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Reverberation is a common problem for many speech technologies, such as automatic speech recogni-
tion (ASR) systems. This paper investigates the novel combination of precedence, binaural and statistical
independence cues for enhancing reverberant speech, prior to ASR, under these adverse acoustical con-
ditions when two microphone signals are available. Results of the enhancement are evaluated in terms of
relevant signal measures and accuracy for both English and Polish ASR tasks. These show inconsistencies
between the signal and recognition measures, although in recognition the proposed method consistently
outperforms all other combinations and the spectral-subtraction baseline.
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1. Introduction

Speech is the primary method of communication
for humans. Over many years of research several suc-
cessful automatic speech recognition (ASR) systems
have been developed, predominantly for the English
language (Hinton et al., 2012). They allow hands-
free control over a computer (essential for disabled
users), text dictation, meeting transcription (judge
hearings, interviews), virtual personal assistants, and
more. Although ASR performance can be impressive,
correctly recognizing spontaneous speech, or speech in
an adverse acoustical environment, remains an issue
(Fukumori et al., 2013).
ASR performance depends mainly on the qual-

ity of the speech data. Alas, in most real-life situa-
tions the desired speech is collected with background
noise, other speech signals, and reverberation, all of
which degrade its intelligibility. In contrast with quasi-
stationary background noise that can be modelled
during non-speech intervals, the latter two present
a greater challenge. Yet, whether interference is present
or not, reverberation is present in almost any situ-
ation, especially where the microphone is not close

to the source. With the growing popularity of hands-
free devices and more natural approaches to human-
machine interaction, dereverberation becomes a cru-
cial part of any speech enhancement process, in ASR,
teleconferencing, and devices for hearing impaired lis-
teners. In an increasing number of these cases, two mi-
crophone signals are available for use, which is the sce-
nario we consider here (Li et al., 2012).
It is well-established that information about the

spatial location of a target sound source can be of great
assistance for enhancement, including under reverber-
ant conditions where the reflections come from random
directions. Recent work has shown that the integration
of spatial cues (binaural and statistical) can improve
the state-of-the-art for separation of speech mixtures,
especially under reverberant conditions (Alinaghi,
Wang, Jackson, 2011). Here, we investigate the ap-
plication of this method to dereverberation and its
further combination with a model of precedence. The
precedence effect (Litovsky et al., 1999) describes the
fact that the direct sound from a source arrives earlier
at a sensor than along any reflected path, and relates
to temporal masking behaviour in natural audition.
This property means that any sharp rise in sound en-
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ergy (an attack) is likely to have a much higher direct-
to-reverberant ratio (DRR) than decaying segments,
which the enhancement method exploits by labelling
reliable and unreliable components of the signal ac-
cordingly.
Our evaluation considers the effect of the proposed

enhancement method for two ASR systems: one de-
signed for connected English digits, the other for iso-
lated Polish words. Owing to linguistic differences, the
ASR system for the Polish language comprises differ-
ent algorithms than the more commonplace English
language setup (Ziółko et al., 2008). Therefore, it
is necessary to investigate the performance of various
dereverberation methods on both tasks to verify the
generality of our proposed solution. The aim of our
work is to test and optimise current speech dereverber-
ation methods on Polish speech datasets and the Polish
speech recognizer. We also consider conventional sig-
nal measures of enhancement, the segmental signal-to-
reverberation ratio (SegSRR), and signal-to-distortion
ratio (SDR).
This paper is organised as follows. Next in this sec-

tion, the problem of reverberation is defined and cur-
rent dereverberation solutions are reviewed. In Sec. 2,
chosen algorithms are described. An experimental pro-
cedure and evaluation methods are presented in Sec. 3.
The obtained results are shown in Sec. 4, then conclu-
sions are drawn in the final section.

