

∑
n=1

nR (P II+
mne

ikmn(z−zR)

+P II−
mne

ikmn(z−zR))Jm (χmn
a

r).

(3)

Nr is the number of radial modes, Jm is the Bessel
function of the first kind of orderm, r is the radial vari-
able, and χmn is the n-th root satisfying the radial
hard-boundary condition on the rigid-wall of the main
duct, kmn are the axial wave numbers associated with
the (m, n) mode and defined as:

kmn = ±
√
k2 − k2t , (4)

kt is the transverse wave number.

3.2. Variational formulation

To solve the system of Eqs (2), the finite element
method is used. The corresponding weak variational
formulation is written as follows:

Π = ∫
Ω

− (∇q ⋅ ∇p)r dr dz

+ 1

c2
∫
Ω

((iωq) (−iωp))r dr dz

−ρ0ω2 ∫
ΓLD

q
p

iωZ
r dΓLD

+
Nr

∑
n=1

inL {kmnP I+mn + kmnP I−mn}

×∫
ΓL

qJm (χmn
a

r)r dΓL

+
Nr

∑
n=1

inR {kmnP II+
mn + kmnP II−

mn}

×∫
ΓR

qJm (χmn
a

r)r dΓR = 0, (5)

where p and q are the acoustic pressure in the duct
and the test function, respectively.

The use of modal decomposition at the boundaries
ΓL and ΓR in Eq. (3) introduces the modal pressures
as additional degrees of freedom of the model. It is
necessary to obtain a well posed problem. This is con-
ducted by supposing that pressures at ΓL and ΓR are
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obtained by the projection of the acoustic field over
the eigenfunctions of the rigid wall duct:

∫
ΓL

pJm (χmn
a

r) dΓL = a∗,

∫
ΓR

pJm (χmn
a

r) dΓR = b∗,
(6)

where

a∗ = (P I+mn + P I−mn)∫
ΓL

Jm (χmn
a

r)
2

r dΓL,

b∗ = (P II+
mn + P II−

mn)∫
ΓR

Jm (χmn
a

r)
2

r dΓR.

3.3. Finite element discretisation

To solve the proposed problem, the domain (Ω) is
discretised with triangular finite elements, while edges
are meshed by two node finite elements. The computa-
tion of integrals of Eq. (5) is made by summation over
the finite elements number of elementary integrals, as
presented by Dhatt and Touzot (1989):

Ie = ∫
Ωe

−(∇q ⋅ ∇p)r dre dze + 1
c2 ∫
Ωe

(iωq)(−iωp)r dre dze

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ie1

+−ρ0ω2 ∫
Γe

q p
iωZ

r dΓe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ie2

+
Nr

∑
n=1

inL [kmnP I+mn + kmnP I−mn] ∫
Γe

qJm (χmn
a
r)r dΓe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ie3

+
Nr

∑
n=1

inR [kmnP II+
mn + kmnP II−

mn] ∫
Γe

qJm (χmn
a
r)r dΓe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ie4

.

(7)
The computation of integrals (7) is obtained by

summation over the finite elements number of elemen-
tary integrals

Ie5 =∫
Γe

pJm (χmn
a

r) r dΓe

− (P I+mn + P I−mn)∫
Γe

Jm (χmn
a

r)
2

r dΓe,

Ie6 =∫
Γe

pJm (χmn
a

r) r dΓe

− (P II+mn + P II−mn )∫
Γe

Jm (χmn
a

r)
2

r dΓe,

(8)

where dre dze and Γe are, respectively, the elementary
triangular and two-node finite elements.

3.3.1. Elementary computation of the triangular finite
element

For the triangular finite element composed of three
nodes, the integral Ie1 is written as follows:

Ie1 = ⟨q1 q2 q3⟩Ke1 ⟨q1 q2 q3⟩T ,

(Ke)1 = ∫
Ωref

− (∇q ⋅ ∇pT )det jr dξ dη

+ ∫
Ωref

⎛
⎜⎜
⎝

iω

c

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N
′
1

N
′
2

N
′
3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(− iω
c

[N
′
1, N

′
2, N

′
3])

⎞
⎟⎟
⎠

det jr dξ dη,

(9)
where pi = 1,2,3 and qi = 1,2,3 are, respectively, nodal
acoustic pressures and nodal test functions of the tri-
angular finite element, j is the inverse matrix of the
Jacobian matrix J of the transformation from the re-
ference element to the real base and N ′

1 (ξ, η), N ′

2 (ξ, η)
and N ′

3 (ξ, η) are the interpolation functions of the tri-
angular element, as presented by Dhatt and Touzot
(1989)

N ′

1 (ξ, η) = 1 − ξ − η, N ′

2 (ξ, η) = ξ,

N ′

3 (ξ, η) = η.
(10)

The integration of the integral (9) is made by using
the numerical Gauss integration method, see Dhatt
and Touzot (1989). Finally, the global corresponding
matrix is:

K1 =
Nelt

∑
1

(Ke)1, (11)

here Nelt is the number of triangular finite elements.

