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The purpose of this work is to present a theoretical analysis of top orthogonal to bottom arrays of
conducting electrodes of infinitesimal thickness (conducting strips) residing on the opposite surfaces
of piezoelectric slab. The components of electric field are expanded into double periodic Bloch series with
corresponding amplitudes represented by Legendre polynomials, in the proposed semi-analytical model
of the considered two-dimensional (2D) array of strips. The boundary and edge conditions are satisfied
directly by field representation, as a result. The method results in a small system of linear equations for
unknown expansion coefficients to be solved numerically. A simple numerical example is given to illustrate
the method. Also a test transducer was designed and a pilot experiment was carried out to illustrate the
acoustic-wave generating capabilities of the proposed arrangement of top orthogonal to bottom arrays of
conducting strips.
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1. Introduction

Originally applied for surface acoustic wave (SAW)
generation (White, Voltmer, 1965), periodic con-
ducting strips applied on plane surface of solid (piezo-
electric) body play an important role in many appli-
cations and in various fields like non-destructive test-
ing (NDT) (Na et al., 2008), microelectromechanical
systems (MEMS) (Wang et al., 2009), telecommuni-
cations (Fissi et al., 2015), chemical sensing (Nguyen
et al., 2017), piezo-acoustics (Daniau et al., 2004), and
biotechnology (Senveli, Tigli, 2015; Danicki et al.,
2013). Different methods of analysis of periodic con-
ducting strips were reported in literature from theoret-
ical (Blotekjar et al., 1973; Biryukov, Polevoi,
1996; Peach, 1981; Danicki, 1996) to purely nu-
merical (Morgan, 1999; Bausk et al., 2002). In
(Blotekjar et al., 1973) the problem of infinitely
thin conducting strips on a dispersive semi-infinite di-
electric solid was solved using electrostatic approxima-
tion and the electric filed solution was constructed as
an infinite series of spatial harmonics. Analytical solu-

tion for surface electrostatic charge distribution, which
characterizes well the most important parameters of
such system of electrodes in practical applications,
was derived for finite number of strips in (Biryukov,
Polevoi, 1996) and for infinite periodic system of
strips in (Peach, 1981). In (Danicki, 1996) spatial
spectrum of the surface electrostatic charge distribu-
tion on strips was derived in analytical form for a finite
number of strips. Numerical analysis mainly concerns
the finite systems of conducting electrodes of arbitrary
width and position. For example, in (Morgan, 1999)
such system was approximated by an infinite periodic
system of strips, where electrodes were modelled by
connected strips and gaps (space between neighbour-
ing electrodes) were modelled by the isolated ones. In
(Bausk et al., 2002) electrostatic problem for finite
system of strips was formulated as a mixed boundary-
value problem of the analytic function theory. Electro-
static charge distribution was expanded into the series
of Chebyshev polynomials and its spatial spectrum was
obtained then by numerical integration using Gauss
formula.
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The aim of current work is to present a theoreti-
cal analysis of the top orthogonal to bottom arrays of
conducting strips sketched in Fig. 1. It is comprised
of two orthogonal one-dimensional arrays of strips re-
siding on the top and bottom surfaces of a piezoelec-
tric slab. This can be considered as a two-dimensional
(2D) generalization of the one-dimensional (1D) prob-
lem discussed above, which is a significant and impor-
tant theoretical problem of the solid mechanics. More-
over, a practical aspect of the study of 2D arrays of
conducting strips is that it can be suitable for mod-
elling of novel design of 2D kerfless transducers (Chen
et al., 2014) used for example in ultrasound wave gen-
eration and detection instead of traditional matrices of
piezoelectric elements (separated electrically and me-
chanically) (Seo, Yen, 2009).

In this work a semi-analytical method of analysis
of the 2D array of strips residing on piezoelectric slab
is presented (Fig. 1). Solutions for electrical and me-
chanical fields are sought in the form of double periodic
Bloch series expansions satisfying the governing equa-
tions in piezoelectric slab. To obey periodic electric
boundary conditions the amplitudes of Bloch compo-
nents are represented by the series of Legendre poly-
nomials, describing proper singular behaviour of the
electric field in the vicinity of strips edges (Danicki,
2010).

The rest of the paper is organized as follows. In the
next section the governing equations are briefly dis-
cussed. Mechanical and electrical boundary conditions
are presented in Secs 3 and 4, respectively. Double se-
ries expansion of electric field components is presented
in Sec. 5. A simple illustrative example presenting the
method is shown in Sec. 6. In Sec. 7 experimental mea-
surement of backscattered acoustic field using a test
transducer is presented. Finally, in Sec. 8, conclusions
of this work are summarized.

2. Governing equations

Consider a dielectric piezoelectric slab having its
surfaces x3 = ±h defined in the Cartesian coordi-
nate system xi, i = 1,2,3. Without loss of generality,
piezoelectric material of the 2 mm symmetry class fre-
quently used in applications (e.g. PZT and PVDF) will
be considered. On the upper surface of the slab an in-
finite x1-periodic system of conducting strips infinitely
long in the x2-direction is deposited. Similarly, on the
bottom surface of the slab an infinite x2-periodic sys-
tem of infinitely long strips in the x1-direction is de-
posited, as illustrated in Fig. 1.

