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Last decades, rolling bearing faults assessment and their evolution with time have been receiving much
interest due to their crucial role as part of the Conditional Based Maintenance (CBM) of rotating ma-
chinery. This paper investigates bearing faults diagnosis based on classification approach using Gaussian
Mixture Model (GMM) and the Mel Frequency Cepstral Coefficients (MFCC) features. Throughout, only
one criterion is defined for the evaluation of the performance during all the cycle of the classification pro-
cess. This is the Average Classification Rate (ACR) obtained from the confusion matrix. In every test
performed, the generated features vectors are considered along to discriminate between four fault condi-
tions as normal bearings, bearings with inner and outer race faults and ball faults. Many configurations
were tested in order to determinate the optimal values of input parameters, as the frame analysis length,
the order of model, and others. The experimental application of the proposed method was based on vi-
bration signals taken from the bearing datacenter website of Case Western Reserve University (CWRU).
Results show that proposed method can reliably classify different fault conditions and have a highest
classification performance under some conditions.

Keywords: bearing faults; Gaussian mixture models; Mel frequency cepstral coefficients; feature extrac-
tion; diagnosis.

1. Introduction

The vibrations analysis technique is the most pop-
ular method used for diagnosis rotating machinery de-
fects, in condition based maintenance. The develop-
ment of resources allocated to the analysis of failures in
these systems has generated improvements in the tech-
niques and methodologies used. Many obtained results
are used by the maintenance community, to prevent re-
currence of failures and saving precious financial and
technological resources. Consequently, the field failure
analysis has become an integral part of the product life
cycle.

In this way, the condition monitoring of bearing
failures and their prediction are implemented from

data of various sources. The causes of their deteriora-
tion can be: incorrect design, faulty installation, brine
ling, corrosion, poor lubrication, fatigue, wear, or plas-
tic deformation. The traditional used techniques can
be classified into three principal domains namely, time
domain analysis, frequency domain analysis, and time-
frequency domain analysis. In addition, the fault sig-
nature pattern can be solved through a classification
problem based on several statistical or machine learn-
ing emerging approaches.

As a part of learning-based techniques group, the
Gaussian Mixture Model (GMM) approach was suc-
cessful in the speech recognition domain. It is a proba-
bilistic model designed for data density estimation,
and mostly used in the tasks of speaker identification
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and verification. However, in literature only few works
are dedicated to the use of GMM as a classifier or
MFCCs as features in the diagnosis by classification-
based approach of mechanical defects. The number of
coefficients is often fixed in advance (12, 13 or 14),
without proof of its optimality, nor its link with the
size of the signal frames, nor its relationship with the
parameters of the classifier. This is why this paper is
particularly focused on this aspect and tries to provide
answers to these questions by associating the GMMs
and the MFCCs in a supervised classification problem,
intended for the diagnosis of bearing defects.

Randall and Antoni (2011) investigated the ef-
fectiveness of conventional signal processing techniques
through the diagnosis of accelerometer-type vibra-
tory signals from rolling bearings, in an environment
marked by interference from other signals of other ma-
chine components such as gears. Different separation
and denoising techniques (self-adaptive noise cancella-
tion, discrete random separation, time synchronous av-
eraging, spectral kurtosis etc.) were tested. Once filter-
ing was optimized, the envelope analysis method was
used in the final diagnosis.

Ericsson et al. (2004) compared different vibra-
tion analysis techniques for automatic detection of
local defects in bearings. Several analysis tools for
bearing condition monitoring were presented. About
103 laboratory and industrial environment test signals
were used for describing a large-scale evaluation of
automatic bearing monitoring methods. Results show
that two wavelet-based and two based on envelope
and periodization techniques are the best-performed
methods.

Cerrada et al. (2018) reviewed the recent meth-
ods and techniques used to achieve the fault severity
evaluation in the main components of the rolling bear-
ings, such as inner race, outer race, and ball. The paper
is mainly focused on two approaches. The first one is
data-driven based approach such as signal processing
for extracting the proper fault signatures associated
with the damage degradation. The second concerns
learning approaches that are used to identify degra-
dation patterns with regards to health conditions.

Barszcz and Sawalhi (2012) introduced Mini-
mum Entropy Deconvolution (MED) rolling element
bearings fault detection. Two cases are presented to
show its applications. The first one was taken from
a fan bladed test rig. The second case was taken
from a wind turbine with an inner race fault. The work
particularly focuses on selecting the optimal parame-
ters for the MED filter.