3.3.2. Elementary computations of the two nodes finite
element

For the two-node finite element belonging to the
lined part of the duct composed of two nodes, Ie2 and
Ie3 are computed as follows:

Ie2 = [q1, q2] (Ke)2 {
p1
p2

} ,

(Ke)2 = ρ0iω
1

∫
−1

{N1

N2
} [N1, N2]

⋅ [N1, N2]

([Zn1, Zn2] {
N1

N2
})

Le
2
r dξ,

(12)

where pi = 1,2 and qi = 1,2 are nodal acoustic pressures
and nodal test functions of the two-node finite element,
respectively. Zn1 and Zn2 are the acoustic impedance
of each node of the two-node finite element, Le is the
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finite element length, N1(ξ) and N2(ξ) are the interpo-
lation functions of the two-node finite element defined
in (Dhatt, Touzot, 1989) as follows:

N1 (ξ, η) =
1 − ξ

2
, N2 (ξ, η) =

1 + ξ
2

. (13)

The computation of Ie3 is written as follows for
a finite element belonging to the left boundary:

Ie3 = [q1, q2](Ke)+3(P I+mn)Nr + [q1, q2](Ke)−3 (P I−mn)Nr
,

(Ke)±3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋯

⋯

−ikmn
1

∫
−1

N1 (ξ)Jm (χmn
a
r) Le

2
r dξ

−ikmn
1

∫
−1

N2 (ξ)Jm (χmn
a
r) Le

2
r dξ

⋯

⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2Nr

.

(14)
The integral Ie4 for a two-node finite element be-

longing to the right boundary is written as follows:

Ie4=[q1, q2](Ke)+4(P II+mn )
Nr

+ [q1, q2](Ke)−4(P II−mn )
Nr
,

(Ke)±4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋯

⋯

+ikmn
1

∫
−1

N1 (ξ)Jm (χmn
a
r) Le

2
r dξ

+ikmn
1

∫
−1

N2 (ξ)Jm (χmn
a
r) Le

2
r dξ

⋯

⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2Nr

.

(15)
The integrals Ie5 and Ie6 are obtained by means of

linear interpolation of the pressure as follows:

Ie5 = (Ke)51 {
P1

P2
} + (Ke)+52 (P

I+
mn)Nr

+ (Ke)−52 (P
I−
mn)Nr

,

Ie6 = (Ke)61 {
P1

P2
} + (Ke)+62 (P

II+
mn)Nr

+ (Ke)−62 (P
II−
mn)Nr

,

(Ke)51 = (Ke)61

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮ ⋮
1

∫
−1

N1 (ξ)Jm (χmn
a
r) Le

2
r dξ

⋮

1

∫
−1

N2 (ξ)Jm (χmn
a
r) Le

2
r dξ

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦2Nr

,

(Ke)+52 = (Ke)−52 = (Ke)+62 = (Ke)−62

=
⎡⎢⎢⎢⎢⎢⎣
diag

⎛
⎜
⎝

1

∫
−1

Jm (χmn
a

r)
2 Le

2
r dξ

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦Nr×Nr

.

(16)
Once the elementary integrals are computed, the

assembly of them is obtained as follows:

K±

3 =
NelL

∑
1

(Ke)±3 , K±

4 =
NelR

∑
1

(Ke)±4 , (17)

where NelL and NelR are, respectively, the numbers
of two-node elements at the left and right boundaries,
and presented as follows:

K51 =
NelL

∑
1

(Ke)51, K±

52 =
NelL

∑
1

(K±

e)52,

K61 =
NelR

∑
1

(Ke)61, K±

62 =
NelR

∑
1

(K±

e)62.
(18)

The arrangement of the previous system leads to
the following matrix system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KM×M a∗ a∗∗ b∗ b∗∗

c∗ c∗∗ c∗∗∗ 0 0
0 0 0 0 0
0 0 0 0 0
d∗ 0 0 d∗∗ d∗∗∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1
⋮
pM

⎫⎪⎪⎪⎬⎪⎪⎪⎭M
{PI−

mn}Nr

{PI+
mn}Nr

{PII−
mn}Nr

{PII+
mn}Nr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0,

KM×M = K1,

(19)

where

a∗ = (K−

3)M×Nr
, a∗∗ = (K+

3)M×Nr
,

b∗ = (K−

4)M×Nr
, b∗∗ = (K+

4)M×Nr
,

c∗ = (K51)Nr×M , c∗∗ = (K−

52)Nr×Nr
,

c∗∗∗ = (K+

52)Nr×Nr
,

d∗ = (K61)Nr×M , d∗∗ = (K−

62)Nr×Nr
,

d∗∗∗ = (K+

62)Nr×Nr
,

and M is the number of nodes. For a given m, the
azimuthal scattering matrix is defined as:

⎧⎪⎪⎨⎪⎪⎩

PI−
mn

PII+
mn

⎫⎪⎪⎬⎪⎪⎭
= s2Nr×2Nr

⎧⎪⎪⎨⎪⎪⎩

PI+
mn

PII−
mn

⎫⎪⎪⎬⎪⎪⎭
. (20)

This matrix is obtained by formulating the system
of Eq. (23) as follows:

Kp +A

⎧⎪⎪⎨⎪⎪⎩

PI+
mn

PII−
mn

⎫⎪⎪⎬⎪⎪⎭
+B

⎧⎪⎪⎨⎪⎪⎩

PI−
mn

PII+
mn

⎫⎪⎪⎬⎪⎪⎭
= 0,

Cp +U

⎧⎪⎪⎨⎪⎪⎩

PI+
mn

PII−
mn

⎫⎪⎪⎬⎪⎪⎭
+V

⎧⎪⎪⎨⎪⎪⎩

PI−
mn

PII+
mn

⎫⎪⎪⎬⎪⎪⎭
= 0,

(21)

where p is the nodal acoustic pressure vector and the
matrices A, B, C, U, and V are defined as:

A = [K−

3 K+

4] , B = [K+

3 K−

4] , C = K51 +K61,

U = [K−

52 K+

62] , V = [K+

52 K−

62] .
(22)
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The azimuthal scattering matrix is then written as:

s = (V −CK−1B−1) (U −CK−1A−1) . (23)

The total scattering matrix of the studied ducts
S2Nr×2Nr is obtained by repeating this operation for
each m and by gathering the azimuthal matrices
s2Nr×2Nr and N is the total number of modes present
in the duct.

4. Computation of the acoustic power
attenuation

The acoustic power attenuation,Watt of a two ports
duct is defined as the ratio between the acoustic pow-
ers on both sides of the incoming waves W in and the
outgoing waves W out, as presented by Taktak et al.
(2010):

Wattenuation [dB] = 10 log10

W in

W out

= 10 log10

⎛
⎜⎜⎜
⎝

2N

∑
i=1

∣di∣2

2N

∑
i=1
λi ∣di∣2

⎞
⎟⎟⎟
⎠
, (24)

where λi are the eigenvalues of the matrix H, defi-
ned as:

H2N×2N = [XO2N×2NS2N×2NXI−12N×2N ]T∗
2N×2N

⋅ [XO2N×2NS2N×2NXI−12N×2N ]
2N×2N

, (25)

XI2N×2N = [diag(
√
Nmnk+mn/2ρ0c0k)]

2N×2N
,

XO2N×2N = [diag (
√
Nmnk−mn/2ρ0c0k)]

2N×2N
,

(26)

{d}2N = UT∗
2N×2N {Πin}

2N
, (27)

where U is the eigenvectors of the matrix of H and T*
denotes conjugate transpose.

5. Description of the used liners

The cylindrical ducts, as used in this study, are
treated with two acoustic liners of a locally reactive
type. These liners are characterised by their acoustic
impedance Za and Zb, used as the input for computa-
tion of the numerical scattering matrix, as presented
in Fig. 2.

The first liner (a: PP-Air cavity) consists of a per-
forated plate with an air-cavity before the rigid wall.
The second liner (b: PP-PM) is composed of a per-
forated plate backed by an absorbing porous material
before the rigid wall. Each of these acoustic liners can
provide a different response. To describe the liners’ be-
haviour, two empirical models can be employed. One

a)

b)

Fig. 2. Composition of the used liner (a) perforated plate
+ air cavity; (b) perforated plate + porous material.

model, proposed by Elnady (2004), is used to calcu-
late the perforated plate and another model, proposed
by Allard (1993) and Lafarge et al. (1997), is used
to calculate the porous material.

The liner (a) impedance model is expressed as:

Za = Zperforated plate +Zcav. (28)

The acoustic impedance of the liner (b) can be mod-
elled as follows:

Zb = Zperforated plate +Zporous material, (29)

with
Zporous material = Zc coth (jkcdm) . (30)

Zc and kc are the surface characteristic impedance
and propagation constants of the porous material, re-
spectively, and dm is the material depth. The values of
Zc and kc are described in the following section, using
the Lafarge-Allard model.

5.1. Acoustic impedance of the perforated plate

The acoustic impedance of the perforated plate is
computed using Elnady model. This model was vali-
dated by measurements realised by Elnady and Bo-
den (2003), Elnady et al. (2009; 2010) who have
shown the accuracy of this model.