To simplify the analysis the period Λ and the strip
width w is assumed on both surfaces of the slab. The
constitutive relations for piezoelectrics are:

Tij = c
E
ijklSkl − ekijEk,

Di = eijkSjk + ε
S
ijEj ,

(1)

Fig. 1. Top orthogonal to bottom arrays of conducting
strips residing on the opposite surfaces of piezoelectric di-

electric slab.

and the corresponding system of governing equations
can be written as:

cEijkluk,il + ekijϕ,ik = ρüj ,

ekijuj,ik − ε
S
ijϕ,ij = 0,

(2)

where T, u, and D denote the stress tensor, mechanical
displacement, and electric induction vectors, respec-
tively; ρ is the mass density of the media; cEijkl are the
elastic constants measured at constant electric field E ;
eijk are the piezoelectric constants; εSij are the dielectric
constants measured under constant strain S ; ϕ is the
electrostatic potential: E = −▽ ϕ. The time-harmonic
wave field is a function of e−jωt, where the angular fre-
quency ω is assumed. The time derivative in Eq. (2) is
therefore: ρüj = −ρω2uj . The solution for filed compo-
nents in the piezoelectric slab under crossed periodic
arrays of conducting strips is sought in the form of
Bloch series:

ui = ∑
n,m

U (i)nmΨnme
−jknmx3 ,

ϕ = ∑
n,m

ϕnmΨnme
−jknmx3 ,

Ψnm ≡ e−j(rnx1+smx2) = e−jξnmx
τ
nm ,

(3)

where Ψnm are the planar spatial harmonics defined in
the plane x3 = 0 parallel to strip systems. The spec-
trum variables rn and sm corresponding to the x1 and
x2 spatial variables are defined as follows:

rn = r + nK, sm = s +mK,

ξnm =
√
r2
n + s

2
m,

(4)

where K = 2π/Λ is the wavenumber of the strip ar-
ray; is the strip period (distance between the centres
of adjacent strips); r ∈ (0,K) and s ∈ (0,K) are arbi-
trary spatial spectrum variables reduced to one Bril-
louin zone for the uniqueness of representation; ξnm is
a wavenumber defined in the plane x3 = 0 along the
axis xτnm rotated by the angle ϑnm = tan−1(sm/rn)
with respect to the x1 axis in the x1x2 plane: x1 =

xτnm cosϑnm, x2 = xτnm sinϑnm. In Eq. (3) knm is
the spectrum variable corresponding to the x3 spa-
tial coordinate to be defined later; and u(i)nm and φnm
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are the mode amplitudes for mechanical displacement
and electrostatic potential, respectively. Substituting
Eq. (3) into Eq. (2) and taking into account that:

∂

∂x1
= −jrn,

∂

∂x2
= −jsm,

∂

∂x3
= −jknm,

∂2

∂x2
1

= −r2
n,

∂2

∂x2
2

= −s2
m,

∂2

∂x2
3

= −k2
nm,

∂2

∂x1∂x2
= −rnsm,

∂2

∂x1∂x3
= −rnknm,

∂2

∂x2∂x3
= −smknm,

(5)

the Christoffel equations for all spatial harmonics can
be obtained:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1
nm

u2
nm

u3
nm

ϕnm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (6)

In the particular case of piezoelectric materials hav-
ing 2 mm symmetry (e.g. PZT-5H and PVDF), the
coefficients of the Christoffel matrix can easily be de-
duced:

R11 = c
E
11r

2
n + c

E
66s

2
m + cE44k

2
nm − ρω2,

R12 = (cE12 + c
E
66)rnsm,

R13 = (cE13 + c
E
44)rnknm,

R14 = (e15 + e31)rnknm,

R22 = c
E
66r

2
n + c

E
22s

2
m + cE44k

2
nm − ρω2,

R23 = (cE23 + c
E
44)sm,

R24 = (e24 + e32)smknm,

R33 = c
E
55r

2
n + c

E
44s

2
m + cE33k

2
nm − ρω2,

R34 = e15r
2
n + e24s

2
m + e33k

2
nm,

R44 = −ε
S
11r

2
n − ε

S
22s

2
m − εS33k

2
nm,

Rij = Rij , i, j = 1, ...,4.

(7)

In Eq. (7) the material constants are represented
in contracted form to shorten notation:

cEIJ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cE11 c
E
12 c

E
13 0 0 0

cE12 c
E
22 c

E
23 0 0 0

cE13 c
E
23 c

E
33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE55 0

0 0 0 0 0 cE66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

eiJ =

⎛
⎜
⎜
⎜
⎝

0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

⎞
⎟
⎟
⎟
⎠

,

εSij =

⎛
⎜
⎜
⎜
⎝

εS11 0 0

0 εS22 0

0 0 εS33

⎞
⎟
⎟
⎟
⎠

,

where IJ are as follows: I → ij ∶ 1→ 11, 2→ 22, 3→ 33,
4 → 23(32), 5 → 13(31), 6 → 12(21). The system of
equations in Eq. (6) has a nontrivial solution only if the
corresponding determinant of the matrix Rij is equal
to zero:

∣Rij(n,m)∣ = 0. (8)

The determinant of matrix Rij can be represented
by the 8th-degree polynomial with respect to knm:

∣Rij(n,m)∣ = a8k
8
nm + ... + a1knm + a0 = 0,

in which coefficients are functions of the wave-number
components and material constants. The polynomial
has eight roots: knm = knmr, r = 1, ...,8. In the case
considered (lossless material and the orientation of the
slab with respect to the x3-axis), the resulting polyno-
mial is an even function of knm (aj = 0, j = 1,3,5,7)
and all coefficients aj are real-valued. Therefore, roots
can be paired. Each pair contains either real-valued or
complex conjugate roots. They represent either prop-
agating or evanescent modes in the slab, respectively.
Specifically, the roots satisfy the following condition:

knm(2r) = −knm(2r−1), r = 1, ...,4. (9)

Substituting the roots into Eq. (6), the modes am-
plitudes U (i)nmr and ϕnmr can be obtained. Superposi-
tion of 8 partial waves yields the general solution for
the (n, m)-th spatial harmonic:

u(i)(n,m) =
8

∑
r=1

(CnmrU
(i)
nmr)Ψnme

−jknmrx3 ,

ϕ(n,m) =
8

∑
r=1

(Cnmrϕnmr)Ψnme
−jknmrx3 .

(10)

Taking into account Eq. (9), the above equations
can be rewritten as follows:

u(i)(n,m) =
4

∑
r=1

(C±
nmrU

(i)±
nmr)Ψnme

±jknmrx3 ,

ϕ(n,m) =
4

∑
r=1

(C±
nmrϕ

±
nmr)Ψnme

±jknmrx3 .

(11)

In Eq. (11) summation is over r and the par-
tial waves with ± signs are summed for each value
of r = 1, ...,4. There are 8 unknown constants C±

nmr

for each (n, m)-th spatial harmonic in Eq. (11) which
are determined from mechanical and electric boundary
conditions.
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3. Mechanical boundary conditions

In the case of thin strips deposited on the sur-
face of a piezoelectric slab, mechanical boundary con-
ditions may be assumed to be uniform. Specifically, the
traction-free condition on the surfaces of the slab has
to be satisfied:

Ti3 = 0, x3 = ±h, (12)

where Ti3 are the normal stress components. Substi-
tuting Eq. (11) into the first equation in Eq. (1) and
using Eq. (12) and the orthogonality of spatial har-
monics, the system of linear equations for unknown
coefficients C±

nmr can be obtained:

T̂klĈl = 0, k = 1, ...,6, l = 1, ...,8, (13)

where the vector of unknown coefficients Cl is defined
for the (n, m)-th spatial harmonic as follows:

(Ĉ) ≡ (C+
nmrC

−
nmr)

T, r = 1, ...,4, (14)

and the elements of matrix T̂kl are:

T̂1r = (cE44(rnU
(3)+
nmr − knmrU

(1)+
nmr) + e15rnϕ

+
nmr)A

∗,

T̂1,r+4 = (cE44(rnU
(3)−
nmr + knmrU

(1)−
nmr) + e15rnϕ

−
nmr)B

∗,

T̂2r = (cE44(smU
(3)+
nmr − knmrU

(2)+
nmr) + e15smϕ

+
nmr)A

∗,

T̂2,r+4 = (cE44(smU
(3)−
nmr + knmrU

(2)−
nmr) + e15smϕ

−
nmr)B

∗,

T̂3r = (cE13(rnU
(1)+
nmr + smU

(2)+
nmr)

− knmr(c
E
33U

(3)+
nmr + e33ϕ

+
nmr))A

∗,

T̂3,r+4 = (cE13(rnU
(1)−
nmr + smU

(2)−
nmr)

+ knmr(c
E
33U

(3)−
nmr + e33ϕ

−
nmr))B

∗,

T̂4r = (cE44(rnU
(3)+
nmr − knmrU

(1)+
nmr) + e15rnϕ

+
nmr)B

∗,

T̂4,r+4 = (cE44(rnU
(3)−
nmr + knmrU

(1)−
nmr) + e15rnϕ

−
nmr)A

∗,

T̂5r = (cE44(smU
(3)+
nmr − knmrU

(2)+
nmr) + e15smϕ

+
nmr)B

∗,

T̂5,r+4 = (cE44(smU
(3)−
nmr + knmrU

(2)−
nmr) + e15smϕ

−
nmr)A

∗,

T̂6r = (cE13(rnU
(1)+
nmr + smU

(2)+
nmr)

− knmr(c
E
33U

(3)+
nmr + e33ϕ

+
nmr))B

∗,

T̂6,r+4 = (cE13(rnU
(1)−
nmr + smU

(2)−
nmr)

+ knmr(c
E
33U

(3)−
nmr + e33ϕ

−
nmr))A

∗,

(15)
where

A∗
= ejknmrh, B∗

= e−jknmrh.

Mechanical boundary conditions (Eq. (12)) yield
6 equations for 8 unknown variables. The remaining
equations can be obtained from the electrical boundary
conditions considered below.

4. Electrical boundary conditions

For the crossed-electrode structure (see Fig. 1) elec-
trical boundary conditions are determined by the pe-
riodic strips deposited on the opposite surfaces of the
slab. Specifically, on the upper (superscript ‘+’) and
bottom (superscript ‘−’) surfaces of the slab the com-
ponents of electric field should obey the following con-
ditions:

E±
1 = 0, E±

2 = 0, on strips,

∆D±
3 ≡D±

= 0, between strips.
(16)

The boundary conditions (Eq. (16)) state that the
tangential electric field vanishes on strips, and between
strips the jump discontinuity of the normal component
of the electric induction vector vanishes. The electro-
static potential on the slab surfaces can be expanded
into Bloch series as follows:

ϕ±(x1, x2) = ∑
n,m

ϕ±nmΨnm, (17)

where Ψnm are defined in Eq. (3) and the amplitudes
ϕ±nm of the surface modes result directly from Eq. (11):

ϕ+nm =∑
r

(C+
nmrϕ

+
nmre

+jknmrh +C−
nmrϕ

−
nmre

−jknmrh),

ϕ−nm =∑
r

(C+
nmrϕ

+
nmre

−jknmrh +C−
nmrϕ

−
nmre

+jknmrh).

