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Research work on the design of robust multimodal speech recognition systems making use of acoustic
and visual cues, extracted using the relatively noise robust alternate speech sensors is gaining interest in
recent times among the speech processing research fraternity. The primary objective of this work is to
study the exclusive influence of Lombard effect on the automatic recognition of the confusable syllabic
consonant-vowel units of Hindi language, as a step towards building robust multimodal ASR systems in
adverse environments in the context of Indian languages which are syllabic in nature. The dataset for
this work comprises the confusable 145 consonant-vowel (CV) syllabic units of Hindi language recorded
simultaneously using three modalities that capture the acoustic and visual speech cues, namely normal
acoustic microphone (NM), throat microphone (TM) and a camera that captures the associated lip
movements. The Lombard effect is induced by feeding crowd noise into the speaker’s headphone while
recording. Convolutional Neural Network (CNN) models are built to categorise the CV units based on
their place of articulation (POA), manner of articulation (MOA), and vowels (under clean and Lombard
conditions). For validation purpose, corresponding Hidden Markov Models (HMM) are also built and
tested. Unimodal Automatic Speech Recognition (ASR) systems built using each of the three speech
cues from Lombard speech show a loss in recognition of MOA and vowels while POA gets a boost in all
the systems due to Lombard effect. Combining the three complimentary speech cues to build bimodal
and trimodal ASR systems shows that the recognition loss due to Lombard effect for MOA and vowels
reduces compared to the unimodal systems, while the POA recognition is still better due to Lombard
effect. A bimodal system is proposed using only alternate acoustic and visual cues which gives a better
discrimination of the place and manner of articulation than even standard ASR system. Among the
multimodal ASR systems studied, the proposed trimodal system based on Lombard speech gives the best
recognition accuracy of 98%, 95%, and 76% for the vowels, MOA and POA, respectively, with an average
improvement of 36% over the unimodal ASR systems and 9% improvement over the bimodal ASR systems.

Keywords: Lombard speech; multimodal ASR; throat microphone; visual speech; Convolutional Neural
Network; Hidden Markov Model; late fusion; intermediate fusion.

1. Introduction

In adverse circumstances that mostly involve noise,
complimentary features such as acoustic speech from
a variety of alternate speech sensors, visual speech (lip
movements), and gaze effect can help in improving the

performance of ASR systems. Hence, combining evi-
dences from these sensors is expected to enhance the
performance of ASR systems. The presence of noise af-
fects the performance of an ASR system in two ways:
(1) adds environmental noise as an additive compo-
nent, distorting the speech signal, and (2) induces
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Lombard effect in the speaker by altering the speech
production mechanism (Lombard, 1911). The speech
produced in a noisy environment with more vocal ef-
fort is termed as Lombard speech. In this paper, the
term “neutral speech” refers to the speech collected in
a noise free environment, while Lombard speech refers
to the speech collected by feeding crowd noise through
the headphone of a speaker to induce Lombard effect
into the speech. In order to build robust ASR sys-
tems under adverse conditions, it is necessary to ad-
dress the background additive noise effect as well as
the Lombard effect on the performance of these sys-
tems. This study attempts to address the exclusive
influence of Lombard effect on ASR systems, as ex-
plained later.

Various methods to neutralise the effect of additive
noise on ASR systems are available in literature. Build-
ing robust speech systems for noisy environments us-
ing a multimodal approach with alternate speech sen-
sors has been studied extensively. Features from an ac-
celerometer placed at the throat were combined with
features from a standard normal microphone (NM) in
(Roucos et al., 1986), while features of the throat mi-
crophone (TM) and noisy NM speech were combined
to estimate clean NM features in (Graciarena et al.,
2003). Jou et al. (2004) reported ASR recognition of
soft whisper from a TM using adaptation methods on
a standard speech recogniser. However, in these works
effect of Lombard speech on the performance of ASR
systems as well as bimodal ASR systems that exclu-
sively use alternate audio-visual speech cues alone were
not studied.

