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Bragg scattering of waves propagating in a periodically disturbed substrate is
widely applied in optics and micro-acoustic systems. Here, it is studied for Rayleigh
waves propagating on a periodically grooved elastic substrate. Practically applied
groove depth in the Bragg grating reflectors does not exceed a few percent of the
Rayleigh wavelength. Here, the analysis is carried out for periodic grooves of larger
depth by applying the elastic plate model for the groove walls. The computed results
show that the surface wave existence and reflection depends strongly on both the
groove depth and period, and that there are limited domains of both for practical
applications, primarily in comb transducers of surface waves.
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1. Introduction

Wave scattering and propagation on a grooved surface of elastic body was
the subject of investigations for years (Brehovskich, 1957; Glass, Maradu-
din, 1983). Most research works concerned shallow grooves (Biriukov et al.,
1995; Danicki, 1984) where the perturbation method was applicable. Here, we
analyze deep groove-gratings, or equivalent systems of periodic teeth (the groove
walls), where perturbation theory cannot be applied.

In (Danicki, 2008), we proposed treating elastic teeth as pieces of an elas-
tic plate. The concept was proven for shallow grooves; the results nicely con-
verged to these obtained by perturbation analysis. Next two sections shortly
outline the applied approach (Danicki, 2008) for evaluation of the tooth har-
monic impedance which is subsequently used in formulation of the boundary-
value problem under consideration. Elevated teeth are typically applied in ultra-
sonic comb transducers of surface waves (Quarry,Rose, 2002;Viktorov, 1967;
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Danicki, 2000b). The analysis presented here may help to improve their effi-
ciency.

The following sections present the computed spatial frequency of the surface
wave which takes complex values when Bragg reflection occurs. Two most inter-
esting cases are presented: for period of grooves smaller than half of the Rayleigh
wave-length λR, which is the case exploited in Bragg reflectors of Fabry–Perrot
resonators in micro-acoustic devices (Biriukov et al., 1995; Danicki, 1984),
and the case of teeth period close to λR, applied in comb transducers (Danicki,
2002). In the latter case, the surface wave spatial frequency takes complex values
for two reasons: due to the Bragg reflection and due to the scattering into bulk
waves in the substrate. In comb transducers, the surface wave decaying (described
by imaginary part of its spatial frequency) should have rather moderate values
in order to allow many teeth of the comb to contribute to the transducer output.
Such comb optimization is not a trivial task.

2. Tooth harmonic impedance

Standard notations for mechanical fields are applied: ui, T3i, i = 1, 3 are
correspondingly the displacement and stress tensor components. The field is as-
sumed to be independent of y-axis and its general harmonic form at the substrate
surface z = 0 is

F (x) exp(−j2πpz),

neglecting the time-harmonic term exp(j2πft), where p is the spatial frequency
of the plate mode propagating along axis z; the mode shape in the plate cross-
section is F (x).

A tooth of rectangular cross-section is a d-long piece of a plate of thickness w
(Fig. 1; its upper end is assumed to be stress-free). All propagating modes (having
real p = pi) existing in the plate, and finite number of the lowest evanescent modes
(decaying at |z| → ∞) are accounted for in the applied mode-matching analysis
(Besserer, Malishevsky, 2004). The impedance relation for the wave-field
at the bottom cross-section z = 0 is evaluated using the method presented in
(Danicki, 2008):
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Fig. 1. Periodic system of teeth. In computations, elastic substrate is characterized by longitudi-
nal and shear spatial frequencies: kt = 1 and kl = 0.4746, respectively and kR = 1/λR = 1.069;

w = λR/4.
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where i, l = 1, 3 and n,m are the orders of natural (w-base) Fourier expansion of
the field in the plate cross-section z = 0:
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(the time-harmonic term exp j2πft is dropped).
In the presented examples, w = 0.25λR where λR = 1/kR is the Rayleigh

wave-length in aluminium. Moderately large number of 82 plate modes (including
four existing propagating modes with spatial frequency ±p1,2) was used in order
to obtain the matrices Hil = [H(nm)

il ] with good accuracy.

3. The bounday-value problem

For a Λ-periodic system of teeth on an elastic half-space z < 0, the surface
wave-field at the contact plane z = 0 is expanded into Bloch series:
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e−j2π(r+kK)x, K = 1/Λ, (3)

where r < K/2 is the surface wave spatial frequency for evaluation.
There is a simple transformation between the representations of the surface

displacements on the tooth end, Eq. (2), and the substrate surface, Eq. (3), both
contacting in the Λ-periodic domain x ∈ (−w/2, w/2) (Danicki, 2008):

u
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(k)
i , Cnk =

sinπ(n− r/W − kK/W )
π(n− r/W − kK/W )

. (4)

In the applied notations, the subscripts (n) and (k) indicate the wave-field ex-
pansion over w or Λ domains according to Eq. (2) and Eq. (3), respectively.