Girondin et al. (2013) proposed a vibration-based
automated framework to readjust the fault frequen-
cies from the theoretical frequencies of bearings in the
transmission of a helicopter. The method provides the
confidence index of the readjusted frequency. The al-
gorithms were then tested with data from two test

benches and from flight conditions. According to au-
thors, results in flight conditions, frequency readjust-
ment demonstrates good performances when applied
on the spectrum.

Purushotham et al. (2005) presented a method
for detecting localized bearing defects based on dis-
crete wavelet transform (DWT) and Hidden Markov
Models (HMM). Single, multiple and combined point
defects on inner race, outer race and ball faults were
considered for analysis. The variable time-frequency
resolution detects well periodicity due to repetitive
force impulses generated by each pass of the rolling
element over the defect. The results were compared
with others from spectrum analysis.

Narendiranath Babu et al. (2017) investigated
fault diagnosis on journal bearing using Debauchies
Wavelet-02 (DB-02). An experimental set up was
mounted to acquire vibration signal from accelerom-
eter. Many kinds of faults simulating oil losses cases
were tested. Then a process of faults classification
based on the Artificial Neural Networks (ANN) was
used. The results show that the classification rate
reached 85.7%.

Mannepalli et al. (2016) investigated identifica-
tion of the accent in the speech recognition systems.
The samples of speeches were collected from the na-
tive speakers of different accents of Telugu language
for both training and testing. In this study, MFCC
features were associated with GMM classifier for clas-
sification of the speech based on accent. According to
authors, estimated efficiency of the proposed system
to recognize the speaker, and the region he belongs,
based on accent, is 91 %.

Shen et al. (2014) proposed a two-layer struc-
ture consisting of support vector regression machines
(SVRMs) to recognize bearing fault patterns and track
the fault sizes. Statistical parameters were first ex-
tracted to track the fault evolutions. The extracted fea-
tures were then used to train the proposed two-layer
SVRMs structure. Once the SVRM trained, features
extracted from other vibration signals can be used to
predict the unknown bearing health conditions. The
effectiveness of the proposed method was validated by
experimental datasets collected from a test rig.

Narendiranath Babu et al. (2018) applied Em-
pirical Mode Decomposition (EMD) Artificial Neural
Network (ANN) and Deep Neural Network (DNN) for
self-aligning bearing fault diagnosis. Time domain and
time-frequency domain features were extracted and
introduced in the neural networks with the pattern
recognition tool in MATLAB. The results show that
ANN and DNN reached a high classification rate.

Yu et al. (2010) presented a diagnosis approach
based on Gaussian mixture model (GMM). Discrete
wavelet transform (DWT) feature vectors that repre-
sent different machine conditions, were extracted. Af-
ter introducing the features into the classifier, the mod-
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els were built. Diagnosis can be accomplished through
finding out the GMM whose posteriori probability for
a given testing feature vector is the maximum of all.
Results were compared with those obtained by Multi-
Layer Perceptron (MLP) neural network, in this work.

Aye et al. (2015) modelled a quantification in-
dex called Degradation Assessment Index (DAI) from
Acoustic Emission (AE), for the detection of slow
speed bearing faults, using an integrated approach. In-
cipient damage was detected under changing operating
conditions. The model developed from the integration
of Polynomial Kernel Principal Component Analysis
(PKPCA), a Gaussian Mixture Model (GMM) and an
Exponentially Weighted Moving Average (EWMA), is
useful in the detection of slow speed bearings faults
under variable operating conditions.

Yu (2011) proposed a Locality Preserving Projec-
tions (LPP)-based Feature Extraction (FE) approach.
The effectiveness of the proposed approach for bearing
defect and severity classification was evaluated exper-
imentally on bearing test-beds. In a similar approach,
GMM-based negative log likelihood probability, was
evaluated for bearing defect and severity classification.
The input features to the GMMwere obtained from the
vibration signal by using a so-called LPP.

Nelwamondo et al. (2006) used linear and non-
linear features extracted from time-domain vibration
signals of a rotating machine with normal and defective
bearings. The Multi-Scale Fractal Dimension (MFD),
MFCC and kurtosis were used as features to classify
bearing faults using GMM and HMM. Results of the
used classifiers were compared in terms of accuracy and
computational time.

Benkedjouh et al. (2018) investigated a method
for machinery condition monitoring based on MFCC
and Support Vector Machine (SVM). The approach

Fig. 1. The main possibilities offered to the diagnosis of defects in rotating machines.

is a supervised classification using extracted features
such as temporal indicators and MFCC coefficients.
The diagnosis accuracy assessment is carried out by
conducting various experiments on acceleration signals
collected from a rotating machinery. That is an au-
tomatic detection system for mechanical components
defects.