(18)
Electrostatic potential, which obeys the Laplace

equation outside the slab and is continuous on the
boundaries x3 = ±h, can be expressed in the follow-
ing form satisfying Floquet’s theorem:

ϕa = ∑
n,m

ϕ+nmΨnme
−∣ξnm∣(x3−h), x3 > h,

ϕb = ∑
n,m

ϕ−nmΨnme
∣ξnm∣(x3+h), x3 < −h,

(19)

where the wavenumber ξnm is defined in Eq. (4). In
Eq. (19) the superscripts ‘a’ and ‘b’ denote the field
variables above the slab, x3 > h and below the slab,
x3 < −h, respectively. The jump discontinuity of the
normal electric induction ∆D±

3 is defined as follows:

∆D+
3 =D3(x3 = h + 0) −D3(x3 = h − 0),

∆D−
3 =D3(x3 = −h − 0) −D3(x3 = −h + 0).

(20)

In Eq. (20) the normal electric induction in the slab
D±

3 can be obtained from Eq. (1). Specifically, for the
(n, m)-th spatial harmonic amplitudes one obtains:

D+
3nm = −j

4

∑
p=1

C±
nmp(e31rnU

(1)±
nmp + e32smU

(2)±
nmp

∓ knmp(e33U
(3)±
nmp − ε

S
33ϕ

±
nmp))e

±jknmph,

D−
3nm = −j

4

∑
p=1

C±
nmp(e31rnU

(1)±
nmp + sme32U

(2)±
nmp

∓ knmp(e33U
(3)±
nmp − ε

S
33ϕ

±
nmp))e

∓jknmph.

(21)
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Equation (21) describes the normal electric induc-
tion component on the surfaces of the piezoelectric
slab. Outside the slab the amplitudes of the (n, m)-th
spatial harmonics of the normal electric induction are
as follows:

Da,b
3nm = −εM(ϕa,b,3 )nm = ±εM ∣ξnm∣ϕ±nm, (22)

where the definition of electrostatic potential outside
the slab (Eq. (19)) was used. In Eq. (22), εM is the
dielectric permittivity of the medium surrounding the
piezoelectric slab. Substituting Eq. (21) and Eq. (22)
into Eq. (2), the jump discontinuity of the normal elec-
tric induction across the boundaries can be obtained:

∆D+
3nm = −j

4

∑
p=1

C±
nmp(e31rnU

(1)±
nmp + e32smU

(2)±
nmp

∓knmpe33U
(3)±
nmp±(ε

S
33knmp∓jεM ∣ξnm∣)ϕ±nmp)e

±jknmph,

∆D−
3nm = −j

4

∑
p=1

C±
nmp(e31rnU

(1)±
nmp + e32smU

(2)±
nmp

∓knmpe33U
(3)±
nmp±(ε

S
33knmp±jεM ∣ξnm∣)ϕ±nmp)e

∓jknmph.

(23)
Tangential components of the electric field vectors

E±
1 and E±

2 can be obtained from the definition of elec-
trostatic potential (Eq. (17)). Specifically, for ampli-
tudes of the (n, m)-th harmonics one obtains:

E±
1nm = −jrnϕ

±
nm, E±

2nm = −jsmϕ
±
nm. (24)

For further analysis it is convenient to consider
the tangential field component in the planes of strips
x3 = ±h:

E±
ξ (n,m) = −jξnmϕ

±
nme

−jξnmxτnm , (25)

where

x1 = x
τ
nm cosϑnm, x2 = x

τ
nm sinϑnm,

ξ2
nm = r2

n + s
2
m,

and the angle ϑnm = tan−1(sm/rn) (see Eq. (4)). For
further analysis (see Sec. 5) the relation between the
tangential electric field and the jump discontinuity of
the normal electric induction in the planes is needed.
For this purpose it is convenient to write the unknown
coefficient C±

nmr in terms of two unknown constants to
be determined from the electric boundary conditions.
Specifically, by rearrangement of Eq. (13) the system
of equations can be rewritten as follows:

T̃kmC̃m = Bk, k,m = 1, ...,6, (26)

where

T̃km = T̂k,m+2, k,m = 1, ...,6, and C̃m = Ĉm+2

[C̃] ≡ [C+
nm,p+1C

−
nm,p+1]

T, p = 1, ...,3. (27)

The elements of vector B in Eq. (26) are defined as
follows:

Bk = T kiAi, k = 1, ...,6, i = 1,2, (28)

where T ki = Tki, k = 1, ...,6, i = 1,2. In Eq. (28) a new
vector Ai ≡ Ainm, i = 1,2 was introduced for each spa-
tial harmonics as follows:

[A] = [A1nmA2nm]
T
≡ [C+

nm1C
−
nm1]