The impedance of the perforated plate can be mo-
delled as follows:

ZE = Re
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ik

σpCD

⎡⎢⎢⎢⎢⎢⎣

t

F (k
′
sdp
2

)
+ δre

F (ksdp
2

)

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ i Im
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ik

σpCD

⎡⎢⎢⎢⎢⎢⎣

t

F (k
′
sdp
2

)
+ δim

F (ksdp
2

)

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (31)

with CD being the discharge coefficient, dp being pore
diameter, t as plate thickness, σp being plate porosity,
δre and δim as correction coefficients

δre = 0.2dp + 200d2p + 16000d3p, δim = 0.2856dp, (32)
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F (
ksdp

2
) = 1 −

J1 (ksdp2
)

ksdp
2
J0 (ksdp2

)
,

F (
k′sdp

2
) = 1 −

J1 (k
′
sdp
2

)
k′sdp
2
J0 (k

′
sdp
2

)
,

(33)

k′s =
√

−iω
ν′ , ks =

√
−iω
ν

with ν as the kinematic viscos-
ity and ν′ = 2.179η/ρ0.

5.2. Acoustic impedance of the porous material

The acoustic impedance of the porous material
is computed by Lafarge-Allard. The accuracy of this
model was mentioned by Sagartzazu and Hervella
(2008).

The characteristic impedance Zc and the propaga-
tion constant kc are then expressed as follows:

Zc =
√
ρKLA, kc = ω

√
ρ

KLA
, (34)

ρ = α∞ρ0
⎡⎢⎢⎢⎢⎣
1 − j σφ

ρ0α∞ω

√
1 + 4jρ0α2

∞
ωη

σ2φ2Λ2

⎤⎥⎥⎥⎥⎦
, (35)

KLA = γP0

⎡⎢⎢⎢⎢⎢⎢⎣

γ − (γ − 1)

1 + ηφ
jωρ0Nprk′0

√
1 + 4jωρ0Nprk′20

ηφ2Λ′2

⎤⎥⎥⎥⎥⎥⎥⎦

, (36)

where α∞ and φ are the material tortuosity and poros-
ity respectively, σ is the material flow resistivity, ρ0 is
the air density, γ is the ratio of specific heats at con-
stant pressures Cp and volumes Cv, respectively, de-
fined as follows:

γ = CP
Cv

. (37)

NPr is the Prandtl number, η is the dynamic viscosity,
Λ and Λ′ are the viscous and thermal characteristic
lengths, respectively, P0 is the atmospheric pressure,
and k′0 is the thermal permeability.

6. Numerical results

Six configurations of the lined duct are used to
compare two studied liners’ acoustic performance on
the scattering matrix coefficients and the acoustic
power attenuation over the frequency band ka = [0 3.8]
(ka is the non-dimensional wave number, and N = 3
modes are propagating [(0, 0); (1, 0); (2, 0)]). More-
over, the geometries of ducts can change significantly
the acoustic liners’ behaviour. The porous material
is the industrial material “acusticell” as presented in
(Sagartzazu, Hervella, 2008), and the used porous
characteristics are similar to those used by Othmani
et al. (2015). Table 1 presents the geometric parame-
ters of each studied configuration. The characteristics

Table 1. Geometric parameters of each studied
configuration.

Parameters b

[m]
c

[m]
f

[m]
Configuration A : straight duct 0.35 0.3 0
Configuration B1: sudden narrowing 0.2 0.2 0
Configuration B2: progressive narrowing 0.2 0.2 0.2
Configuration C1: sudden widening 0.2 0.2 0
Configuration C2: progressive widening 0.2 0.2 0.2

of the propagation medium (the air) are listed in Ta-
ble 2. The different characteristics of the liners (a) and
(b) are presented, respectively, in Tables 3 and 4.

Table 2. The characteristics of the propagation medium
(the air).

Air parameters
Velocity: c0 [m/s] 340
Density: ρ0 [kg/m3] 1.2
Characteristic impedance: Z0 [(Pa ⋅ s)/m] 414
Adiabatic constant: γ 1.4
Prandlt Number: Npr 0.708
Dynamic viscosity: η [Pa ⋅ s] 0.101300

Table 3. The different characteristics of the liner (a).

Liner (a: PP-Air cavity) parameters
Plate thickness: t [m] 0.001
Pores diameter: dp [m] 0.001
Plate porosity: σp [%] 2.5
Discharge coefficient: CD 0.76
Length of cavity: Lc 0.02

Table 4. The different characteristics of the liner (b).

Liner (b: PP-PM) parameters
Flow resistivity: σ [(N ⋅ s)/m] 22 000
Porosity: ϕ 0.95
Tortuosity: α∞ 1.38
Thermal permeability: k′0 [m2] 0.83 ⋅ 10−8

Viscous characteristic length: Λ [m] 0.00051
Thermal characteristic length: Λ′ [m] 0.024
Thickness of specimen: d [m] 0.001

6.1. Configuration A: straight duct

Figure 3 shows the comparison between the effects
of the impedance of liners PP-MP and PP-Air cavi-
ty of the first configuration A on the acoustic power
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a)

b) c)

d) e)

f) g)

Fig. 3. Comparison of the acoustic behavior (acoustic power attenuation and scattering matrix coefficients in the presence
of (0, 0) mode (b, c), (1, 0) mode (d, e), and (2, 0) mode (f, g)) versus ka between two acoustic liners’ models: PP-PM

and PP-Air cavity of configuration A: straight duct.
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attenuation and the scattering matrix coefficients, re-
spectively, for the modes (0, 0), (1, 0), and (2, 0) ver-
sus ka.