2. Problem overview

The subject matter of this study, is related to the
detection of anomalies in rotating machines as part
of the predictive maintenance. In general, the diag-
nosis of defects can be done in three ways as shown
in Fig. 1. The first one is based on the human (ex-
pert) auditory apparatus in its ability to distinguish
between sounds emanating from different machine de-
fects in operation. This was the original method of the
maintenance concept. Inspired from this first concept,
the second way is based on measured sounds. In the
literature there are many works where acoustic waves
are obtained and treated consequently by many signal
processing methods. Some deemed reliable classifica-
tion approaches are based on GMM and MFCCs as
the features extraction vector. The result leads to the
identification of fault classes. That is the same concept
what we are going to develop in this paper. However, it
is based on accelerometers signals. In other words, we
operate in a step upstream of the acoustic acquisition,
because we measure displacement, speed or accelera-
tion of oscillatory movement generated by defects in
organs. This is the third and the last way mentioned
above.

As the bearing represents a vital piece in a rotating
machine, the diagnosis of its defects will be the subject
of this study. The classification process based on GMM



286 Archives of Acoustics – Volume 45, Number 2, 2020

and MFCC features extraction is applied to the fault
identification related to rolling elements in the bearing
shown in Fig. 2. Therefore, they present characteristic
frequencies depending on the localization of the defect.
Theoretically, five characteristic frequencies of fault lo-
cations can be calculated using the following equations
(Randall, Antoni, 2011; Ocak, Loparo, 2004):

• Ball Pass Frequency, Inner race (BPFI):

BPFI = nfr
2

(1 + d

D
cosφ), (1)

• Ball Spin Frequency (BSF):

BSF = Dfr
2d

(1 − ( d
D

cosφ)
2

), (2)

• Ball Pass Frequency, Outer race (BPFO):

BPFO = nfr
2

(1 − d

D
cosφ), (3)

• Fundamental Train Frequency (FTF):

FTF = fr
2

(1 − d

D
cosφ), (4)

where n is the number of rolling elements, d and D are
the rolling element diameter and the pitch diameter
of the bearing respectively, fr is the rotational speed of
the shaft (inner race speed) and φ is the contact angle
(from the radial).

Fig. 2. Ball bearing elements and geometric parameters.

In others terms, localized faults in a rolling element
bearing may occur in the outer race, the inner race, the
cage, or a rolling element. High frequency resonances
between the bearing and the response transducer are
excited when the rolling elements strike a local fault
on one of these components. The problem is how to
detect and identify the various types of faults.

Fig. 3. The flow chart of the proposed bearing fault diagnostic procedure.

3. Proposed method description

This section describes the general principle of the
proposed method as well as basic theoretical elements
about cepstral coefficients and the classifier.

3.1. Classification scheme

The bearing fault diagnosis problem can be mod-
elled as a classification problem, where one wants to
get the best degree of separability between classes rep-
resenting the fault conditions. In order to apply that
concept to build a bearing fault diagnosis system ca-
pable of identifying the fault condition, a methodol-
ogy based on GMM has been developed. This classi-
fier has been proven in various classification problems,
like radars (Mesloub et al., 2018), speech recogni-
tion (Mannepalli et al., 2016), and bioinformatics.
Based on the well-known Expectation-Maximization
(EM) algorithm for parameters estimation, it can ap-
proximate any probability density function (PDF) by
a finite Gaussian mixture (McLachlan, Peel, 2000).
It can also be completely represented with three pa-
rameters: mean vectors, covariance matrices, and the
mixture weights.

Hence, the architecture of the proposed framework,
as shown in Fig. 3, consists of four major stages.
The first step is importing vibration signals (Loparo,
2012), and building the preprocessing data sets. Later,
these ones are divided in training and test subsets. The
second step is explained in Subsec. 3.3 below and clar-
ified in Sec. 5, to show the relevancy of proposed fea-
ture. The third one is the model construction, which is
in our case the estimation of GMM parameters, of each
class. Finally, the last step is reserved to performance
evaluation (confusion matrix and probability of correct
classification). The chosen performance criterion is the
higher Average Classification Rate (ACR).