The changes induced by the Lombard effect on
the acoustic-phonetic characteristics of the normal
acoustic microphone speech and visual speech is evi-
dent from literature (Rajasekaran et al., 1986; Jun-
qua, Anglade, 1990; Lane, Tranel, 1971; Drug-
man, Dutoit, 2010; Pisoni et al., 1985; Alexan-
derson, Beskow, 2014; Davis et al., 2006; Hera-
cleous et al., 2013; Garnier, Henrich, 2014). In
noisy conditions, the acoustic-phonetic differences be-
tween neutral speech (obtained under noise free labo-
ratory condition) and Lombard speech cause a degra-
dation in the performance of standard ASR systems
(that are built under laboratory conditions using neu-
tral speech) due to a mismatch in the training and test-
ing conditions. Methods to compensate the negative
impact of Lombard effect on the performance of ASR
systems include multistyle training, Lombard speech
processing techniques, and feature and model com-
pensation approaches (Boril, 2008; Boril, Hansen,
2010; Bou-Ghazale, Hansen, 1994; Hansen, 1994;
Hansen, Varadarajan, 2009; Hansen, Bria, 1990;
Sadasivam et al., 2015). Only very few studies have
considered bimodal approach for Lombard effect com-
pensation. The bimodal ASR systems studied utilised
acoustic and visual speech cues, where the visual Lom-

bard effect is found to degrade the performance of the
ASR system in (Heracleous et al., 2013). However,
an opposite trend was noticed by (Marxer et al.,
2018) with a better claim on accuracy due to a larger
audio-visual speech corpus collected from 54 speakers.
These studies have used the visual information that
remains relatively unaffected by noise, but have not
considered the availability of alternate audio informa-
tion through skin and bone conduction that also re-
mains relatively unaffected by noise. It is necessary to
explore the alternate speech related data available in
both the visual and audio domains. This would also
help to study the feasibility of ASR systems in sit-
uations where speech from standard NM is not po-
ssible.

The advances in machine learning algorithms as
well as increased processing power of computer hard-
ware have led to efficient training algorithms for acous-
tic modelling of speech using Neural Network (NN)
(Hinton et al., 2012). NNs outperform traditional
ASR systems based on Hidden Markov Model (HMM),
Gaussian Mixture Model (GMM). One such popular
and light-weight NN is Convolutional Neural Network
(CNN) which contains local, temporal, and spatial fil-
ters along the time and frequency domain and showed
better results in (Sainath et al., 2013; Abdel-Hamid
et al., 2012; Palaz et al., 2013). The spatio-temporal
correlations of a signal can be well captured with
CNN architecture and it also reduces the translational
variance in signals. With fewer parameters, CNN can
model the translational invariance, and the speaking
style variations and channel distortions are handled
with the aid of the maxpooling function.

When compared to phonemes, the CV units have
a longer duration, and hence occur with lower fre-
quency in continuous speech. This results in lack of
sufficient training examples for these CV units. Hence
building robust recognition models for these CV units
is an important step towards building robust ASR sys-
tems in the context of Indian languages which are syl-
labic in nature (Shahina, 2007; Khan et al., 2003). To
the best knowledge of the authors, there is no study
on understanding the Lombard effect on syllable recog-
nition in the Indian languages using a deep learning
approach on multimodal ASR systems.

This work aims at studying the exclusive impact of
Lombard effect on the recognition of confusable Hindi
syllabic (consonant-vowel) units from CNN based uni-
modal ASR systems based on speech related cues from
normal microphone (NM) speech, throat microphone
(TM) speech, and image sequences of lip movements
to help build robust multimodal ASR systems. This
study is further extended to understand the impact of
Lombard effect on three bimodal systems and a tri-
modal system, each for neutral and Lombard speech,
built using the three complimentary speech cues. This
work also studies the viability of a bimodal system us-
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ing only cues from alternate speech sensors (TM + vi-
sual speech) in situations where NM may not be avail-
able. The percentage accuracy scores obtained from
the CNN based unimodal and multimodal ASR sys-
tems have been validated using HMM based multi-
modal ASR systems as well as multihead CNN using
intermediate fusion built for this study.

The paper is organised as follows. Section 2 de-
scribes the process involved in collecting the acoustic
and visual speech data, Sec. 3 explains the features and
different unimodal and multimodal ASR systems used
in this study. The experimental design and analysis of
the results obtained are discussed in Sec. 4. Section 5
summarises the work.

2. The acoustic and visual speech corpus

This section discusses the corpus used for the study.