Figure 3a reveals that the acoustic power attenua-
tion increases to the final point versus ka in the two
cases of the studied liners. The attenuation of PP-PM
liner yields a good performance in the entire frequency
range, however, it shows drops at the mode cut-on
frequencies. The maximum attenuation of these lin-
ers varies as follows: (PP-Air cavity: 2 dB, ka = 1.8 to
5.5 dB, ka = 3.8; PP-PM: 10.6 dB, ka = 1.8 to 16 dB,
ka = 3.8). It was noted that the PP-PM liner is sig-
nificantly more important, particularly at the high fre-
quency (∼5 dB) compared to the PP-Air cavity liner;
therefore, it is more efficient. This is explained by the
fact that the porous material behind the perforated
plate increases the resistance of PP-P liner as men-
tioned earlier in (Lee et al., 2006), which induces an
increase in the attenuation. The modulus of the coeffi-
cient T00,00 (Fig. 3c) varies conversely from the acous-
tic power attenuation. ∣T00,00∣ decreases from 1 with the
increase of ka, reaching a minimum of 0.51 for PP-Air
cavity and near to zero for PP-PM. This decrease is
more remarkable on the PP-PM (∼0.5). Figure 3b in-
dicates that the reflection coefficient R00,00 increases
to a maximum equal to 0.48 in the frequency bands
ka = [0–0.5] and then slowly decreases with ka for the
PP-PM liner, while a damped oscillation is observed
for the PP-Air cavity liner with a maximum ampli-
tude equal to 0.42. The reflection coefficients moduli,
∣R10,10∣ and ∣R20,20∣ (Figs 3d,f), are close to 1, near
the mode cut-on frequencies; then they decrease ver-
sus ka in the two studied liners cases. Figures 3e,g re-
veal that the transmissions’ coefficients of higher order
modes T10,10 and T20,20 are very close to zero in the
two studied liners.

6.2. Configuration B1: sudden narrowing

Figure 4 displays the comparison between the ef-
fects of the impedance of liner PP-MP and the liner
PP-Air cavity of the second configuration B1, having
sudden narrowing of a portion duct on the acoustic
power attenuation and the scattering matrix coeffi-
cients, respectively, for the modes (0, 0), (1, 0), and
(2, 0) versus ka.

From the figures above it is noticed that the at-
tenuation behaviour of PP-Air cavity liner is similar
to that in the configuration A. However, they show
a small peak in the frequency band ka = [1.4–2] around
the resonance frequency of the liner. The maximum
attenuation in this interval passes from 1.9 dB for con-
figuration A to 4 dB for configuration B at ka = 1.77.
On the other hand, the attenuation of PP-PM liner de-
creases significantly, though it does not present drops
at the mode cut-on frequencies, compared to that of
configuration A. This decrease is intensified with the

increase of ka. The maximum attenuation varies as fol-
lows: (4.9 dB, ka = 1.8; 6.5 dB, ka = 3.05; 6.2 dB, ka =
3.8) for configuration A to (10.6 dB, ka = 1.8; 13.57 dB,
ka = 3.05; 15.7 dB, ka = 3.8) for configuration B. It is
noted from the figures above that the attenuation be-
haviour of PP-Air cavity liner is similar to that in the
configuration A. However, they shows a small peak
in the frequency band ka = [1.4–2] around the reso-
nance frequency of the liner. For the PP-Air cavity
liner, the level of attenuation increases and it has neg-
ligible drops compared to configuration A. The max-
imum attenuation passes from 1.9 dB for configura-
tion A to 4 dB for configuration B at ka = 1.77. On the
other hand, the level of the attenuation of PP-Air cav-
ity liner decreases significantly with the increase of ka
when compared to that of configuration A. The max-
imum attenuation varies as follows: (4.9 dB, ka = 1.8;
6.5 dB, ka = 3.05; 6.2 dB, ka = 3.8) for configuration A
to (10.6 dB, ka = 1.8; 13.57 dB, ka = 3.05; 15.7 dB, ka
= 3.8) for configuration B. The moduli of reflection co-
efficients R00,00, R10,00 for the two studied liners of this
configuration (sudden narrowing) are higher than that
of configuration A (straight duct); however, they are
slightly lower for ∣R20,20∣. The reflection is more impor-
tant (∼0.4 and 0.5) on the (0, 0) mode and (1, 0) mode
(∼0.4 and 0.5) and less important (∼0.4 and 0.5) on
the (2, 0) mode, respectively, for the PP-PM liner and
the PP-Air cavity liner compared to configuration A.
Contrariwise, the moduli of transmission coefficients
T00,00, T10,00, T20,20 are weaker. The modulus of the
coefficient R00,00 indicates that it increases to a max-
imum (∼0.76, ka = 0.4 for PP-PM and ∼0.87, ka = 0.6
for PP-Air cavity) and then decreases with ka, until
reaching 3.7. It is noted that configuration A is more
efficient than configuration B in the case of PP-PM
liner. Moreover, the attenuation curves, related to the
PP-Air cavity liner for the two configurations A and B,
are close. This is elucidated by the fact that when the
acoustic wave meets the perforated plate, one part of
the incident wave is reflected on the perforated plate
and another part is reflected on the section disconti-
nuity of the narrowing duct, therefore, resulting in an
increase of the reflection. However, the attenuation re-
mains at the same level. To optimise the PP-Air cavity
liner, it is interesting to add porous material before the
air cavity.