The Gaussian mixture builds models for all possi-
ble faults types and the normal condition. Diagnosis of
the bearing fault is achieved by calculating the proba-
bility of the feature vector, given the entire previously
constructed fault model. GMM with maximum prob-
ability then determines the bearing condition. When
relevant features are extracted, reference models that
will be used to classify faults are built and are used to
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classify the fault conditions. In this case, we used the
feature vectors in each frame as such without any ma-
nipulation. We tested the GMM with varying number
of Gaussians, varying analysing frame lengths, varying
MFCCs numbers and varying frame test lengths. The
number of replicates is fixed to 100, in order to avoid
the problem of EM algorithm, which can be trapped in
one of the many local maxima of the likelihood func-
tion.

3.2. Features extraction

The complex cepstral coefficients known as MFCC
have been widely and successfully used in the field of
speech recognition. They can be defined as a wavelet in
which frequency scales are placed on a linear scale for
frequencies less than 1 kHz and on a log scale for fre-
quencies above 1 kHz. It is well known too, that vibra-
tion signals contain both linear and non-linear features
(Nelwamondo et al., 2006). Therefore, the MFCCs
with their time and frequency information of the sig-
nal, makes them more useful for the feature extraction.

The process consists of a transformation of the sig-
nal from the time domain to frequency domain and
mapping the transformed signal in hertz, onto Mel-
scale (Huang et al., 2001; Wang et al., 2002). For the
calculation of MFCCs, it is necessary to go through
the following steps:

• pre-emphasis filtering,
• take the absolute value of the short time Fourier

transformation using windowing, in Fig. 4,
• Warp to auditory frequency scale (Mel-scale),
• take the discrete cosine transformation of the log-

auditory-spectrum,
• return the firsts q MFCCs.
Pre-emphasis filtering, which is a special kind of

finite impulse response (FIR), can be used to compen-
sate the fluctuation of the spectrum energy between
low frequencies and higher frequencies.

Let x[n] be the raw signal at sample n, and s[n]
the signal after the high-pass filtering

s[n] = x[n] − αx[n − 1], n = 1,2, ...,N, (5)

where α is a parameter controlling how much it is fil-
tered and is often set between 0.95 and 1 in practice.

The next step is to transform the signal from time
domain to frequency domain by applying Short Time
Fourier Transformation (STFT) together with a win-
dow function. It assumes that the signal over a very

Fig. 4. Windowing is applied to minimize the discontinuities at the edge of each frame.

short time period is at least nearly stationary, thus
able to be transformed to frequency domain. This can
be done by:

Xa[k] =
N−1

∑
n=0

s[n] ⋅wa[n] ⋅ e−
i2πkn
N

=
N−1

∑
n=0

s[n] ⋅wa[n] ⋅ e−iωk, 0 ≤ k < N, (6)

where wa[n] is the window function, which is a zero
valued function everywhere except inside the window,
and i is the imaginary unit.

To keep the frames continuous, a Hamming window
is preferred

wa[n] = α − β cos( 2πn

N − 1
) ,

0 ≤ n < N, α = 0.54, β = 1 − α = 0.46.

(7)

A fact of human hearing ability is that we are more
sensitive to sounds between 20 and 1000 Hz. Thus, it
is less efficient to assign a signal the same scale at high
frequencies as at lower frequencies. An adjustment can
be made by mapping the data from Hertz-scale onto
Mel-scale

Mel =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f, f ≤ 1000,

2595 log10 (1 + f

700
) , f > 1000.

(8)

In addition, its inverse is given by

f =
⎧⎪⎪⎨⎪⎪⎩

Mel, Mel ≤ 1000,

700 (eMel/2595 − 1) , Mel > 1000.
(9)

Given the STFT of a input window frame xa[k], we
define a filterbank with M filters (m = 1,2, ...,M) that
are linear on Mel scale but nonlinear on Hertz scale,
where m is triangular filter given by

Mm[k] = 1 − ∣
k − N−1

2
N−1
2

∣, (10)

where N is the length of the filter. Notice again that
these filters are linear on Mel scale and they need to
be transformed back to Hertz scale. Thus, we can then
compute the log-energy of each filter as

S[m] = ln [
N−1

∑
k=0

∣Xa[k]∣2Mm[k]] , 0 <m ≤M. (11)



288 Archives of Acoustics – Volume 45, Number 2, 2020

The Mel-frequency cepstrum coefficients are then
the discrete cosine transform of the M filter outputs:

c[q] =
M−1

∑
m=0

⎡⎢⎢⎢⎢⎣
S[m] cos

⎛
⎝
πq (m − 1

2
)

M

⎞
⎠

⎤⎥⎥⎥⎥⎦
, 0 <m ≤M. (12)

3.3. Gaussian mixture models

The GMMs are widely used in data mining, pattern
recognition, machine learning, and statistical analysis.
The empirical probability distribution of sampled data
can be estimated by a GMM using a linear combi-
nation of Gaussian distributions (Duda et al., 1995;
Dempster et al., 1977). It is a statistical model using
a weighted sum of probability density functions of mul-
tiple Gaussian distributions to approach the empirical
distribution of sampled data. In our work, as shown in
Fig. 5, this data is formed by MFCC concatenated for
different frames.