1.1. Reverberation

A sensor (microphone) located at some distance
from the source receives a delayed and attenuated ver-
sion of the desired speech s(t). After the initial time de-
lay gap (ITDG, 5–25 ms), early reflections arrive caus-
ing distortions. Late reflections are much weaker but
because of their temporal longevity, they can smear
the spectrum over the following phonemes (Jeub et al.,
2010). The spectrograms in Fig. 1 show how reverber-
ation affects the speech spectrum over time.
We can describe reverberant speech x(t) as a fil-

tered version of clean speech s(t):

x(t) = s(t) ∗ h(t) (1)

where ∗ denotes convolution and h(t) is a room impulse
response (RIR) describing the instantaneous state of
an acoustical channel between a source and a sensor.
The RIR can be characterised by parameters de-

pendent on the physical properties of the room and
the location of both the source and sensor. These are
the direct-to-reverberant energy ratio (DRR), and the
reverberation time RT60, by which sound reflections
decay by 60 dB below the direct signal level. However,
in real-life cases, the RIR has a more complex structure
and a non-stationary tail, since the acoustic channel is
altered with every small motion of the speech source
and the air in the room (Gomez, Kawahara, 2010).

a)

b)

Fig. 1. Spectrograms of the Polish word “siedem” (IPA: C E

dE m), a) close-microphone recording with anechoic BRIR,
and b) with 0.89 s reverberation time and 6.12 dB DRR

(room D).

For humans, reverberation is a natural property of
speech and does not decrease intelligibility unless it is
severe (Wu, Wang, 2006; Drgas et al., 2008). More-
over, moderate reverberation provides reinforcement of
the desired signal and spatial information needed for
its separation from interference (Hartmann, 1999).
On the contrary, for the ASR system, any amount
of reverberation is harmful because of test and train-
ing conditions mismatch and the degradation of the
acoustic features. When a sensor is placed directly
by a source reverberation is insignificant. However, in
both telecommunication and ASR, growing popularity
of more convenient distant talking devices creates a
demand for developing solutions for dereverberation.

1.2. Dereverberation methods

Dereverberation can be conducted before or during
an ASR process. There are many successful designs fo-
cusing on the optimisation of dereverberation param-
eters based on feedback obtained from ASR results
(Gomez, Kawahara, 2010; Seltzer et al., 2004).
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However, due to technical limitations we can imple-
ment only a standalone dereverberation system. Multi-
microphone systems allow us to perform a spatial fil-
tering of the signal, based primarily on the differences
in its time of arrival to each sensor. Microphone ar-
rays with an adaptive filter are a primary method for
noise and reverberation removal in a car environment
(Chien, Lai, 2005). A similar multi-microphone sys-
tem supported by the neural network, designed and
tested for robust ASR, was presented (Pearson et al.,
1996). Different methods have been designed to atten-
uate interference over a wide frequency range (Ward
et al., 2001), or comprise an additional speech enhance-
ment method (Shi, Aarabi, 2003; Seltzer et al.,
2004). Their main disadvantage is that they comprise a
sound capturing system, which makes them hardware
dependent. In order to recover a clean signal from re-
verberant speech, an inverse filter can be estimated.
A summary of methods employing linear prediction or
blind estimation of RIRs may be found in (Naylor,
Gaubitch, 2005). An interesting approach is to utilise
the harmonicity of speech to provide more accurate
RIR estimation for inverse filtering (Nakatani et al.,
2007). However, to provide accurate results, this ap-
proach requires a long recording of speech (at least
15 seconds of 16 kHz recording (Wu, Wang, 2006)),
because of the high order of the RIR. Owing to the
stochastic nature of the RIR tail, the inverse filtered
speech still contains the late reverberation component
and requires further processing.
To address precisely both the early and late parts

of reverberation, a two-stage algorithm can be used.
Solutions developed for background noise attenuation
can be used to suppress the late component. Spectral
subtraction is one of these methods used jointly with
linear prediction (Wu, Wang, 2006; Krishnamoor-
thy, Prasanna, 2009) or Wiener adaptive filtering
(Jeub et al., 2010) to reverse the effect of early speech
reflections. In our research we employed an implemen-
tation of spectral subtraction (Wu, Wang, 2006).
The present research is not only focusing on de-