T. (29)

It is clear that six out of eight unknown coefficients
C±
nmp, defined in Eq. (27), can be obtained as a linear

combination of the remaining two coefficients C±
nm1 in

Eq. (31), which is redefined for convenience as follows:

[C̃] = [T̃ ]
−1

[T ][A] = [ã][A]. (30)

For further analysis it is convenient to rewrite
Eq. (30) in a slightly different form:

[Ĉ] = [â][A], (31)

The elements of matrix [â] in Eq. (31) are given by
the following expressions:

a11 = 1, a12 = 0; a21 = 0, a22 = 1,

ak+2,i = aki, k = 1, ...,6, i = 1,2,
(32)

and
[ã] = [T̃ ]

−1
[T ]. (33)

In Eq. (33) T̃ki = T̂k,i+2, k, i = 1, ...,6, and T kj =

T̂kj , k = 1, ...,6, j = 1,2. The elements of matrix T̂ki
are defined in Eq. (15). Equations (30) through (33)
hold for each spatial harmonic (n, m). To emphasize
this and to simplify further analysis it is convenient to
rewrite the elements âij as follows:

â i+nmp ≡ â2p−1,i, â i−nmp ≡ â2p,i,

i = 1,2; p = 1, ...,4.
(34)

It should be noted that only two out of eight coef-
ficients (C±

nmn) defined in Eq. (31) remain unknown.
They can be determined from the electric boundary
conditions. Using Eq. (31), the mode amplitudes of the
electric potentials on the boundaries x3 = ±h defined
in Eq. (18) can be rewritten as follows:

⎛

⎝

ϕ̂+
nm

ϕ̂−
nm

⎞

⎠
=
⎛

⎝

L1+
nm L2+

nm

L1−
nm L2−

nm

⎞

⎠

⎛

⎝

A1nm

A2nm

⎞

⎠
. (35)

In Eq. (35) matrix notation was used for brevity.
The elements of matrix Li±nm are defined as follows:

Li±nm =
4

∑
p=1

(â i+nmpϕ
+
nmpe

±jknmph + â i−nmpϕ
−
nmpe

∓jknmph),

(36)
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where the coefficients â i+nmp result directly from Eq. (36).
Similarly, the mode amplitudes of the (n, m)-th spatial
harmonic of the tangential electric field E±

ξnm can be
written as follows:

⎛

⎝

E+
ξnm

E−
ξnm

⎞

⎠
= −jξnm

⎛

⎝

L1+
nm L2+

nm

L1−
nm L2−

nm

⎞

⎠

⎛

⎝

A1nm

A2nm

⎞

⎠
. (37)

Finally, for the jump discontinuity of the normal
electric induction defined in Eq. (23), it can be rewrit-
ten in the following form:

⎛

⎝

∆D+
3nm

∆D−
3nm

⎞

⎠
= −j

⎛

⎝

M1+
nm M2+

nm

M1−
nm M2−

nm

⎞

⎠

⎛

⎝

A1nm

A2nm

⎞

⎠
, (38)

where the elements of matrix M i±
nm are:

M i±
nm =

4

∑
p=1

â i+nmp(e31rnU
(1)+
nmp + e32smU

(2)+
nmp

− knmpe33U
(3)+
nmp+(ε

S
33knmp∓jεM ∣ξnm∣)ϕ±nmp)e

±jknmph

+
4

∑
p=1

â i−nmp(e31rnU
(1)−
nmp + e32smU

(2)−
nmp

+ knmpe33U
(3)−
nmp−(ε

S
33knmp±jεM ∣ξnm∣)ϕ±nmp)e

∓jknmph.

(39)
From Eqs (37) and (38) the relationship between

the tangential electric field and the normal electric in-
duction on the boundary surfaces of piezoelectric slab
can be obtained immediately:

[Eξ] = ξnm[G][∆D3], (40)

where

[Eξ] = [E+
ξnmE

−
ξnm]

T, [∆D3] = [∆D+
3nm∆D−

3nm]

and the matrix [G] is defined as follows:

[G] = [L][M]
−1. (41)

5. Electrostatic field approximation

To obey the electrical boundary conditions and find
the unknown coefficients Ainm, i = 1,2 in Eq. (29) the
tangential electric field and normal electric induction
in the boundary plane x3 = h can be rewritten in the
form of series expansion as follows (Danicki, 2010):

E+
1 = j ∑

l,n,m

αml Sn−lPn−l(∆)Ψnm,

E+
2,1 = j ∑

l,n,m

αml Sn−lPn−l(∆)Ψnm,

∆D+
3 = ∑

l,n,m

βml Pn−l(∆)Ψnm,

(42)

and in the plane x3 = −h:

E−
2 = j ∑

l′,n,m

γnl′Sm−l′Pm−l′(∆)Ψnm,

E−
1,2 = j ∑

l′,n,m

γnl′Sm−l′Pm−l′(∆)Ψnm

∆D−
3 = ∑

l′,n,m

ηnl′Pm−l′(∆)Ψnm,

(43)

where ∆ = cos(πw/Λ), Pk(⋅) are the Legendre poly-
nomials, Sν = 0 for ν < 0 and Sν = 1 otherwise, and
w is the strip’s width. The above expansions yield the
electric field satisfying boundary conditions, Eq. (16),
and the edge conditions. Specifically, the normal elec-
tric induction ∆D+

3 and tangential electric field E+
1 are

inverse square-root singular functions at the edges of
strips located in the plane x3 = h. The E+