A complete Gaussian mixture model θ is parame-
terized by mixture weights wi, mean vectors µi, and
the covariance matrices Σi from all the M mixture
components (Bishop, 2006)

Fig. 5. The flow chart of the classification of data using GMM.

θ = {w,µ,Σ}, (13)

where
w = {wi}, i = 1,2, ...,M,

µ = {µi}, i = 1,2, ...,M,

Σ = {Σi}, i = 1,2, ...,M.

The Gaussian mixture density is

p (x∣θ) =
M

∑
i=1

wipi(x). (14)

For a N -dimensional vector x, the multivariate Gaus-
sian distribution takes the form :

N (x∣µ,Σ) = 1

(2π)N/2
1

∣Σ∣1/2

⋅ exp{−1

2
(x − µ)TΣ−1(x − µ)}, (15)

where N is the MFCC number.
Hence, the density function is:

pi(x) = N (x∣µi,Σi) . (16)



Y. Atmani et al. – Enhancement in bearing fault classification parameters using GMM and MFCC features 289

The description of the GMM is a linear superposition
of Gaussians,

p(x) =
M

∑
i=1

wiN (x∣µi,Σi) . (17)

Normalization and positivity require

M

∑
i=1

wi = 1, 0 ≤ wi ≤ 1. (18)

For fault diagnosis, each fault condition (class)
is represented by a GMM. Given training fault fea-
tures from each fault condition, the goal of training
model is to estimate the GMM parameters. It can be
done using the Expectation Maximization (EM) algo-
rithm, which yields a maximum likelihood estimate
(Dempster et al., 1977; Mc Lachlan, Krishnan,
2008)

ŝ = arg
T

∑
t=1

log p (xt∣θk), (19)

where k represents the index of the type of fault,
whereas C is the total number of known fault con-
ditions (classes) and x = {x1, x2, ..., xT } is the un-
known fault vibration segment and p (xt∣θk) is given
in Eq. (14).

Once the GMMs for C fault conditions have been
trained, diagnose a testing fault feature vector is
straightforward. We just need to find out the model
θ, which has the maximum posteriori probability for
a given testing fault feature vector.

4. Application case of the proposed method

The proposed method of classification is applied
to bearing faults data collection obtained from the
CWRU bearing data centre. The vibration signals are
recorded with names “xxx.mat” in Matlab files for-
mat. The “xxx“ means three numbers, as given in Ta-
ble 1 for the selected ones. Every file contains two sig-
nals DE and FE (Drive End and Fan End). More de-
tails on experimental set up are described in (Loparo,
2012). The signals selected for our classification con-
tain healthy and faulty bearing at the inner, outer (at
centred position) and ball. The sampling frequency for
all the selected vibration signals is 48 kHz.

Table 1. The 48k bearing fault data files selected.

Fault width 0.007 in (0.18 mm)
Normal data

IR Ball OR centred
109 122 135 97
110 123 136 98
111 124 137 99
112 125 138 100

Overall, the selected dataset covers 16 scenarios for
the four considered fault conditions (04 classes) be-
cause each of the four ones represents four loading cases
(four different speeds). In addition, by considering the
two signals relating to the measuring points (Drive End
and Fan End of each scenario), we get a total of 32 sig-
nals to be processed in our classification scheme.

The procedure of pre-processing began by reshap-
ing the all dataset vibration signals because their
lengths in their original forms are not the same.
Thereby, this first operation generated 14 blocks of
uniform sizes of 229,376 samples, for each class. After,
these created blocks have undergone the necessary pre-
treatments (centering, normalization etc.). An exam-
ple of the pre-processed signals corresponding to each
of the four classes is shown in Fig. 6. Every block is
divided in analysis frames (or segments) with various
lengths to perform which ones give the higher clas-
sification rate. Then, six frame lengths, as shown in
Table 2, were explored.

Fig. 6. The four classes pre-processed vibration signals.

Table 2. Number of used frames for each frame length.

Frame length Training data Testing data All data
512 3584 2688 6272
1024 1792 1344 3136
2048 896 672 1568
4096 448 336 784
8192 224 168 392
16384 112 84 196

In order to create a training and testing subsets
from the dataset, first eight blocks were devoted to
training and modelling (57.14%), and the rest were
kept for testing the proposed method (42.86 %).