veloping an effective dereverberation method but also
on making it possible to integrate this method into a
more complex system of speech enhancement. There-
fore, it was deemed appropriate to test source separa-
tion methods for dereverberation.
The precedence effect is a phenomenon in the hu-

man auditory system that plays a role in speech source
localisation. It is based on the perceptual emphasis of
the first wave front and has been implemented to both
dereverberate and separate speech signals (Palomaki
et al., 2004). We tested and implemented a precedence
model developed by (Hummersone et al., 2010).
The computationally complex, yet very promis-

ing method of source separation (Alinaghi et al.,
2011) has been suggested as a unification of two ef-
fective methods based on the statistical modelling of

sources (Sawada et al., 2007); Mandel et al., 2010)
and the Expectation-Maximization algorithm. This
method was included in our tests, with reverberation
being modelled as an additional interfering source (i.e.,
as a “garbage” source).

2. Enhancement methods

Because of a limitation in terms of the captur-
ing system, integration with ASR, and length of
test recordings many aforementioned methods are not
suitable for our investigation. In our research, three
dereverberation methods were applied to the time-
frequency-domain input, X(t, ω), calculated by short-
time Fourier transform (STFT). The first method,
spectral subtraction (SpecSub), is a version of the well-
known technique to suppress elements close to or be-
low a spectral estimate of the noise level, which is
adapted for reverberation noise arising from late re-
flections. The second method, the precedence mask
(PrecMask) employs a similar criterion to identify re-
liable and noise-corrupted elements but applies it as a
binary mask on the input. The tird, spatial and statis-
tical cues, are combined in the binaural-BSS method
(Alinaghi) which exploits the directional coherence of
direct sound from a located source versus diffuse, inco-
herent reverberation. The two input signals are used to
classify the dominant source in each time-frequency el-
ement, or cell, and thereby generate the mask. The sec-
ond and the third method (PrecMask-Alinaghi) have
potential to deal with early reflections and we also in-
vestigate their concatenation. The formulation of these
methods is now described.

2.1. Spectral subtraction

In an enclosed acoustical environment, such as a
room, studio, theatre, or transport station, the im-
pulse response from source to receiver typically con-
tains a pulse for direct sound, then multiple pulses for
early reflections from the walls, floor, and other sur-
faces followed by reverberation, a dense congregation
of late reflections from all directions. For enhancement,
the reverberation can be modelled as an uncorrelated
noise process, whose energy is subtracted from that
of the corrupted speech. Traditionally (Boll, 1979),
negative values are replaced by zero to ensure all en-
ergies are non-negative, and the noise spectrum is es-
timated during non-speech activity; this is unsuitable
for reverberation which spills into the silences and is
time-varying with the source signal.
The spectral-subtraction implementation we uti-

lised (Wu, Wang, 2006) either attenuates or zeroes
each time-frequency cell according to the criterion
which we express in general form as:

|X(t, ω)|p ≷ gh(t) ∗
∣∣∣X̃(t, ω)

∣∣∣p , (2)
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where exponent p = 2, g denotes a gain applied to the
reverberation, here the squared magnitude of the spec-

trogram elements constitute the input
∣∣∣X̃(t, ω)

∣∣∣2 =

|X(t, ω)|2, and h(t) is a causal low-pass filter that
smoothes the signal energy in each frequency bin:

h(t) =
t− τ + αS

α2
S

exp

(
− (t− τ + αS)

2

2α2
S

)
(3)

where the reverberation lag τ and time constant αS

give the form of a Rayleigh pdf. The output is produced

|S(t, ω)|p=

{
|X(t, ω)|p − gh(t)∗

∣∣∣X̃(t, ω)
∣∣∣p if (2),

0 otherwise.
(4)

A speech signal enhanced using spectral subtraction is
shown in Fig. 2a.