2.1. Database

The corpus used in this study has a collection of
both neutral and Lombard speech samples recorded
using both standard NM and TM to record the au-
dio signals, and a camera for capturing corresponding
lip movements for the 145 consonant-vowel (CV) units
of the Hindi language which are considered as more
confusable than even the E-Set vocabulary (Shahina,
Yegnanarayana, 2007). The neutral speech and
Lombard speech are recorded in different sessions in
order to avoid speaker fatigue. In each session, NM
and TM speech along with the video are recorded si-
multaneously. The four kinds of audio and two vi-
sual speech signals recorded thus include: NM neu-
tral speech, NM Lombard speech, TM neutral speech,
TM Lombard speech, visual neutral speech, and vi-
sual Lombard speech. To study the exclusive influ-
ence of Lombard effect on the ASR performance, the
Lombard speech recordings are carried out by feed-
ing crowd noise (to simulate a crowded, noisy en-
vironment) through the headphone of the speaker.
The noise played to the speaker through the head-
phone makes it possible to induce Lombard effect in
the recordings while eliminating the additive effect of
noise. This makes it possible to record NM, TM, and
lip movements that are influenced exclusively by Lom-
bard effect. Such a dataset enables studying exclu-
sively the Lombard effect on the ASR systems. The
speech data are collected from seven speakers, three
male and four female ones. The corpus contains 145
CV units of the Hindi language. To take into account
the intra-speaker and inter-speaker variations in ut-
terances, a total of 20 300 utterances of CV units are
used for each of the recording conditions leading to
81 200 utterances from 7 speakers in the complete
dataset. 75% of the data are used for training and
the remaining 25% are used for testing. The dataset

is further grouped into three broad categories, namely,
MOA, POA, and vowels, with seven sub-categories
of MOA, five sub-categories of POA, and five vow-
els (Khan et al., 2003). For the Hindi language (and
many other Indian languages) the vowel category con-
sists of /i/, /e/, /a/, /o/, and /u/. The seven manners
of articulation (MOA) considered here are UnVoiced
UnAspirated (UVUA), UnVoiced Aspirated (UVA),
Voiced UnAspirated (VUA), Voiced Aspirated (VA),
SemiVowels (SV), Nasals (N), and Fricatives (F). The
five different places of articulation (POA) subcate-
gories include velar, palatal, alveolar, dental, and bil-
abial. Automatic syllable recognition systems are built
using these 145 syllables categorised based on the vow-
els, MOA, and POA.

3. Multimodal ASR system for Hindi syllable
recognition

This section discusses the CNN-based unimodal
and multimodal ASR systems built for the study. Uni-
modal, bimodal, and trimodal ASR recognition sys-
tems using Convolutional Neural Network (CNN) ar-
chitecture are built to classify the syllabic CV units
based on MOA, POA, and vowels using neutral and
Lombard speech cues from standard NM and TM Lom-
bard speech along with their associated visual cues.

A system built in this study is represented by λxyz,
where:

• x represents the sensor – standard normal micro-
phone (N) or throat microphone (T), or camera
to capture video signal (V);

• y represents speech data used for training – neu-
tral speech (N) or Lombard speech (L);

• z represents speech data used for testing – neutral
speech (N) or Lombard speech (L).

3.1. Unimodal CNN syllable recognition system

Independent CNNs, so called convolutional heads,
are used to extract the speech cues from audio and
visual streams. To extract the speech cues from each
acoustic sensor (normal and throat microphone) two
independent one-dimensional CNNs with single chan-
nel are utilised, one for normal speech and another one
for Lombard speech. Similarly, a two-dimensional CNN
is used for visual lip movements extracted from short
video clips of CV utterances from the speakers. Each
of the six independent unimodal CNN acoustic and
visual syllable recognisers to categorise 145 Hindi syl-
lables into three groups, namely MOA, POA, and vow-
els considered in this study are trained with NM neu-
tral speech, NM Lombard speech, TM neutral speech,
TM Lombard speech, visual neutral speech, and visual
Lombard speech, respectively. Each system is tested



422 Archives of Acoustics – Volume 45, Number 3, 2020

against their corresponding neutral speech and Lom-
bard speech test data (for matched train-test condi-
tions only). The visual features provide relatively lower
performance than acoustic signals even in the matched
conditions. Since it is evident from the earlier studies in
the literature that unmatched train-test Lombard con-
ditions reduce the performance of speech-input based
automatic recognition systems, they are not consid-
ered in this study. Table 1 shows all the acoustic and
visual unimodal systems with their train, test condi-
tions, and their corresponding symbols used henceforth
in this paper.

Table 1. Symbols and notations of unimodal acoustic syl-
lable recognition system using normal and throat micro-

phone.

Sensor Train data Test data Symbol

Normal
microphone

Neutral speech Neutral speech λNNN

Lombard speech Lombard speech λNLL

Throat
microphone

Neutral speech Neutral speech λTNN

Lombard speech Lombard speech λTLL

Camera
Neutral speech Neutral speech λVNN

Lombard speech Lombard speech λVLL

The unimodal, bimodal, and trimodal audio-visual
CNN syllable recognition system using late fusion tech-
nique proposed in this study is presented in Fig. 1.

Fig. 1. CNN unimodal, bimodal, and trimodal audio-visual
syllable recognition system using late fusion.