The feature extraction is applied for both train-
ing and testing data. This process based on the num-
ber of input rows, the Hamming window length, the
hop length, and other parameters, computes at its end
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the MFCCs for each frame. Features extracted in an
arbitrary frame of the vibration signal are shown in
Fig. 7. The horizontal axis shows index of each co-
efficient among the fourteen (14) extracted from one
frame. Also, all conditions under investigation (four
classes 04) are displayed in the same plot. As the
lengths of the windows chosen (time durations) are
a function of the size of the analysis frames and the
sampling frequency, the result leads to variable time
duration. Features Extraction are done with variable
MFCC number. This solution will allow us to test dif-
ferent configurations later and to choose the one that
maximizes the ACR (the best).

Fig. 7. MFCC values corresponding to different fault con-
ditions.

Fig. 8. Feature extraction regarding testing and analysing frames.

The last interesting parameter for this methodol-
ogy, as shown in Fig. 8, is the number of analyzed
frames taken in a test sequence (or testing frame).
Hence, many tests are reached in order to select the
best combination giving the higher ACR.

5. Results and discussion

Along this study, a better classification means
a maximum ACR. Therefore, a value of 100% is con-
sidered ideal. It is obtained from the average of the
diagonal terms of the confusion matrix, at the end of
each classification test. This is the reference criterion
whose value judges the optimality of the other param-
eters involved in the classification process, like number
of components in the Gaussian mixture, the number of
MFCCs, the length of the analysis frame, and the
length of the test sequence.

The purpose of this study is to find a combination
of the optimal parameters that allows a better clas-
sification. To achieve this, different values of each of
the classification parameters were tested. The results
obtained, and the influences of each parameter on the
classification process are presented below.

5.1. Effect of the GMM components number

In the literature, the influence of the number of
components of the mixture on the classification pro-
cess by GMM, is a subject that occupies an important
place. Hence, the estimation of optimal number of pa-
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rameters is essential because the parameters with in-
appropriate components may not evaluate the mixture
model accurately. It is a challenging attempt to decide
the optimum number of components. To estimate both
the model order and components together some tech-
niques and criterion were developed (Akaike’s infor-
mation criterion (AIC), Minimum Description Length
(MDL), Bayesian Inference Criterion (BIC), among
others) (Akaike, 1974; McKenzie, Alder, 1994).

However, in this work, this aspect has not been de-
veloped as it represents in itselfan entire dimensional
study. The purpose of this work is to find the num-
ber of mixture components, which maximises the ACR.
Therefore, we try increasing number of mixture com-
ponents from 2 to 12 (with the step of 2). Two cases
were explored. The first, illustrated in Fig. 9, relates
to a frame of 2048 samples. The numbers of MFCCs
tested are 10, 12, 13, and 14. At this stage, we do
not yet know the optimal number needed. We used
the most used numbers in the literature. In the end, the
number of eight (8) components was obtained and sat-
isfied the highest ACR, regardless of the number of
MFCCs. The second case illustrated in Fig. 10, sup-

Fig. 9. ACR versus GMM components number with frame
length of 2048 samples.

Fig. 10. ACR versus GMM components number with frame
length of 1024 samples.

ported the choice of the first one, because the 1024-
samples length frame makes the component number
dependent on the number of MFCCs. It is also em-
phasized that the classification rates in this case are
relatively lower than the first ones.

On the other hand, it should be noted that the
choice of length frames of 2048 and 1024 samples is
fortuitous at this stage of the study. It is mostly jus-
tified by their average positions in a range of frames
included between 512 and 16384 samples. As a conse-
quence and for all these arguments and experimental
considerations, the fixed number of components to be
considered in all the executions of the EM algorithm
by the GMM classifier, is eight (8). This means that
with this value, the EM process gives the best esti-
mation of the model parameters, and hence the best
classification accuracy of bearing fault conditions.

5.2. Effect of the MFCC number

The choice of the number of MFCCs to in-
clude in the classification process is largely empirical
(Rabiner, Schafer, 2011). Therefore, the method
was tested with two parameter combinations. The fea-
tures extraction process used frame lengths of 1024
samples and 2048 samples. The time durations are
equal respectively to 21.3 ms and 42.7 ms with 50%
overlap. The number of MFCCs tested was between
2 and 20. Trying to improve the classification perfor-
mance, we investigate the effect of changing the num-
ber of MFCC extracted from each frame and com-
pare the classification results as shown in Fig. 11. It
quickly became apparent that the very high cepstral
coefficients were not helpful for classification, neither
were the very low ones. For more than 14 coefficients,
the performance became rapidly degraded. Indeed, too
many coefficients kill the classification.