2 compo-
nent is not singular, but its spatial derivative with re-
spect to x1 has an inverse square-root singularity at
the strip edges as well. Therefore, in Eq. (42) the cor-
responding series expansion of E+

2,1 is introduced. The
bottom boundary can be handled similarly, but in this
case ∆D−

3 , E
−
2 , and E−

1,2 are singular functions and
the corresponding series expansions are introduced in
Eq. (43). In Eqs (42) and (43) αml , α̃ml , βml , γnl′ , γ̃

n
l′ , and

ηnl′ are unknown expansion coefficients. Using Eq. (24)
it can be shown that the following relations hold:

α̃ml = −jsmα
m
l , γ̃nl′ = −jrnγ

n
l′ . (44)

The remaining coefficients αml , βml , γnl′ , and η
n
l′ can

be obtained using Eq. (40) which yields the relation-
ship between the tangential electric field and the nor-
mal electric induction on the upper and bottom bound-
aries. Components of the tangential electric field in the
planes of strips can be written as follows:

E+
ξnm =

ξnm
rn

E+
1nm, E−

ξnm =
ξnm
sm

E−
2nm. (45)

Consequently, the corresponding series expansions
for tangential field components can be written as fol-
lows:

E+
ξ = j ∑

l,n,m

ξnm
rn

αml Sn−lPn−l(∆)Ψnm,

E−
ξ = j ∑

l′,n,m

ξnm
sm

γnl′Sm−l′Pm−l′(∆)Ψnm.

(46)

Further analysis is based on approximation of ma-
trix [G] in Eq. (40) for large indices (n,m) correspond-
ing to imaginary-valued knmp with spatial harmonics
well-localized at a given surface of piezoelectric slab.
Specifically, it can be shown that for (n,m) sufficiently
large, matrix [G] can be approximated as:

⎛

⎝

E+
ξNM

E−
ξNM

⎞

⎠
≈ jSNM

⎛

⎝

(ε+∞)−1 0

0 −(ε−∞)−1

⎞

⎠

⎛

⎝

∆D+
3NM

∆D−
3NM

⎞

⎠
, (47)
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where SNM ≡ SNSM , N and M being large but finite
integers, and Sν = 0 for ν < 0 and Sν = 1 otherwise.
In Eq. (47) ε±∞ can be obtained from Eq. (41) by ac-
counting for Eq. (37) through Eq. (39) upon substitut-
ing the approximation knmp ≈ −j∣ξnm∣, which holds for
sufficiently large indices (n, m):

ε±∞ = (ε33 + εM) − α±3e33 ± j(e31α
±
1 + e32α

±
2). (48)

The coefficients α±i result from the asymptotic anal-
ysis of the wave mode amplitudes of the mechanical
displacement U (i)±nmp and electrostatic potential ϕ±nmp:

α±i = lim
n,m→∞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4

∑
p=1

U (i)±nmp

4

∑
p=1

ϕ±nmp

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (49)

and can be obtained numerically for given material
constants of the piezoelectric slab. In the considered
case of lossless material Eq. (48) can be simplified.
Specifically, if Eq. (9) holds, it can be checked by in-
spection that coefficients α±1 and α±2 take imaginary
values and α±3 is real-valued. Moreover, α−j = −α+j ,
j = 1,2 and α+3 = α−3 . Then, from Eq. (48) it follows
that ε−∞ = ε+∞ = ε∞.

For n > N and m > M where N , M are large but
finite integers, such that the approximation in Eq. (47)
holds, the following relationships between the expan-
sion coefficients αml and βml , and γnl′ and ηnl′ can be
deduced:

βml =
ξnm
rn

ε+∞Sn−lα
m
l , ηnl′ = −

ξnm
sm

ε−∞Sm−l′γ
n
l′ . (50)

Taking into account Eq. (50) and substituting
Eqs (42), (43), and (45) for the spatial harmonics
with indices −N < n < N and −M < m < M into
Eq. (40), the following system of linear equations for
unknown expansion coefficients αml , −N ≤ l ≤ N , and
γnl′ , −M ≤ l′ ≤M can be obtained:

αml [j
ξnm
∣ξnm∣

−G11ε
+
∞]Sn−lPn−l

+γnl′G12 (
rn
sm

) ε−∞Sm−l′Pm−l′ = 0,

−αml G21 (
sm
rn

) ε+∞Sn−lPn−l

+γnl′ [j
ξnm
∣ξnm∣

+G22ε
−
∞]Sm−l′Pm−l′ = 0,

(51)

where Pν ≡ Pν(∆) was applied to shorten notation.
Applying (n, m) outside the chosen domains results
in a trivial solution for the additionally included un-
knowns. To obtain unique solution for unknown coeffi-
cients αml , γnl′ , additional constraints must be fulfilled.
For example, without loss of generality, it is convenient

to apply the electric potential or voltage of the indi-
vidual strips:

V (x1 = iΛ) = Vi, x3 = h,

V (x2 = jΛ) = Vj , x3 = −h.
(52)

Strip voltages can be evaluated by integration of
the tangential electric field, their integration being per-
formed for each spatial harmonic separately. For a strip
placed at x1 = 0 (on the upper surface) and x2 = 0 (on
the bottom surface) they are:

V +
= −∫ E+

1 dx1 = α
m
l
∑n Sn−lPn−l(∆)

jrn
= V (r),

V −
= −∫ E−

2 dx2 = γ
n
l′
∑m Sm−l′Pm−l′(∆)

jsm
= 0,

(53)

where for simplicity the bottom strips are assumed
grounded. The summation with respect to n and m in
Eq. (53) can be evaluated explicitly using the Dougall
identity (Erdelyi et al., 1953). For instance, assuming
all bottom electrodes are grounded and only a single
l -th electrode on the upper surface is connected to the
voltage supply Vl (note s = 0, sm = mK in this case)
yields:

(−1)lαml P−l− r
K
(−∆) = jδm0

K

π
Vle

jrlΛ sin
πr

K
,

(−1)l
′

γnl′P−l′− s
K
(−∆) = 0,

(54)

for all (n, m) accounted for in Eq. (52). In Eq. (54)
δij is the Kronecker delta. Equations (51) and (54)
yield the closed system of linear equations for unknown
expansion coefficients αml and γnl′ . Specifically, there
are (2N+1)(2M+1) equations altogether and the same
number of unknowns αml , γnl′ , assuming −N ≤ l ≤ N
and −M ≤ l′ ≤ M . Once the system of equations for
αml , γnl′ , is solved, the unknown constants Ainm, i = 1,2
defined in Eq. (29) can be obtained from Eq. (37) by
accounting for Eq. (45), which yields the (n, m)-th
spatial harmonics:

⎛

⎝

A1nm

A2nm

⎞

⎠
= −

⎛

⎝

L1+
nm L2+

nm

L1−
nm L2−

nm

⎞

⎠

−1⎛
⎜
⎜
⎜
⎝

r−1
n ∑

l

αml Sn−lPn−l

s−1
m ∑

l′
γnl′Sm−l′Pm−l′

⎞
⎟
⎟
⎟
⎠

,

(55)
where

Pν ≡ Pν(∆).

Solving Eq. (55) yields the constants Ainm, i = 1,2 and
therefore all unknown constants C±

nmp for each spatial
harmonics from Eq. (31).

6. Numerical example

To illustrate the method a simple numerical ex-
ample is considered in this section. Specifically, it is
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assumed that a single electrode on the upper surface
is connected to the voltage source and the remaining
electrodes are grounded. All electrodes on the bottom
surface are assumed grounded as well (see Eqs (52)
through Eq. (54)). Evaluation of the normal stress
component T33(x1, x2,0) in the plane x3 = 0 is shown
in the examples below to illustrate the stress distribu-
tion in piezoelectric slab within a single active trans-
ducer cell. Numerical simulations were conducted for
piezoelectric material of the 2 mm symmetry class.
Specifically, in the numerical example below the ma-
terial properties of PZ-26 ceramics (the same material
was also used later in experimental measurements, see
the next Section) were used (Meggit, 2019):

• cE11 = c
E
22 = 16.8 ⋅ 1010 N/m2,

cE33 = 12.3 ⋅ 1010 N/m2,

cE44 = c
E
55 = 3.01 ⋅ 1010 N/m2,

a) b)

c)

Fig. 2. Spatial distribution of the normal stress component T33(x1, x2) in the plane x3 = 0 for different w/Λ:
a) w

Λ
= 0.25, b) w

Λ
= 0.5, c) w

Λ
= 0.75; h = Λ.

cE66 = 2.88 ⋅ 1010 N/m2,

cE12 = 11.0 ⋅ 1010 N/m2,

cE13 = c
E
23 = 9.99 ⋅ 1010 N/m2;

• εS11 = ε
S
22 = 1190 ⋅ ε0,

εS33 = 1330 ⋅ ε0,

ε0 = 8.85 ⋅ 10−12 F/m;

• e24 = e15 = 9.86 C/m2,

e31 = e32 = −2.8 C/m2,

e33 = 14.7 C/m2;

ρ = 7700 kg/m3.

In Fig. 2 the spatial distribution of the normal
stress component T33(x1, x2,0) for different values of
w/Λ are shown (w is strip width, Λ is strip period, and
the piezoelectric slab thickness is h = Λ).
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a) b)

c)

Fig. 3. Spatial distribution of electrostatic potential ϕ(x1) in the plane of the strips x3 = h for different values of w/Λ:
a) w

Λ
= 0.25, b) w

Λ
= 0.5, c) w

Λ
= 0.75; h = Λ.

In Fig. 3 the spatial distribution of electric poten-
tial in the plane of strips x3 = h is shown. This can be
obtained by integration of the tangential electric field
component in the plane of the strips (see Eq. (53)).

As can be seen from Fig. 3, electric potential is con-
stant on strips in accordance with boundary conditions
given in Eq. (52). Evaluation of potential distribution
on strips allows checking if the field components were
evaluated correctly.

7. Pilot experiment

In this chapter to illustrate the capabilities of the
proposed arrangement of top orthogonal to bottom ar-
rays of conducting strips a simple pilot experiment was
carried out. For this purpose a test transducer was
designed and made using PZ-26 ceramic layer mea-
suring 30× 30× 0.5 mm (produced by Meggit (2019))
polarized in the normal direction to the metallized sur-
faces. 64-element orthogonal array patterns were made
by cutting the diamond saw on both surfaces of the

layer (Fig. 4a). The strips width was 0.2 mm, the pitch
was 0.2 mm yielding the period of the array pattern of
0.4 mm. The transducer was placed in a plexiglass cas-
ing (Fig. 4b). The transducer was loaded at the back
with a layer made of resin (epidian) mixed with wol-
fram in a weight ratio of 1 to 2.

a) b)

Fig. 4. (a) Array pattern of the test transducer – piezoelec-
tric plate with strips made by cutting the diamond saw on
both surfaces and (b) the transducer in plexiglass casing,
covered with loading layer made of resin (epidian) mixed

with wolfram.