The classification layer with two fully connected
feed-forward layers makes use of ReLU activation func-

Table 2. Symbols and notations of neutral speech and Lombard speech based multimodal syllable recognition systems.

System Symbol

Bimodal – fusion of (λNNN and λTNN) (λNLL and λTLL) λ(N+T)NN, λ(N+T)LL

Bimodal – fusion of (λNNN and λVNN), (λNLL and λVLL) λ(N+V)NN, λ(N+V)LL

Bimodal – fusion of (λTNN and λVNN), (λTLL and λVLL) λ(T+V)NN, λ(T+V)LL

Trimodal – fusion of (λNNN, λTNN and λVNN), (λNLL, λTLL and λVLL) λ(N+T+V)NN, λ(N+T+V)LL

tion on each hidden unit hj , in the hidden layer to map
the weighted sum of inputs from the previous layer to
a scalar output yj

yj = ReLU(xj) = max(0, xj),

where xj = bj +∑
i

yiwij ,
(1)

where yi is the output of the unit in the previous layer,
wij is the weight matrix connecting to unit j from unit
i in the previous layer. The softmax function in the
output layer returns the discrete probability distribu-
tion over all classes of MOA/POA/vowels. The class
probability output from the softmax layer for each of
the unimodal systems λ∗∗∗ is given by

p(xi)c =
exi

∑k e
xk
, (2)

where c ∈ [MOA/POA/vowel], k is an index over all
subclasses of MOA/POA/vowel, x is the input vec-
tor and p(xi)MOA, p(xi)POA, p(xi)vowel are the output
class probability for unimodal MOA, POA, and vowel
systems. There are 7 subclasses of MOA, 5 subclasses
of POA, and 5 subclasses of vowels, as mentioned in
Sec. 2.

3.2. Multimodal CNN syllable recognition system
using late fusion technique

A neutral/Lombard speech bimodal system is de-
signed by combining any two of the three neutral
speech/Lombard speech unimodal systems, respec-
tively. For each of the three sound units considered for
recognition, two trimodal systems are built by combin-
ing the three neutral speech and three Lombard speech
unimodal systems. Table 2 shows all the multimodal
systems built. Under late fusion, features from different
modalities are used to train corresponding unimodal
systems and their target probabilities are combined. It
can be observed from Fig. 1 that the target probabili-
ties from two independent unimodal CNN systems are
combined to perform multimodal syllable recognition.

The bimodal probability score for the systems
λ(N+T)∗∗, λ(N+V)∗∗, and λ(T+V)∗∗, are given by

p(xi)
(N+T)∗∗
c = p(xi)

N∗∗
c + p(xi)

T∗∗
c , (3)
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Fig. 2. Multihead CNN based on bimodal and trimodal audio-visual syllable recognition system using intermediate fusion.

p(xi)
(N+V)∗∗
c = p(xi)

N∗∗
c + p(xi)

V∗∗
c , (4)

p(xi)
(T+V)∗∗
c = p(xi)

T∗∗
c + p(xi)

V∗∗
c , (5)

where ∗∗ ∈ [NN/LL], indicating the matched train test
conditions of the bimodal systems with neutral and
Lombard speech. The trimodal probability score for
the systems λ(N+T+V)NN, and λ(N+T+V)LL, are given by

p(xi)
(N+T+V)NN
c = p(xi)

NNN
c +p(xi)

TNN
c +p(xi)

VNN
c , (6)

p(xi)
(N+T+V)LL
c = p(xi)

NLL
c +p(xi)

TLL
c +p(xi)

VLL
c . (7)

3.3. Multihead CNN syllable recognition system
using intermediate fusion technique

In intermediate fusion the kernel functions repre-
senting the feature space of unimodal systems are com-
bined. The bimodal and trimodal audio-visual sylla-
ble recognition systems using intermediate fusion tech-
nique proposed in this study are presented in Fig. 2.
Each feature map from the final pooling layer of
each independent CNN head is flattened into a one-
dimensional feature vector. The feature spaces of the
normal microphone, throat microphone and visual fea-
tures are represented as f NM, f TM, and f LIP, respec-
tively. These feature vectors from two or more modal-
ities are combined iteratively and fed as input to the
following dense layers to find the non-linear mapping
function between speech cues from multiple sensors.

4. Experimental setup of unimodal
and multimodal recognition of CV units

The recognition accuracy obtained for different
Hindi syllabic units under three broad categories,
namely, vowel, MOA, and POA, for unimodal, bi-
modal, and trimodal syllable recognition systems built

using CNN is discussed in this section. The results ob-
tained from the CNN based systems are then validated
with HMM based systems (late fusion) as well as mul-
tihead CNN systems (intermediate fusion).