Fig. 11. ACR versus number of MFCCs (for N GMMs = 8).

Two areas are particularly interesting. The first one
is the number of MFCCs equal to 4 with the highest
ACR from the curves. The second is a range of MFCC
number between 10 and 14. For the latter the ACR
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is also high. It fits well with literature results. The
number of 12 or 13 are the most cited and most used.

On the one hand, the frame of 2048 samples seems
once again to have a higher classification rate com-
pared to that of 1024 samples. On the other hand, the
latter has a high ACR with the number of MFCCs of 4
in the first zone, but relatively fluctuating in the range
of MFCCs between 10–14.

It follows that the choice of the number of MFCCs
will be four (4), for obvious reasons of saving in com-
puting time. It remains to be determined whether the
frame of 2048 will always remain the best one or an-
other may eventually replace it. The answer to this
question will be discussed in the following sub section,
which examines the influence of the length of the ana-
lysis frame on the classification rate. In all cases, the
number of MFCCs is now fixed to the value of four (4)
and its confusion matrix is shown in Table 3.

Table 3. Confusion Matrixes in case of: NMFCC = 4;
NGMM = 8; frame length = 2048.

Test sequence (Frame test) = 10 analysis frames
BPFI BSF BPFO Normal

BPFI 1.0000 0 0 0
BSF 0 0.9851 0 0.0149
BPFO 0 0 1.0000 0
Normal 0 0.0299 0 0.9701

In any way, the optimal number of coefficients de-
pends on the quantity of training data, the details
of the training algorithm (in particular how well the
PDFs can be modelled as the dimensionality of the fea-
ture space increases), the Gaussian mixture, the back-
ground noise characteristics, and maybe the available
computing resources. If we call up the limitations of
MFCC, a serious one of the original MFCC feature ex-
traction technique is that the filter bandwidth is not
an independent design parameter but instead is deter-
mined by the frequency range of the filter bank, the
number of filters, and type of window used.

5.3. Effect of the analysing frame length

In this work, the initial goal was to segment into
frames having the lengths: 64, 128, 256, 512, 1024,
2048, 4096, 8192, and 16384 points. The observation is
that for the frames less than 512 (256, 128, and 64), the
process does not converge with the parameters initially
set for the automatic fault classification. As a result,
these three frames have been eliminated because they
require special precautions. The frames studied vary
between 512 and 16384 samples. Each frame is then
multiplied by a Hamming window of the same length.

As shown in Fig. 12, the higher ACR is obtained
for the frame length with 2048 samples. If we also con-
sider the number of MFCCs, four (4) is best than the

Fig. 12. ACR versus frame analysis length
(GMM Number = 8).

rest shown in curves. This result confirms the one that
was obtained previously in the subsection above. With
regard to this evolution of the curves, the optimal value
of the length frame is 2048 samples.

5.4. Effect of the number of analysing frames

The block diagram illustrating the analysis frames
numbers present in each test sequence, was explained
in Fig. 8. In all the tests carried out before, the test
sequence was always fixed at ten (10) analysis frames.
In this subsection, we evaluated three other possibi-
lities in terms of the number of analysis frames con-
tained in a test sequence (frame test): five (5), two (2),
and one (1) frame.

The obvious result is shown in Fig. 13. It is men-
tioned that the highest ACR is assigned to the longest
test sequence (the one that contains ten (10) frames of
analysis). It means that the estimation is better with
the longer samples then the lower ones. The confu-
sion matrices of each case A, B, C, and D, are shown
in Table 4. The curve corresponding to the number

Fig. 13. ACR versus the test sequence (frame test).
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Table 4. Confusion matrixes in case of: NMFCC = 4; NGMM = 8; frame length = 2048.