442 Archives of Acoustics – Volume 45, Number 3, 2020

The real view of the experimental setup is shown
in Fig. 5.

Fig. 5. Experimental setup (real view) for measuring the
transmitted and back-scattered field acoustic field.

7.1. Transmitted acoustic field measurements

First, the transmitted acoustic field measurements
were conducted. That was done in experimental set-
up shown in Fig. 6. The transducer was immersed in
water tank and connected to the Tektronix AFG 3252
signal generator. The transducer was stimulated by 10
periods of a 3.5 MHz sinusoidal signal. The excitation
voltage was applied to 4 electrodes on the upper sur-
face (el. no. 31, 32, 33, 34) connected in parallel to in-
crease the energy of the emitted pulse. The remaining
electrodes on the upper surface and all the electrodes
on the bottom surface were grounded. This connection
scheme is analogous to the numerical experiment con-
sidered in the previous section. The signal emitted was
measured with a needle hydrophone immersed in wa-
ter at a distance of 2 cm from the transducer. Between
each measurement, the hydrophone was moved every
0.5 mm in the direction perpendicular to the active
strips, which corresponds to an angle change of about

Fig. 6. Experimental setup for measuring the transmitted
acoustic field of the test transducer.

1.18○. The signal measured with the hydrophone was
recorded with an oscilloscope DSO9104A, Keysight 366
Technologies Inc. The sampling rate was 400 MHz.

The signal measured with the hydrophone is shown
in Fig. 7a, while in Fig. 7b the measured far-field
directivity function of the test transducer is shown.
For comparison, the simulated directivity function ap-
proximated by the spatial spectrum of the normal
displacement velocity in the plane of active strips
(Tasinkevych, Danicki, 2011) is shown by the
dashed line in Fig. 7b. The spectrum can be obtained
using FFT algorithm applied to spatial distribution
of the normal displacement velocity component in the
plane of active strips v3 = −jωu3, where u3 is given by
Eq. (3) and Eq. (11).

a)

b)

Fig. 7. Signal recorded by the hydrophone (a) and direc-
tivity function (b) of the test transducer.

7.2. Back-scattered acoustic field measurements

Moreover, the backscattered field measurements
were also conducted. For this purpose a thin nylon wire
of 0.1 mm in diameter was used as a point reflector.
The wire was oriented in parallel direction to the ac-
tive strips as illustrated in Fig. 8. The transducer was
stimulated by a short pulse of 1 period of a sinusoidal
signal with a frequency of 3.5 MHz. Next, the trans-
ducer was switched into the reception mode and the
backscattered signal was recorded. The transducer was
moved between subsequent measurements with a step
of 0.1 mm in the normal direction to the active elec-
trodes. 64 measurements were made altogether yield-
ing 64 scanlines of the corresponding B-mode image
(see Fig. 9).
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Fig. 8. Experimental setup for measuring the back-
scattered acoustic field of the test transducer.

a) b)

Fig. 9. Back-scattered field of the test transducer for nylon
wire simulating a point reflector (a) B-mode image and (b)

surface plot.

The transducer was moved between subsequent
measurements with a step of 0.1 mm in the normal di-
rection to the active electrodes. 64 measurements were
conducted yielding 64 scanlines of the B-mode image,
shown in Fig. 9a over 20 dB dynamic range. In Fig. 9b
a surface plot of the resulting image is shown.

8. Conclusions

In this study theoretical analysis of the top orthog-
onal to bottom arrays of conducting strips residing on
the opposite surfaces of piezoelectric dielectric slab was
presented. It has been demonstrated in several stud-
ies that such row-column addressable technologies can
be a low-cost alternative to the state-of-the-art fully
sampled matrix transducers (Schau, 1991; Yen et al.,
2009). One possible application of such system is for
acoustic wave generation and detection in ultrasound
imaging. Rigorous electric and acoustic field analysis is
usually necessary for designing and evaluating electri-
cal and mechanical properties of such devices. For the
sake of clarity strip parameters were the same on both
sides of the dielectric piezoelectric slab. The method
can easily be generalized for different strip periods and
widths. The key point of the method is the expansion

of the amplitudes of the Bloch components into ap-
propriate series of Legendre functions. This allows the
boundary conditions for electric field components on
both surfaces of the piezoelectric slab to be satisfied
directly. Another important feature of the method is
that the singular electric field behaviour near the edges
of the strips is taken into account explicitly by virtue of
the form of the expansion coefficients. The main dis-
advantage of the presented analysis is its complexity.
Nevertheless, the analysis carried out here presents
a solution to the significant problem of the theory of
piezoelectric devices. The results of theoretical analysis
presented seem to be well suited and may be helpful in
practical modelling and design of the edge-connected
row-column addressable 2D transducers. This is illus-
trated by a simple numerical example yielding non-
uniform distribution of electric field and normal stress
induced in the area of the excited matrix cell for one
upper strip excited by a uniform voltage and all bot-
tom strips grounded.
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