4.1. Model description of CNN systems

Convolution 1-D, max-pooling, and ReLU activa-
tion unit are used throughout our experiments for au-
dio stream. The neutral speech is modelled using an
architecture containing 4 CNN layers each with a filter
size of 2, 5, 20, and 5, respectively. The kernel sizes
are 50, 120, 130, and 200 for the each of the CNN
layer chronologically. This is followed by two dense lay-
ers each of 256 and 128 dimensions, respectively. The
speech from the throat microphone is modelled with
4 CNN layers, each with a filter size similar to CNN
modelling neutral speech and the kernel sizes are modi-
fied to 50, 500, 200, and 100 for each layer, respectively.
For modelling video data, two layers of 2-D convolu-
tions are employed, each with 32 and 64 filter size. The
kernel sizes are 3× 3 for both these layers. The multi-
head CNN architecture used in this work gathers the
output of neutral speech, throat speech, video based
CNN model and concatenates it before sending it to
the dense layers followed by classification. Categorical
cross-entropy loss objective is used in multi-head CNN.

4.2. Model description of HMM systems

To validate the results of the CNN-based systems
HMM models are built, one corresponding to each
of the CNN-based systems. A 5-state L-to-R HMM,
each with 24 Gaussian mixtures, is empirically cho-
sen for building HMM acoustic models, while 12-state
L-to-R HMM models with 3 Gaussian mixtures for
each state are used for visual speech recognition. All
the multimodal systems are designed based on late
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fusion technique that combines the log-likelihood
scores. The NM and the TM speech signals are repre-
sented by 13-dimensional Mel-Frequency Cepstral Co-
efficients (MFCCs), along with 13 delta coefficients and
13 delta-delta coefficients, representing the change in
spectral content during phonetic transition that could
provide cues for phone identity. The 2-dimensional Dis-
crete Wavelet Transform (DWT) coefficients that rep-
resent the lip region images corresponding to the se-
quence of lip movements are used as visual features.
DWT is preferred as it captures both the temporal and
frequency resolution in a signal. The 39-dimensional
audio features and the DWT coefficients are used to
build the unimodal ASR systems. For the bimodal
and trimodal ASR systems using late fusion technique,
the overall conditional log-likelihood, is obtained using
the combination of individual log-likelihoods resulting
from each unimodal recognition.

4.3. Comparative recognition results of CNN
and HMM unimodal systems

The recognition accuracy of vowel, MOA, and POA
classes of sounds for the CNN and HMM unimodal
systems built with neutral and Lombard speech from

a) b)

c)

Fig. 3. Comparative recognition of neutral speech vs Lombard speech based CNN and HMM unimodal systems built using:
a) NM speech – CNN, HMM, b) TM speech – CNN, HMM, c) visual speech – CNN, HMM for matched conditions (λ∗NN

and λ∗LL) for vowel, MOA, and POA categories.

NM, TM, and visual speech is given in Fig. 3. In NM
speech unimodal systems, for both neutral and Lom-
bard speech, vowels are better recognised compared
to the MOA and POA sound categories. However, the
TM and visual speech unimodal systems, for both
neutral and Lombard speech, give better accuracy for
MOA class of sounds than vowel and POA categories.
All the unimodal systems, both neutral and Lombard
speech, invariably have more poor recognition accu-
racy for POA category of sound units than that for
MOA and vowels. The neutral speech based NM and
TM microphone unimodal systems show a marginally
higher recognition rate than their Lombard speech
based unimodal counterparts for vowel and MOA
classes of sounds. However, the POA category of
sounds is recognised better in Lombard speech than in
neutral speech, refer to Table 3. The visual cues from
Lombard speech are recognised better than visual
cues from neutral speech for all three (namely, vowel,
MOA, and POA) categories of sound, refer to Table 3.
This could be attributed to the changes in the vocal
effort due to the Lombard effect bringing in more
pronounced distinction in the places and manner of
articulation in the visual speech, in general. A similar
trend is observed in the HMM systems based on Lom-
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Table 3. Percentage of gain (↑) or loss (↓) in accuracy for
unimodal visual ASR systems based on Lombard speech.
The ↑ or ↓ depict the positive or negative influence of Lom-
bard effect on visual (both CNN and HMM) ASR systems.