2.2. Precedence mask

In human audition, the precedence effect is a tem-
poral masking mechanism that plays a role in source
localisation and signal enhancement in a reverber-
ant environment. Localisation is performed by em-
phasising the first wavefront (assumed to be direct

Fig. 2. Spectrogram of the Polish word “siedem” (IPA: C E dE m) with added reverberation (room D) after enhancement
using: a) SpecSub and b) PrecMask, c) Alinaghi, d) PrecMask+Alinaghi. See Fig. 1 for clean speech and reverberant input

to enhancement.

sound) and attenuating signals from different direc-
tions (Blauert, 1997).
In an auditory implementation (Hummersone et

al., 2010), the magnitude output is as in Eq. (4) with
p = 1, time constant αP , h(t) = At exp(−t/αP ) with

normalisation factor A, and
∣∣∣X̃(t, ω)

∣∣∣ being the Hilbert
envelope of the Gammatone filterbank signals. The en-
tire procedure is applied to each channel (left and right
ear) separately. The enhanced left and right ear sig-
nals were used to compute the inter-aural correlation
which was thresholded to form a mask. Here, we di-
rectly obtained the mask by applying criterion (2) with

these definitions of p and h(t), and
∣∣∣X̃(t, ω)

∣∣∣ being the
Hilbert envelope of the frequency bin X(t, ω).
The STFT was used with a Hann window, frame

size of 512 samples at 16 kHz (32 ms), and 50%
overlap between frames, which slightly differs from the
values for the binaural cues and the BSS method. One
important feature of the precedence effect algorithm is
its computational simplicity which translates into very
short processing time needed in real-time applications.
Figure 2b shows a spectrogram of speech enhanced
using the precedence mask. A binary version of
the estimated precedence mask was also considered,
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Fig. 3. Ground truth (a) from comparison of the direct and reverberant part of a signal and a binary mask (b) applied to
reverberant speech (Room D), Polish word “siedem” (IPA: C E dE m). See Fig. 1 for clean speech and reverberant input

to enhancement.

as illustrated in Fig. 3. Also shown is a mask based
on the corresponding ground truth DRR, whose di-
rect and reverberant signals were formed by convolving
the source signal with the early and late parts of the
RIR respectively (break point placed 5 ms after arrival
of the first impulse). Time-frequency cells are marked
positive where the direct signal energy is higher then
reverberant energy.
We modified parameters g and αP of the prece-

dence model to achieve an optimal performance on
the target system (Polish ASR) during the prelimi-
nary tests. It was found that fixed values other than
those suggested by Hummersone (Hummersone et al.,
2010) can provide better results. In our optimisation
both parameters were increased for the 16 kHz signals,
gain factor by 6% to g = 0.825, and the time constant
by 100% to αP = 12.5.

2.3. Binaural cues and blind source separation

Reverberation can be treated as an additional inter-
fering source in the source separation method. We in-
vestigate a stereo source separation method (Alinaghi
et al., 2011). This method combines two different ap-
proaches, based on computational auditory scene anal-
ysis (CASA) and blind source separation (BSS), within
a recursive optimisation procedure. Both of them per-
form the automatic assignment of time-frequency units
of the speech mixture spectrogram to their correspond-
ing sources and rely on the assumption of speech’s
sparseness in the STFT domain. The method is de-
signed to work on signals from two microphones but
can separate even more sources for application in un-
determined cases. In our case, the input signals are due
to a single speech source located in front of sensors and
reverberation from binaural RIRs (BRIRs), which is
modelled as an additional garbage source. Processing

takes place in the time-frequency domain. STFT with
a frame size of 1024 samples (64 ms) and 25% overlap
is used to transform the 16 kHz signals.
The human auditory system, as well as CASA al-

gorithms based on it, depends on interaural time and
level differences (ITD and ILD) as primary cues to es-
timate the source location (Hartmann, 1999). These
are binaural cues, and for the signal from the left
XL(ω, t) and right XR(ω, t) channel in time-frequency
domain they are described as

XL(ω, t)