6.3. Configuration B2: progressive narrowing

Figure 5 exhibits the comparison between the ef-
fects of the impedance of the liner PP-MP and liner
PP-Air cavities of configuration B2, having progres-
sive narrowing of a portion duct on the acoustic power
attenuation and the scattering matrix coefficients, re-
spectively, for the modes (0, 0), (1, 0), and (2, 0) ver-
sus ka. These modes reveal that the acoustic behaviour
shown in these figures is similar to that of configura-
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a)

b) c)

d) e)

f) g)

Fig. 4. Comparison of the acoustic behaviour (acoustic power attenuation and scattering matrix coefficients in the presence
of (0, 0) mode (b, c), (1,0) mode (d, e), and (2,0) mode (f, g)) versus ka between two acoustic liners’ models: PP-PM and

PP-Air cavity of configuration B1.
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a)

b) c)

d) e)

f) g)

Fig. 5. Comparison of the acoustic behavior (acoustic power attenuation and scattering matrix coefficients in the presence
of (0, 0) mode (b, c), (1, 0) mode (d, e), and (2, 0) mode (f, g)) versus ka between two acoustic liners’ models: PP-PM

and PP-Air cavity of configuration B2.
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a)

b) c)

d) e)

f) g)

Fig. 6. Comparison of the acoustic behavior (acoustic power attenuation and scattering matrix coefficients in the presence
of (0, 0) mode (b, c), (1, 0) mode (d, e), and (2, 0) mode (f, g)) versus ka between two acoustic liners’ models: PP-PM

and PP-Air cavity of configuration C1.



R. Dhief et al. – Investigation on the Effects of Acoustic Liner Variation and Geometry Discontinuities. . . 61

a)

b) c)

d) e)

f) g)

Fig. 7. Comparison of the acoustic behavior (acoustic power attenuation and scattering matrix coefficients in the presence
of (0, 0) mode (b, c), (1, 0) mode (d, e) and (2, 0), mode (f, g)) versus ka between two acoustic liners’ models: PP-PM

and PP-Air cavity of configuration C2.
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tion B1 (sudden narrowing) with small variations, de-
scribed as follows: the attenuation curves for the case
of the PP-PM liner are identical up to ka = 0.9, where
the attenuation of configuration B2 starts to be slightly
higher, presenting drops at the mode cut-on frequen-
cies. The attenuation curves for the case of the PP-
Air cavity liner are identical up to ka = 0.16, there-
fore, it is slightly higher in configuration B2, except
for that in the frequency range ka = [1.6–2]. The mod-
ulus of the coefficient T00,00 indicates that it is start-
ing to be slightly higher for ka above 1.2 for the case of
PP-PM liner and in ka ∈ [0.6–2.5] for the case of PP-Air
cavity liner compared to configuration B1. Conversely,
the modulus of the coefficient R00,00 shows that it is
slightly lower. However, the reflection coefficients of
higher order modes are higher than configuration B1.
The (1, 0) mode reflection coefficient reveals that it is
equal to 1 at the cut-on frequency and for ka ∈ [0–2.25]
in the case of PP-PM liner, also in ka ∈ [0–2.24] in
the case of PP-Air cavity liner. Then, a small decrease
is observed outside these ranges. Hence, configuration
B2 filters the modes in this band (“mode conversion”
phenomenon from the (1, 0) mode to (2, 0) mode).
The (2, 0) mode reflection coefficient is almost totally
reflected in both studied liners.