Sound units/models λCNN
VLL λHMM

VLL

MOA no change 8%↑
POA 2%↑ 3%↑
Vowel 8%↑ 13%↑

bard speech cues in the improvement of recognition
accuracy of POA and vowel sound categories as com-
pared to their neutral speech counterparts, refer to
Fig. 3. Among the ASR systems based on acoustic
cues alone, the vowels are better recognised by the
NM based systems, while MOA sound units are better
recognised by the TM based systems. This observation
is consistent in both the CNN and HMM based sys-
tems. The MOA and vowel sound units are, however,
relatively worse recognised with visual speech based
systems. However, a reverse is observed for the POA
category. The visual cues seem to be better discrim-
inating the place of articulation of sound units than
both the NM and TM acoustic cues. This trend in uni-
modal system is observed for both neutral speech and
Lombard speech, as seen in Fig. 3. The boost in the
performance due to Lombard effect on the CNN-based
unimodal visual Lombard speech ASR system over the
corresponding HMM-based unimodal visual Lombard
speech ASR system is shown in Table 3.

The Lombard effect has a positive influence on the
visual cues as seen in Table 3. Both CNN and HMM
based systems show the same trend. Though the per-
centage gain (over the corresponding neutral systems)
due to Lombard effect seems to be higher for HMM sys-
tems, the performance accuracy of CNN exceeds that
of HMM by more than 10% (e.g., CNN gives 82% for
MOA, while HMM gives 71%).

Though the recognition trends are similar for both
the neutral speech and Lombard speech cues as for
which sound category (MOA/POA/vowel) is better
captured by which sensor (NM/camera/TM), it is ob-
served that for all sound categories the Lombard ef-
fect on both the NM and TM acoustic cues reduces
the recognition of MOA and vowels, but improves the
recognition of POA category. However, the Lombard
effect on the speech related visual cues seems to im-
prove the recognition of the vowels as well as the POA,
while MOA remains relatively unaffected. Among the
three (two acoustic and one visual) cues, the Lombard
effect seems to positively impact the visual cues the
most, while also improving the POA recognition in
both the acoustic cues. The above discussion shows ev-
idence of complimentary information among the three
types of speech in both the neutral and Lombard
speech cues. Also, Lombard effect seems to positively

impact the recognition of some sound categories. These
observations necessitate the study of Lombard effect on
ASR systems built using combined evidence.

4.4. Recognition results of multimodal systems

Bimodal systems (NM+TM λ(N+T)∗∗, NM+video
λ(N+V)∗∗, and TM+video λ(T+V)∗∗) are built for both
neutral and Lombard speech, separately. A trimodal
system λ(N+T+V)∗∗ that combines the two acoustic and
the visual cues is also proposed.

4.4.1. Comparative recognition results of CNN multi-
modal systems using late and intermediate fusion
methods

The bimodal and trimodal CNN systems are stud-
ied using both late and intermediate fusion techniques.
The comparison of recognition accuracy of the bimodal
and trimodal CNN systems using late fusion and in-
termediate fusion techniques for neutral and Lombard
speech of MOA, POA, and vowel sound units are given
in Table 4. There is only a marginal difference in
the recognition accuracy obtained from both the fu-
sion methods for both neutral and Lombard speech
based MOA category of sounds, Lombard speech based
POA category of sounds and neutral speech based vo-
wel category of sounds for all the multimodal sys-
tems. Intermediate fusion technique results in 6.5%,
and 3% improvement in recognition accuracy of the
neutral speech bimodal CNN systems (λ(N+T)NN and
λ(V+N)NN) over the corresponding systems built using
late fusion method for POA category of sounds. How-
ever, for Lombard speech vowel category of sounds,
late fusion method shows improvement in recognition
accuracy by 2.6%, 3%, and 10% for bimodal CNN sys-
tems (λ(N+T)NN, λ(V+N)NN, and λ(V+T)NN) over the

Table 4. Comparison of recognition accuracy of the bimodal
and trimodal CNN systems using late fusion and interme-
diate fusion techniques for neutral and Lombard speech of

MOA, POA, and vowel sound units.

System
MOA POA Vowels

LF IF LF IF LF IF

λ(N+T)NN 93.68 93.33 54.79 61.36 97.33 97.38

λ(N+V)NN 92.67 93.49 61.01 64.02 96.23 95.89

λ(T+V)NN 95.28 95.28 68.89 64.68 86.64 87.23

λ(N+T+V)NN 96.94 96.72 71.9 74.06 98.51 98.45

λ(N+T)LL 92.29 92.84 63.94 64.11 95.39 92.79

λ(N+V)LL 92.65 92.04 69.9 69.73 95.27 92.41

λ(T+V)LL 93.68 93.75 69.18 68.98 86.1 76.05

λ(N+T+V)LL 95.86 95.42 74.31 75.6 96.94 95.62

MOA: manner of articulation, POA: place of articulation,
LF: late fusion, IF: intermediate fusion.
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corresponding systems built using intermediate fusion
method. The trimodal CNN systems for neutral speech
POA sound units and Lombard speech vowel sound
units show a 2% and 1% improvement in performance
under intermediate and late fusion methods, respec-
tively.