XR(ω, t)
= 10α(ω,t)/20ejφ(ω,t), (5)

where ω denotes frequency, t is time, and α(ω, t) is
time-and-frequency dependent ILD and φ(ω, t) time-
and-frequency dependent ITD. In the preliminary test,
we found that grouping units across time and fre-
quency (i.e., assuming frequency independent binaural
cues) gave better results, therefore we used it in the
following experiments.
The BSS method models the mixing of speech into

tiles, each dominated by a single source, by 2 dimen-
sional (number of sensors) vectors hj = [hjL, hjR]

T:

X(ω, t) =
∑

N∈h=1

hjSj(ω, t) ≈ hjSj(ω, t), (6)

where X(ω, t) = [XL(ω, t), XR(ω, t)]
T. In this method,

the time alignment of recovered sources in each fre-
quency bin is not preserved. This ambiguity is resolved
during a first iteration of the procedure, using only bin-
aural cues.
We modelled all parameters (ILT, ITD, hj) as a

Gaussian mixture for every time-frequency unit. The
two-step Expectation-Maximization algorithm is used
to find an optimal solution. In the expectation step (E-
step) variance and mean of the mixture are estimated
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and log likelihood of the observations is maximised in
the second stage (M-stage).
In our experiments, we investigated the separate

effects of the three methods, hereafter termed Spec-
Sub, PrecMask, and Alinaghi respectively, and the
combination of the precedence mask with the Ali-
naghi binaural-BSS method, PrecMask+Alinaghi, to
see whether pre-screening of the input offered any ad-
vantage in the exploitation of spatial cues.

3. Experimental procedure

Figure 4 shows an overview of the speech enhance-
ment front ends that were tested. To obtain results
relevant for a wide range of acoustical conditions, bin-
aural room impulse responses from five listening en-
vironments were utilised. The performance of each
method was evaluated in four ways: using two sig-
nal measures, segmental signal-to-reverberation ratio
(SegSRR) and signal-to-distortion ratio (SDR), and
two recognition rates, on English connected digits and
Polish isolated words. Details of those parts of the ex-
perimental method are now described in turn.

a) b)

c) d)

Fig. 4. Block schema of the speech enhancement methods
applied prior to ASR.

3.1. Reverberant environment reproduction

To create reverberant datasets from clean speech
recordings we convolved them with BRIRs from
(Hummersone et al., 2010). This method provides an
imitation of a reverberant environment closer to real-
ity than room simulation based on physical models.
Table 1 shows the acoustic parameters of each room
sorted by reverberation time, which ranges from that of
a small office to what could be a lecture hall. Room X
is an anechoic situation which comprises filtering in-
troduced by sound capturing equipment only, and it
serves as the reference signal. In our experiments, we
used the zero azimuth BRIRs, such that the source was
situated directly in front of the microphones. It can be
assumed that at least for source separation methods
this is the worst case scenario.

Table 1. Room acoustical properties
(Hummersone et al., 2010.)

Room ITDG [ms] DRR [dB] RT60 [s]

A 8.72 6.09 0.32

B 9.66 5.31 0.47

C 11.9 8.82 0.68

D 21.6 6.12 0.89

3.2. Signal-related measurements

Two signal-related measures were used to evalu-
ate the algorithms’ performance. In both cases, the
reference signal s(n) was the clean speech recording
convolved with the anechoic BRIR (room X). The
analysed signal s̃(n) denotes the reverberant or en-
hanced speech. Before processing the input signals,
they were aligned and normalised. The segmental
signal-to-reverberation ratio (SegSRR) is designed to
provide a summary statistic of the relative proportions
of clean signal energy to that of the reverberant. It is
based on (Krishnamoorthy, Prasanna, 2009) and
is calculated for each of the 512-sample frames Fi, and
averaged over all frames

SegSRR(Fi) = 10 log10

∑
n∈Fi

s(n)2∑
n∈Fi

(s(n)− s̃(n))2
. (7)