Frame test with 1 analysis frames; average accuracy = 94.8881%
BPFI BSF BPFO Normal

BPFI 1.0000 0 0 0
BSF 0 0.9030 0 0.0970
BPFO 00045 0 0.9955 0
Normal 0 0.1030 0 0.8970

Frame test with 2 analysis frames; average accuracy = 96.3433%
BPFI BSF BPFO Normal

BPFI 1.0000 0 0 0
BSF 0 0.9493 0 0.0507
BPFO 0.0030 0 0.9970 0
Normal 0 0.0925 0 0.9075
Frame test with 5 analysis frames; average classification rate = 96.9449%

BPFI BSF BPFO Normal
BPFI 1.0000 0 0 0
BSF 0 0.9552 0 0.0448
BPFO 0 0 1.0000 0
Normal 0 0.0299 0 0.9701
Frame with 10 analysis frames; average classification rate = 99.1604%

BPFI BSF BPFO Normal
BPFI 1.0000 0 0 0
BSF 0 0.9851 0 0.0149
BPFO 0 0 1.0000 0
Normal 0 0.0299 0 0.9701

of four (4) MFCCs has the highest classification rate.
This again represents a confirmation of the results ob-
tained previously. The other curves were plotted to
show these notorious differences between the ACRs re-
lated to every MFCC number used.

5.5. Summarization

At the end of this study, the parameters of the clas-
sification optimized during the different tests are fi-
nally set to their final optimal values. Then, the num-
ber of components of the mixture is fixed at 8, the
number of MFCCs is set at 4, the size of the analysis
frame is set at 2048 samples and the size of the test
sequence is fixed at 10 analysis frames.

The results of this last test carried out with these
optimal parameters below are represented by the con-
fusion matrix in Table 5, the scatter plot 2D (two di-
mensions) of Fig. 14 and the scatter plot 3D (three
dimensions) of Fig. 15. In these figures, we can easily
notice some dispersion in the BPFO and BSF classes.
It is probably due to modelled noise or irregularities
related to the structures of covariance matrices esti-
mated by the EM algorithm. The average classifica-
tion rate achieved reached 99.6269%. This is a good

result obtained by the methodology developed during
this experimental study.

Table 5. Confusion matrix NMFCC = 4; NGMM = 8;
frame length = 2048.

Test sequence = 10 analysis frames;
average classification rate = 99. 6269%

BPFI BSF BPFO Normal
BPFI 1.0000 0 0 0
BSF 0 0.9851 0 0.0149
BPFO 0 0 1.0000 0
Normal 0 0 0 1.0000

The process of optimizing the parameters in the
proposed methodology has made the GMM-MFCC
duo powerful enough to provide a good classification.
However, two aspects that were not addressed during
this work require perspectives for exploration.

The first one is related to the extraction of fea-
tures through an optimization of the proportion of
data needed for training and the study of the influ-
ence of the number of filters used for the extraction of
MFCCs. The latter is related to the windows used, the
size of the Fourier transform and the different bands
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Fig. 14. Scatter plot 2D for the features (MFCCs)
of the bearing fault conditions.

Fig. 15. Scatter plots 3D for the features (MFCCs) of the
bearing fault conditions.

of the frequency spectrum. Indeed, different possibili-
ties must be tested and different relationships must be
established to optimize this parameter, to increase the
range of MFCCs for good classification. Also, Singh
et al. (2012) prepared a table in which are set the pa-
rameters mentioned above and influencing the sensitiv-
ity of the MFCCs in a classification process. In addi-
tion, Singh et al. scored the channel distortion among
these.

The second aspect is related to the GMM clas-
sifier, which consists of multivariate Gaussian distri-
bution components. Each component is defined by its
mean, covariance, and a vector of mixing proportions
(weights) defines the mixture. These parameters are es-
timated by using maximum likelihood (ML) estimation
obtained iteratively using expectation-maximization
algorithm (EM). Gaussian mixture models require that
you specify a number of components before being fit
to data. For many cases, it might be difficult to know
the appropriate number of components. Akaike Infor-
mation Criterion (AIC) and Bayes Information Crite-
rion (BIC) are statistic fits and can help choosing of
the best fitting Gaussian mixture model over varying

numbers of components. They can be used to compare
multiple model fit to the same data. As scalars, smaller
values of them allow a better model. The negative log
likelihood, the number of iterations in the Expectation-
Maximization (EM) algorithm, the regularization pa-
rameter value and effect of the tolerance for posterior
probabilities are the other parameters that can be an-
alyzed for optimization problem in perspectives explo-
rations.

6. Conclusion

This study used a combination of GMM with
MFCC features for intelligent fault diagnosis of bear-
ing fault conditions. It is a supervised classification-
based approach. The optimization of its input param-
eters, namely the number of MFCCs, the size of the
analysis frame, the number of components of the mix-
ture, and others, made it possible to reach at the end a
high Average Classification Rate (ACR). In addition,
and although it has been applied to a reputable noisy
database with some non-stationary characteristics, the
GMM-MFCC classification has proved successful. This
can open new possibilities for this duo, in its applica-
tion to other types of failures present in rotating ma-
chinery (gears, misalignment etc.).
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