From the above experiments denoted in Table 4, we
can say that the late fusion technique provides similar
gains to those by the intermediate fusion and most
of the times better one than that by the intermediate
fusion. The late fusion is simple yet effective technique
and thus further experiments in this paper make use
of the late fusion for system combination.

4.4.2. Comparative recognition results of CNN multi-
modal systems using late fusion method

The recognition accuracy of vowel, MOA, and POA
classes of sounds for the six CNN bimodal systems
(three of each for neutral and Lombard speech type)
and the two CNN trimodal systems (one of each for

a) NM + TM (λ(N+T)∗∗) b) NM + visual speech (λ(V+N)∗∗)

c) TM + visual speech (λ(V+T)∗∗) d) NM, TM and visual speech (λ(N+T+V)∗∗)

Fig. 4. Comparative recognition of CNN and HMM bimodal systems using: a) standard normal microphone speech and
throat microphone speech, b) visual speech and standard normal microphone speech, c) visual speech and throat micro-
phone speech, and d) trimodal systems, for matched conditions (λ∗NN and λ∗LL) of vowel, MOA, and POA categories.

neutral and Lombard speech type) for each sound unit
using the late fusion method is given in Fig. 4.

The acoustic λ(N+T)∗∗ bimodal system is the only
one among bimodal systems to improve the recogni-
tion of all the three sound categories compared to the
corresponding individual unimodal (λN∗∗ and λT∗∗)
systems (refer Fig. 4). While vowel recognition im-
proves by more than 2% over the NM unimodal sys-
tem, the MOA and POA recognition improves by 5%
and 10% over the TM unimodal system. For the audio-
visual (λ(N+V)∗∗), bimodal systems, the improvement
in recognition varies from over 1% for vowels to 8% for
MOA and about 20% for POA.

We propose a bimodal system using alternate
speech cues (λ(T+V)∗∗) alone from neutral as well as
Lombard speech type. They are studied to understand
the feasibility of using Lombard speech based λ(T+V)LL

system in adverse environments where NM could be
unavailable. The λ(T+V)LL using Lombard speech gives
an improvement of over 11% for vowels, 13% for POA,



S. Uma Maheswari et al. – A Study on the Impact of Lombard Effect on Recognition of Hindi Syllabic Units. . . 427

a) b)

Fig. 5. Comparative recognition of three CNN unimodal systems, three CNN bimodal systems, and a CNN trimodal normal
speech (a) and Lombard speech (b) systems for matched conditions (λ∗NN and λ∗LL) of vowel, MOA, and POA categories.

Table 5. Percentage of gain (↑) or loss (↓) in accuracy of the CNN-based Lombard speech ASR systems over the corre-
sponding neutral speech ASR systems.

Sound units/models λNLL λTLL λVLL λ(N+T)LL λ(N+V)LL λ(T+V)LL λ(N+T+V)LL

MOA <1%↓ 3%↓ no change 1%↓ no change 1.5%↓ 1%↓
POA >8%↑ 4%↑ 2%↑ 9%↑ 9%↑ < 1%↑ > 3%↑
Vowel < 2%↓ 4%↓ 7%↑ 2%↓ no change no change <2%↓

and 5% for vowels over the contributing unimodal sys-
tems. This system performs better than even the stan-
dard NM systems for both MOA and POA sound cat-
egories, with an improvement of over 11% and 15%,
respectively, while for vowels alone the performance
drops by 7%. Such a trend is observed both for Lom-
bard speech and neutral speech. The drop in recogni-
tion of vowels may be overcome with increased train-
ing examples and by tuning in the parameters of the
model. These results are promising in that ASR sys-
tems could be built even in the absence of NM speech
in adverse conditions. The proposed trimodal system,
λ(N+T+V)LL, using Lombard speech gives the best over-
all performance results over all the previous unimodal
and bimodal systems with a comparatively similar per-
formance seen in the neutral speech based trimodal
systems for all the three sound categories. All the
bimodal and trimodal neutral speech and Lombard
speech systems give better results than their individual
unimodal systems. This implies that the complimentry
speech cues from alternate sensors improve the recog-
nition accuracy of syllable recognition. A comparative
recognition accuracy of the vowels, MOA, and POA
classes of sounds for the three CNN based unimodal,
three CNN based bimodal, and CNN based trimodal
systems based on neutral speech along with Lombard
speech is given in Fig. 5. The impact of the Lombard ef-
fect on the recognition accuracy for all the unimodal,
bimodal, and trimodal systems is depicted in Table 5
in terms of percentage gain or loss in accuracy of the

CNN-based Lombard speech ASR systems over the
corresponding neutral speech ASR systems.