The SegSRR value provides information about the
amount of reverberant energy in a signal, suitable for
quantitative comparison.
To estimate distortions, the modified signal-to-

distortion ratio (SDR) method was used, as presented
in (Vincent et al., 2006). Its goal is to exclude all en-
ergy components that could have been introduced to
s̃(n) by filtration of the reference signal s(n) (e.g. by
the RIR). By applying the 512-tap FIRWiener filter to
ŝ(n), the signal swien(n) that best approximates s(n)
is obtained, and the SDR calculated:

SDR = 10 log10
Var(swien(n))

Var(swien(n)− s̃(n))
. (8)

To avoid the results being biased by the character
of the speech signals used, a test was conducted on
20 varied recordings, sampled 16 kHz from both En-
glish (Garofolo et al., 1993) and Polish corpora
(Grocholewski, 1998). Results are presented for the
rooms A, B, C, and D.

3.3. HTK based test

The Aurora digit recognition task (Pearce,
Hirsch, 2000) has been used to evaluate dereverbera-
tion methods on English speech. The HTK software
(version 3.4.1) (Young et al., 2006) was employed
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as a recognition tool. Each digit from the TIDigits
database (Leonard, Doddington, 1993) is modelled
as a whole word hidden Markov model (HMM) with 16
states and 3 gaussians per state. Feature vectors con-
sist of 12 cepstral coefficients and the logarithm frame
energy, with corresponding delta and acceleration val-
ues, a total of 39.
The test, primarily constructed to compare noise

removal algorithms, consists of recordings from the
TIDigits database. All recordings are sampled at 8 kHz
and shaped for teletransmission with the G.712 char-
acteristics. There are 8440 utterances spoken by 55 fe-
male and 55 male speakers used in the ASR training.
A further 1001 utterances spoken by a distinct set of 52
female and 52 male speakers are employed for testing.
The system was trained on recordings convolved

with X (anechoic) BRIR and processed by an evalu-
ated method. It provides matched training and test
conditions in terms of a common reference signal.

3.4. Polish ASR test

Our target system was the ASR system SAR-
MATA, designed at the AGH in Krakow (Ziółko et
al., 2011), dedicated to the Polish language, incor-
porating acclaimed solutions invented for other lan-
guages, as well as novel methods, tailor-made for mod-
elling Polish speech. Being under development, it is
able to recognize precisely enunciated isolated utter-
ances and is employed in commercial applications.
There are many differences between Polish and En-

glish speech which create the need for some differences
in the methods (Ziółko et al., 2008). The Polish lan-
guage is strongly based on Latin. It has a complex
grammar, and the exact meaning of the words gener-
ally depends on morphology. A single word may have
up to several hundreds of derived forms topically cor-
related. In English, the position in the sentence is more
important. Many combinations of different words may
have a similar pronunciation, which is rare in Polish.
Moreover, Polish speech contains a lot more plosive
(e.g. [p], [k]) and fricative (e.g. [s], [z]) consonants and
very high-frequency phones not existing in English,
which may sound to non-Polish speakers almost like
rustle or hum.
Speech parameterisation in SARMATA is based on

discrete wavelet transforms, and multithreading is in-
troduced to improve time efficiency – a key factor in
real-time performance of a large vocabulary recognizer
(LVR). Mayer wavelet decomposition is used with the
designed perceptual tree to provide a psychoacoustic
frequency characteristic. Parameter vectors are classi-
fied using a modified k-NN algorithm. The search for
the closest recognition hypothesis is performed by the
Viterbi algorithm with the n-gram model applied to
discriminate unlikely connections between words.
Word recognition rate (WRR) has been used

to evaluate the performance of the ASR on
enhanced speech. Polish language recordings are
16 kHz isolated words from the CORPORA database
(Grocholewski, 1998), containing mainly first
names. In the training, 1830 words spoken by five
speakers and convolved with X (anechoic) BRIR were
used. We used the recordings of one other speaker in-
cluding 217 words in the test.