Concerning the surface traction, we know that it is zero between the teeth,
and must be continuous in the contact domain. This yields the following trans-
formation: [
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which, accounting for Eq. (1) and applying the Green function G (Danicki,
1984; 2008) for the substrate z < 0:

u
(k)
i = Gij(p)T (k)

3j , p = r + kK, (6)

results in the following r-dependent system of homogeneous equations:

M[u(n)
i ] = 0,

M = I− (w/Λ)GCTHC.
(7)



70 E. Danicki

The condition for r is:
detM = 0, (8)

and r becomes complex-valued in two cases: 1) in the stop-band where the stand-
ing surface wave is composed of two evanescent modes decaying on their propa-
gation path due to the Bragg reflection from the teeth, and 2) when the surface
wave is a leaky wave that sheds its energy into bulk waves propagating in the
substrate; this is the Bragg scattering into the bulk waves.

In the first case, the solution to r will have the known ideal form:

r ∼
√

(f − f1)(f − f2), (9)

where f1,2 are stopband frequencies between which r takes complex values (r is
a real outside stopband). These frequencies transform to K1,2 or d1,2 in the condi-
tions applied in this paper, where f is assumed constant and either varying K or
d replaces f in the above formula. This ideal form of r may be somehow distorted
but generally, the spatial frequency r takes the real value outside the correspond-
ing domains (d1, d2) (see case D in Fig. 2, thin lines) or (K1, K2), naturally if
no bulk waves are scattered into the substrate. That is, if no Bloch components
of the expansion (3) have the spatial frequency in the domain (−kt, kt), below
the cut-off spatial frequency of bulk waves in the substrate. Taking into account
the Bragg condition: 2r ≈ K, this requires that K > 2kt.

For K < 2kt, we may deal with the second case mentioned above, where
surface waves are scattered by teeth into bulk waves in the substrate, causing
the surface wave energy “leaking” into bulk of the body. This is the reason that
r takes complex values outside the supposed stopband; in the stopband, this
phenomenon contributes to the imaginary part of r.

4. Discussion of the case K > 2kt, r ∼ K/2.

Bragg reflections occur at r ≈ K/2. The stopband edges are defined by values
of K = Ks where imaginary part of r vanishes, hence when the solution to r is
exactly Ks/2. The values of Ks are relatively easy for evaluation from Eq. (8); the
results are shown in Fig. 2, where thick lines present the dependence of Ks on the
teeth height d relative to the wave-length of transverse wave λt = 1/kt = 1. Two
families of curves Ks(d) differ by their slopes; their periods are approximately 1/pi

where p1 = 1.45 and p2 = 0.57 are the wave-numbers of propagating plate modes.
The ‘proper Bragg reflection’ occurs in the domains of d (or K) between stopband
edges set by the curves belonging to different families, like in the presented r(d)
in the case D (solid and dashed thin lines present correspondingly the imaginary
and real parts of r; vertical axis r′ = r − K/2). In other cases, r varies very
rapidly around Ks(d) (thin lines in cases B and C for K = 2.3 and also in the
case A for K = 2.5, in which cases Im{r} grows rapidly), there are not pairs of
stopband edges, and thus r does not follow Eq. (9) that characterizes the ‘proper
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Fig. 2. Stopband edges K = Ks dependent on the teeth height d. Two periodic families of
curves Ks(d) can be discerned by their slopes; applicable stopbands reside between them.

Bragg reflection’. Thin vertical solid lines in Fig. 2 mark the values of d where
det{H} = 0; there are resonances of a free tooth (Pagneux, 2006). Other curves
are discussed below.

For given K = 2.3, the dependence of r on d is presented in Fig. 3. For
Bragg reflection, the ideal drawing of complex solutions to r would be a half-
circle, Eq. (9). However, in large domain of teeth height, from nearly zero up to
almost 10w = 2.5λR, r(d) satisfies this expectation only in two domains marked
in Fig. 2 by letters A and D (between Ks(d) of different slopes). If two curves
Ks of different slopes cross each other (see case D), the stopband width and the
Bragg reflection vanish, hence the wave propagates freely like a Rayleigh wave.
Having spatial frequency r = K/2 À kR, it is however a much slower wave.