6.4. Configuration C1: sudden widening

Figure 6 represents the comparison between the ef-
fects of the impedance of liner PP-MP and the liner
PP-Air cavity of the configuration C1, having a sud-
den widening of the portion duct on the acoustic power
attenuation and the scattering matrix coefficients, re-
spectively, for the modes (0, 0), (1, 0), and (2, 0) ver-
sus ka. By comparing the results of these figures with
Fig. 5 for sudden narrowing of the duct, it is noticed
that the acoustic power attenuation for both liners
is better in the entire frequency range and the max-
imum attenuation varies as: (Watt,max = 5 dB, ka =
1.8; Watt,max = 6.2 dB, ka = 3.8 for PP-Air cavity liner
and Watt,max = 11.2 dB, ka = 1.8; Watt,max = 9 dB, ka
= 3.8 for PP-PM liner). The reflection coefficients mo-
duli are lower, except that of the (2, 0) mode, which is
slightly higher, and the modulus of transmission coef-
ficient T00,00 is higher. We conclude that the duct with
a sudden widening portion is more efficient than the
duct with a sudden narrowing portion.

6.5. Configuration C2: progressive widening

Figure 7 displays the comparison between the ef-
fects of the impedance of liner PP-MP and the liner
PP-Air cavity of the configuration C2, having a sud-
den widening of the portion duct on the acoustic power
attenuation and the scattering matrix coefficients, re-
spectively, for the modes (0, 0), (1, 0), and (2, 0) versus
ka. It can be observed that the acoustical properties of

this configuration are significantly affected compared
to other studied configurations. The acoustic power
attenuation increases when the number ka increases,
with small fluctuations observed at ka above 1.8 for
the case of PP-PM liner and at ka = 3.2 for the case
of PP-Air cavity liner. The maximum attenuation is
better in both liners: Watt,max = 12 dB for Air cav-
ity liner and Watt,max = 22 dB for PP-PM liner at ka
= 3.6. The modulus of the coefficient R00,00 gives close
results in both liners and it presents damping unstable,
which is more apparent for the PP-PM liner. For both
higher-order modes, the scattering matrix coefficients
have the same shapes in the two liners’ models. The
reflection coefficients are less important than configu-
ration C1, inversely, for the transmission coefficients,
being a little higher. It is worth noting that this con-
figuration generates evanescent modes at section dis-
continuity that cause an attenuation perturbation at
higher frequencies when coupled with the propagating
modes.

7. Conclusion

In this paper, a comparison between the influence
of two models of acoustic liners was conducted, i.e.
PP-MP (a) and PP-Air cavity (b) on the acoustic
power attenuation and scattering matrix coefficients
on the (0,0), (1,0), (2,0) modes of five configurations of
the lined duct were investigated, using the multimodal
scattering matrix method. These configurations were
described with and without section discontinuities.

It is concluded from the results presented above
that:

• the 5th configuration in the case of a progressive
widening is the most efficient silencer, especially
at high frequencies compared with all the rest of
configurations; however, it generates fluctuation
of acoustic waves at higher frequencies produced
by the evanescent modes;

• the PP-PM liner is more absorbent in the en-
tire frequency range, therefore, being more effi-
cient than the PP-Air cavity liner: the addition of
the porous part behind the perforated plate makes
it possible to increase the attenuation while de-
creasing the reflection by acoustic dissipation. It
causes an increase in system resistance, which re-
sults in an increase in the attenuation.

Appendix. Attenuation versus f
for configuration B2 and C2

The values of attenuation for different values of ka
when varying f from 0 to 3.5 of configurations B2 and
C2, were each treated by liner models PP-Air cavity
and PP-PM are listed respectively in Tables 5–8.
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Table 5. Values of the attenuation versus f for several frequency ka of configuration B2 treated
with PP-Air cavity liner model.

f [m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Attenuation [dB]

ka = 1.8 2.34 3.1 3 2.78 2.93 2.81 2.81 2.86
ka = 2.8 3.15 4.09 4.14 4.48 4.21 4.41 4.36 4.32
ka = 3.05 3.45 4.55 4.53 4.84 4.7 4.74 4.81 4.77
ka = 3.5 5.06 5.43 5.25 5.18 5.35 5.32 5.18 5.32
ka = 3.8 6.23 6.75 6.36 6.39 6.23 6.38 6.35 6.18

Table 6. Values of the attenuation versus f for several frequency ka of configuration B2 treated with PP-PM liner model.

f [m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Attenuation [dB]

ka = 1.8 5.36 5.45 8.05 8.17 7.83 8.77 8.17 8.51
ka = 2.8 5.48 6.5 7.5 8.24 7.64 8.187 8.05 8
ka = 3.05 5.67 7.45 8.95 9.4 9.091 9.55 9.43 9.56
ka = 3.5 5.6 8.1 8.5 8.4 8.6 8.6 8.4 8.6
ka = 3.8 5.055 9.2 8.62 9.14 9.96 9 8.91 8.7

Table 7. Values of the attenuation versus f for several frequency ka of configuration C2 treated
with PP-Air cavity liner model.