4. Results

In the first stage of our experiment, we focused
on the optimisation of the precedence effect method.
The outcome is presented in Subsec. 4.1. The results of
the comparison between the optimised precedence ef-
fect (PrecMask) and other methods are shown in Sub-
sec. 4.2. The tables at the end of the section summarise
the presented results.

4.1. Precedence effect optimization

The precedence effect method was tuned to opti-
mize results of the Polish ASR. Starting from Hum-
mersone’s optimal parameters, different values of gain
g and time αp were tested on standard and binary
precedence masks. In the optimal setup (PrecMask),
the binary mask was applied and gain g was increased
by 7% and time αP by 50 %.
The increase of parameter g improved performance

not only in environments with the highest DRR (room
A and C), but also in room B with the lowest value.
The longer time constant αP clearly influenced effec-
tiveness in room D (with the longest reverberation
time). However, further increase of these parameters
gave no overall improvement indicating the limitation
of the method.
The binary mask invariably gave better recognition

results in all tested environments in every test. Despite
the fact that only Polish ASR results were taken into
consideration when adjusting the parameters, improve-
ment was present in all evaluation methods.
For all the methods except Polish ASR, there is

apparent deterioration for all variations of the prece-
dence effect for room B. The results pattern for the
English language test is more similar to signal-related
measurements than the Polish test, which indicates the
importance of differences in the design.
In comparison to Hummersone’s precedence ef-

fect method, PrecMask gave 0.5 dB improvement in
SegSRR, 4.7 dB in SDR, 10.2% higher recognition rate
on Aurora test and, 9.5% on Polish ASR.

4.2. Comparison between the different
dereverberation methods

Three different dereverberation methods: spectral
subtraction (SpecSub), the precedence effect (Prec-
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Mask), and the separation method of binaural cues and
blind source separation (Alinaghi), as well as a hybrid
method consisting of PrecMask and Alinaghi (Prec-
Mask+Alinaghi) were compared in the final test. Sum-
marised results are presented in tables: for SegSRR
(Table 2), SDR (Table 3), HTK based tests (Table 4),
and Polish recognizer (Table 5).
Tables 2 and 3 show the signal related measure-

ments of the algorithms’ performance. For SegSRR
SpecSub result is distinctly the best, and Alinaghi
have the worst score, which reflects the fact that Spec-
Sub is designed to cope with reverberation and back-
ground noise, while Alinaghi mainly attenuates inter-
fering sources. In terms of SDR, the best result was ob-
tained using Alinaghi, almost recovering the result of
reverberant speech, which means that the distortions
introduced by this method are minimal. The prece-
dence effect PrecMask was the second best, but the
hybrid method PrecMask+Alinaghi, scored even lower
than SpecSub.

Table 2. SegSRR (dB) for all methods. The best scores in
each acoustical condition and overall (mean across rooms
A, B, C, and D) are shown in bold. The anechoic case

(room X) is given for reference.

Method
Room

mean
X A B C D

None ∞ 0.56 −1.48 −0.63 −0.69 −0.56

SpecSub 9.04 2.38 1.18 1.65 2.06 1.82

PrecMask 8.48 0.67 −0.97 −0.04 −0.52 −0.22

Alinaghi 13.97 0.89 −1.16 −0.21 0.23 −0.07

PrecMask
7.65 0.82 −0.77 0.25 0.19 0.13+Alinaghi

Table 3. SDR (dB) for all methods. The best scores in each
acoustical condition and overall (mean across rooms A, B,
C, and D) are shown in bold. The anechoic case (room X)

is given for reference.

Method
Room

mean
X A B C D

None ∞ 13.30 7.24 11.30 5.21 –

SpecSub 10.60 9.09 7.19 8.85 7.16 8.58

PrecMask 11.99 10.61 7.02 9.77 5.42 8.96

Alinaghi 17.65 12.68 7.34 11.11 6.53 11.06

PrecMask
11.15 9.41 6.62 8.74 5.97 8.38+Alinaghi

Table 4 shows the recognition ratio on the HTK
recognizer. Again, the shape of the chart is similar to
the SDR results, but the ranking of the methods is dif-
ferent. All methods score very similarly except for Ali-
naghi with a recognition even worse than the reverber-
ant speech. The leading method PrecMask+Alinaghi

provides an overall 20% increase in recognition over
reverberant speech.