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

K/2

r

1 1.04 1.08 1.12

−0.04

0

0.04

K/2

rReal
Imag

Real
Imag

case A
   d=w

case D
 d=8w

Fig. 3. Solutions to r(K) for given d, presenting close to ideal semicircles of imaginary parts
of r in stopbands; cases A and B correspond to Fig. 2.
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It is seen in Fig. 2 that drawings of real values of r (thin dashed lines) end at
r = kt. Its continuation supposedly enters the domain of leaky waves, r < kt = 1.
The imaginary values grow fast to very high values (except the case D). The
above discussion may be concluded that only two domains of d, indicated by A
and D in the discussed domain (0, 10)w, may find practical applications in surface
wave Bragg reflectors, with their performances depending on the applied teeth
period 2π/K. It is worth to remark here that both r and K−r∗ are the solutions
to Eq. (8); the figures present one branch only.

Figure 3 presents the dependence of r(K) for two chosen values of d: d = w
and 8w, residing in the ‘proper Bragg reflection’ domains marked by A and D
in Fig. 2. Although the presented stopband for the case A (d = w) is wider as
compared to the case D, (d = 8w), the stopband there can also be obtained
wider for higher d. Computations for other values of d in the case A have shown
that the semicircle drawing of Im{r} is obtained only for small d residing below
the left curve Ks(d) presented in Fig. 2. For higher K, Im{r} behaves like in
the case B and C, as discussed above for K = 2.5. This indicates that choosing
proper values of d for applicable Bragg reflectors may be tricky, requiring careful
analysis.

5. Case K ∼ kR, r ≈ 0.

In the case K ∼ kR (Λ ∼ λR), the Bloch series (3) includes the wave compo-
nent having wave-number in the interval (−kr, kt), that is in the area of projection
of bulk wave-vectors ~kl,t on x-axis. Any surface stress caused by teeth on the sub-
strate surface z = 0 will excite these bulk waves at the cost of propagating surface
wave power. This is the reason that the wave-number of surface wave becomes
complex-valued in such cases.

Figure 4 presents the evaluated wave-number r(K) for several values of d (w
is still 0.25λR). Note that the wave-number of surface wave is r − K ∼ −kR;
thus the presented r describes the surface wave propagating and decaying in
−x direction. The decaying coefficient (Im{r}) grows with K but is quite small
for small d. Although any extra damping of surface wave is unacceptable for
applications in surface wave resonators, small damping at certain values of d is
a promising feature for applications in comb transducers of surface waves.

Comb transducer is the system of vibrating teeth excited by the incident bulk
waves (Viktorov, 1967). Typically, elevated teeth are applied (Quarry, Rose,
2002). When a comb is applied to the substrate, the vibrating teeth contribute to
the transducer output by excitation of interface waves which propagate toward
the transducer edges, where they are converted into surface waves (Danicki,
2000a). It is essential for the transducer efficiency that the interface wave can
collect ultrasonic energy on its propagation path under the transducer from all,
even distant, teeth. This requires small interface wave damping caused by its
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Fig. 4. Spatial frequency for K ∼ kt and relatively small teeth height d < w; thin and thick
lines present correspondingly Re{r} and Im{r}. Small irregularities are caused by numerical

inaccuracy.

leakage into bulk waves, in both the comb and the substrate. High damping would
prevent the distant teeth contribution to the transducer output (Danicki, 2002).
In this paper, weak coupling of the comb to the substrate is assumed (Quarry,
Rose, 2002) applying the idle comb approximation, hence considering the surface,
instead of the interface waves. The results presented in Fig. 3 show that, contrary
to common wisdom, small teeth height d ∼ λR/10 may be advantageous for the
transducer efficiency.

6. Conclusions

The analysis brings the following conclusions: 1) the application of elevated
teeth for construction of Rayleigh wave Bragg reflectors is possible if the system
is carefully designed for both the teeth height and period, one should be aware
however that choosing large d does not automatically mean wider stopband and
larger Bragg reflection, as they depend strongly on both d and the chosen teeth
period 1/K. 2) Applying teeth height above its width may not increase the re-
flection coefficient at all, 3) and even the Bragg reflection may vanish for very
high teeth. 4) The applicable ‘proper Bragg reflection’ takes place within stop-
bands spanned between curves Ks of different slopes, governed by propagating
plate modes of different polarization. 5) The analysis has shown that small teeth
height may be advantageous for efficiency of comb transducers, where the teeth
period approximately equals the Rayleigh wave-length, K ∼ kR. Moreover, in
this case the perturbed surface wave spatial frequency r ≈ kR. This makes the
wave-fields of both similarly decaying in the substrate, and this would reduce
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their transformation loss at the transducer edges due to the mode mismatch
(Danicki, 2002).
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