f [m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Attenuation [dB]

ka = 1.8 2.65 2.55 2.56 2.50 2.56 2.5 2.56 2.5
ka = 2.8 3.16 5.1 5.2 4.87 4.94 4.94 4.8 4.84
ka = 3.05 3.28 5.2 6.05 5.85 5.74 5.74 5.75 5.67
ka = 3.5 2.85 6.65 9.7 8.23 7 9.46 9.6 6.6
ka = 3.8 2.45 7 9 13.3 7.8 14.6 9.2 14.6

Table 8. Values of the attenuation versus f for several frequency ka of configuration C2 treated with PP-PM liner model.

f [m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Attenuation [dB]

ka = 1.8 8.4 15.36 12.71 14 14 13.14 13.36 13.27
ka = 2.8 9.2 19.13 19.51 17.59 17.09 18.43 17.55 18.63
ka = 3.05 9.64 18.94 20.47 17.93 17.08 17.29 17.35 16.97
ka = 3.5 8.08 18.06 18.3 19.66 19.87 19.54 20.72 18.62
ka = 3.8 7.8 16 20.4 19.7 17.95 21.7 18.86 22.2

Figure 8 shows the acoustic power attenuation
versus f for several ka of configuration B2 treated

a) b)

Fig. 8. Acoustic power attenuation versus progressive part f of configuration B2 treated by PP-Air cavity liner model
for several ka (a) and (b).

with PP-Air cavity liner model. These figures show
that the attenuation grows slightly for all studied ka
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with the presence of the progressive part f and then
it presents a small variation when f varies from 0.05
to 0.35.

Figure 9 presents very interesting results which
show that if the configuration B2 is treated with
PP-PM liner model, the acoustic power attenuation
grows strongly with the presence of part f for all
studied ka and the acoustic power attenuation varies
with and without the progressive part f (ka = 1.8:
Watt = 5.36 dB for f = 0 and Watt = 8.05 dB for
f = 0.1; ka = 2.8: Watt = 5.48 dB for f = 0 and
Watt = 8.24 dB for f = 0.1; ka = 3.05: Watt = 5.67 dB
for f = 0 and Watt = 7.45 dB for f = 0.05; ka =
3.5: Watt = 5.6 dB for f = 0 and Watt = 8.1 dB for
f = 0.05; ka = 3.8: Watt = 5.05 dB for f = 0 and
Watt = 9.2 dB for f = 0.05). A maximum of attenua-
tion is about 8.77 dB for f = 0.25, 8.24 dB for f = 0.15,
9.56 dB for f = 0.35, 8.66 dB for f = 3.5 and 10 dB
for f = 2 for ka = 1.8, 2.8, 3.05, 3.5 and 3.8, respec-
tively.

Figure 10 presents the acoustic power attenuation
versus f for several ka of configuration C2 treated with
the PP-Air cavity liner model. It can be observed from
this figure that the attenuation increases with the pres-

a) b)

Fig. 9. Acoustic power attenuation versus progressive part f of configuration B2 treated by PP-PM liner model
for several ka (a) and (b).

a) b)

Fig. 10. Acoustic power attenuation versus progressive part f of configuration C2 treated by PP-Air cavity liner model
for several ka (a) and (b).

ence of part f but this increase changes when f varies,
except when ka = 1.8, where the attenuation slightly
reduces. The results show that the maximum of atten-
uation according to the frequency is about 5.2 dB, ka
= 2.8 for f = 0.05 (3.1 dB for f = 0) and 6 dB, ka =
3.05 for f = 0.1 (3.3 dB for f = 0) and 9.7 dB, ka = 3.5
for f = 0.1 (2.85 dB for f = 0) and 14.6 dB, ka = 3.8
for f = 3.5 (2.45 dB for f = 0).

Figure 11 presents the acoustic power attenuation
versus f for several ka of configuration B2 treated with
the PP-PM liner model. It shows that the effect of the
progressive part f on the attenuation for all studied ka
is similar to Fig. 9. The attenuation greatly increased
with the presence of part f . A maximum of attenuation
with and without part f varies: (ka = 1.8:Watt = 8.4 dB
for f = 0 and Watt,max = 15.3 dB for f = 0.05; ka = 2.8:
Watt = 9.2 dB for f = 0 and Watt,max = 19.5 dB for f =
0.1; ka = 3.05: Watt = 9.6 dB for f = 0 and Watt,max =
20.4 dB for f = 0.1; ka = 3.5: Watt = 8 dB for f = 0
and Watt,max = 20.7 dB for f = 0.3; ka = 7.8: Watt =
9.6 dB for f = 0 andWatt,max = 22.2 dB for f = 0.35. It
can be clearly seen that the attenuation is significantly
increased if a progressive part for configurations B2

and C2 is introduced.
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a) b)

Fig. 11. Acoustic power attenuation versus progressive part f of configuration C2 treated by PP-PM model
for several ka (a) and (b).
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