Table 4. SRR (%) on English connected digits. The best
scores in each acoustical condition and overall (mean across
rooms A, B, C, and D) are shown in bold. The anechoic

case (room X) is given for reference.

Method
Room

mean
X A B C D

None 97.2 79.2 47.2 68.9 28.7 64.2

SpecSub 96.7 85.8 72.2 87.4 67.7 82.0

PrecMask 96.0 87.3 76.2 89.7 58.0 81.4

Alinaghi 97.1 63.3 39.9 76.6 39.6 63.3

PrecMask
95.2 87.4 78.0 90.6 74.9 85.2+Alinaghi

On the Polish recognizer (Table 5), SpecSub has
an average recognition of 6.5% higher than reverberant
speech, but in small rooms (X and A) its performance
is worse than the reverberant speech. PrecMask gives
better results, a further 2.7% increase over the base-
line, scoring under SpecSub only in room D, with the
highest RT60. The source separation method Alinaghi
gives a 10.7% improvement in recognition, and by ap-
plying preprocessing by the precedence effect (Prec-
Mask+Alinaghi) a further 3.3% growth is observed,
especially in rooms C and D.

Table 5. WRR (%) on Polish isolated words. The best
scores in each acoustical condition and overall (mean across
rooms A, B, C, and D) are shown in bold. The anechoic

case (room X) is given for reference.

Method
Room

mean
X A B C D

None 82.5 65.4 63.2 44.9 41.9 59.6

SpecSub 67.3 63.6 73.3 64.5 61.8 66.1

PrecMask 78.3 74.2 77.0 68.2 46.1 68.8

Bina+BSS 78.8 74.2 75.2 64.5 59.0 70.3

PrecMask
78.8 72.4 76.1 72.8 68.2 73.6+Alinaghi

The hybrid method PrecMask+Alinaghi improves
ASR by 14%, from 59.6% on reverberant speech to
73.6%. The most notable enhancement, at the rate
of 26.3%, is achieved for room D. This combination
proved to be better than other methods in high RT60

rooms C (5% better than the next method), and
D (9%).

5. Conclusions

This report presents our work on testing and de-
veloping dereverberation techniques suitable for Pol-
ish ASR. It has been shown that the Polish recog-
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nizer’s performance under reverberant conditions dif-
fers from that observed for the HTK based recognizer.
Especially, in the room with the lowest DRR, the Pol-
ish ASR performance is much better than when us-
ing the English solution. Moreover, we identified that
an alternative approach is needed in the case of both
preparing training datasets and speech enhancement.
The distortion of signal introduced by dereverberation
methods (especially SpecSub) is substantial for Pol-
ish ASR and a bypass of the enhancement method
for clean signal should be introduced in any working
solution. Finally, using our hybrid method consisting
of the precedence effect and source separation algo-
rithms (PrecMask+Alinaghi) we acquired a significant
improvement in ASR, including most challenging cases
with severe reverberation.
By testing with different evaluation methods, we

learned that neither of the signal related measure-
ments, by themselves, provides information about how
the method would perform in ASR. Though, in the
case of comparing the variation of one method (Prec-
Mask), the upswing in the signal related metrics also
appeared in the ASR based test result. It leads to the
conclusion that, in the evaluation of algorithms tar-
geting ASR, different testing methods should be used,
but only test on the target platform guarantees desired
enhancement.
Adding a background noise attenuation method to

the developed dereverberation system is the next step
to produce a complete speech enhancement front end
to the Polish ASR. Further research can be done by
incorporating the precedence effect inside the Alinaghi
recursive method to improve source separation and
dereverberation.
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