4.4.3. Recognition results obtained from CNN and
HMM multimodal systems using late fusion
method

While Fig. 6, shows the percentage of improve-
ment in accuracy of the Lombard speech based bi-
modal CNN and HMM systems over their unimodal
counterparts, Fig. 7 shows the percentage of improve-
ment in accuracy of Lombard speech based trimodal
CNN and HMM systems over the unimodal and bi-
modal systems.

Comparing the Lombard speech CNN-based and
HMM-based bimodal systems, for all acoustic systems
(NM+TM), even though the HMM model gives hardly
any improvement over the standard unimodal NM sys-
tem, the CNN performs much better for all sound cat-
egories with a maximum percentage gain of 15.98%
for vowels, see Fig. 6a. For the two audio-visual bi-
modal systems (NM+visual and TM+visual), both the
CNN and HMM systems show significant gain in per-
formance over the standard NM based ASR systems.
Though the gain seems higher for HMM systems, the
accuracy values are much higher for CNN systems for
all the sound categories. The trimodal Lombard speech
CNN and HMM based systems also exhibit a similar
trend in that they achieve significant gain in perfor-
mance over the unimodal and bimodal systems.
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a) CNN – λ(N+T)LL vs unimodal b) HMM – λ(N+T)LL vs unimodal

c) CNN – λ(V+N)LL vs unimodal d) HMM – λ(V+N)LL vs unimodal

e) CNN – λ(V+T)LL vs unimodal f) HMM – λ(V +T )LL vs unimodal

Fig. 6. Percentage of improvement in performance of Lombard speech based bimodal CNN and HMM ASR systems
(λ(N+T)LL, λ(V+N)LL, and λ(V+T)LL) over their respective unimodal systems.

5. Conclusion

This work studies the exclusive influence of Lom-
bard effect on unimodal, bimodal, and trimodal CNN
ASR systems built using both standard and alter-

nate sensors. This work also proposes a Lombard
speech based bimodal ASR system built using alter-
nate speech cues alone, which gives much better recog-
nition of the place and manner of syllable articulation
than the standard ASR system. The dataset built for
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a) CNN – trimodal vs unimodal b) HMM – trimodal vs unimodal

c) CNN – trimodal vs bimodal d) HMM – trimodal vs bimodal

Fig. 7. Percentage of improvement in performance of Lombard speech based trimodal CNN and HMM ASR system
(λ(V+N+T)LL) over the bimodal and unimodal systems.

this study comprising of neutral as well as Lombard
speech, recorded from three simultaneous audio and
visual cues using normal acoustic microphone, throat
microphone, and a camera was designed to study the
Lombard effect on the syllable recognition, as Indian
languages are syllabic in nature. The unimodal sys-
tems built using Lombard speech showed that while
Lombard effect helps in better discrimination of place
of articulation in both the acoustic cues, it also helps
in better discrimination of the manner of articula-
tion and vowels as well in the visual cues. The uni-
modal systems also showed the different cues contain-
ing complimentary information. These speech related
cues, when combined to form three different bimodal
systems using the late fusion and intermediate fusion
approach, gave an improvement in performance over
the unimodal systems. The CNN bimodal and trimodal
systems implemented using both late fusion and in-
termediate fusion gave almost similar results. Com-
bining the two acoustic cues alone showed that the
Lombard effect boosts the recognition of place of ar-

ticulation while only marginally degrading the MOA
and vowel recognition. When visual cues were com-
bined with either of the audio cues, the Lombard ef-
fect had a negligible adverse impact on the recognition
of MOA and vowels, while further boosting the place of
articulation recognition. A bimodal ASR system based
only on alternate speech (TM+visual) cues proposed in
this work surprisingly gave better performance of the
place and manner of articulation. The trimodal ASR
system proposed in this work using the three (two
acoustic and one visual) cues gave the best perfor-
mance, with Lombard effect only marginally affect-
ing the manner of articulation and vowel recognition
by less than 2%, while boosting the place of articu-
lation by 3% over the trimodal neutral speech based
system. This study was designed to focus on the ex-
clusive influence of Lombard effect on syllable recog-
nition in the context of Indian languages, and also
paves the way for building multimodal ASR systems
with or without normal microphone under noisy con-
ditions.
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