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Radiation of sound waves from a semi-infinite cylindrical duct with perforated end whose outer wall
is coated with acoustically absorbent material is investigated by using the Wiener-Hopf technique in
conjunction with the mode matching technique. A semi-infinite duct with a perforated screen can be used
as a model for many engineering applications, such as noise reduction in exhausts of automobile engines,
in modern aircraft jet, and turbofan engines. In particular, we aim to find the effects of outer lining and
perforated end to sound pressure level for the underlying problem by using the standard Wiener-Hopf
and mode matching techniques. We also present some numerical illustrations by determining the sound
pressure level for different parameters such as soft and rigid outer surface, with and without perforated
end, etc. Such investigations are useful in the reduction of noise effects generated through variety of
sources.

Keywords: Wiener-Hopf; mode matching; perforated end; duct; radiation.

1. Introduction

The radiation of sound waves along duct systems
is an important topic in radiation theory and rele-
vant to many applications including reduction of noise
in exhaust systems, in modern aircraft jet, and tur-
bofan engines, etc. For this reason, a rigorous analy-
sis of such engineering problems is required. Levine
and Schwinger (1948) were the first who consid-
ered the problem of sound radiation from a semi-
infinite circular unflanged duct of infinitely thin hard
walls. An analytical solution was obtained based on the
Wiener-Hopf technique (Noble, 1958). The Wiener-
Hopf technique was applied later in papers by Wein-
stein (1969), Snakowska et al. (2017), Tiryakioglu
and Demir (2019), etc. The reduction of noise in duct
systems is generally achieved by silencers. The most
well known of such silencers are acoustically absorbent
linings, which have been widely analysed in literature
(Rawlins, 1978; Buyukaksoy, Polat, 1998; Rawl-
ins, 2007; Rienstra, 2007; Tiryakioglu, Demir,
2019). Rawlins (1978), who considered the radiation
of sound from an unflanged rigid cylindrical duct with
an acoustically absorbing internal surface, proved the

effectiveness of absorbing lining. Another method of
reducing noise is to create additional sound absorp-
tion by using the perforated structures. Perforated
panel, or plate, are commonly employed to reduce
sound pressure levels across a broad range of appli-
cations including industrial installations and propul-
sion devices (Yang et al., 2015; Wang et al., 2017).
The phenomenon of perforated screens has been in-
vestigated by the authors (Nilsson, Brander, 1980;
Tiryakioglu, 2019). This consideration is important
because perforated screens provide some facilities for
analysing of sound radiation.

The aim of this study is to investigate the effects of
outer duct lining and perforated end on the radiation
of sound. The presence of both outer lining and perfo-
rated end makes the problem more complicated when it
is compared with the rigid outer duct and open ended
case, and necessitates to adopt a formulation different
to the classical method employed in (Rawlins, 1978).
The used method is essentially the same as described
in (Buyukaksoy, Polat, 1998) and consists of ex-
pressing the total field in the duct in terms of normal
waveguide modes and using the Fourier Transform else-
where. In this study, an analytical solution is obtained
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based on the Wiener-Hopf technique. By applying di-
rect Fourier transform, the problem is reduced into the
solution of a Wiener-Hopf equation. Then, numerical
solution is obtained for various values of the problem
parameters such as impedance, perforated end, etc.
The effect of these parameters on the radiation phe-
nomenon is presented graphically by using the Matlab
programming.

Validation of the numerical results of the current
problem is achieved by different problems in the liter-
ature and the results are found to be in good agree-
ment with the numerical results of two different studies
(Tiryakioglu, Demir, 2019; Tiryakioglu, 2019).

2. Problem statement

This geometry consists of a semi-infinite duct with
perforated end. The duct walls are assumed to be in-
finitely thin and they occupy the regions {ρ > a, z ∈
(−∞,∞)}, {ρ < a, z ∈ (l,∞)}, and {ρ < a, z ∈ (−∞, l)}
(see Fig. 1). The inner surface of cylinder is assumed
to be rigid while its outer surface is assumed to be
lined with acoustically absorbent material. The liner
impedance is characterised by β. From the symme-
try of the geometry of the problem and of the inci-
dent wave, the total field is taken independent of θ ev-
erywhere in the circular cylindrical coordinate system
(ρ, θ, z). We shall therefore introduce a scalar potential
u(ρ, z) which defines the acoustic pressure and velocity
by p = iωρ0u and v = gradu, respectively, where ρ0 is
the density of undisturbed medium. The time depen-
dence is assumed to be e−iωt and suppressed through
the paper, where ω is the angular frequency.

Fig. 1. Geometry of the problem.

Consider a time harmonic incident field propagat-
ing along a cylindrical waveguide with perforated end,
as shown in Fig. 1, given by

ui(z) = eikz. (1)

Here k = ω/c denotes the wave number of the medium
and c is the speed of sound. For the sake of analytical
convenience, the total field (uT ) will be expressed as
follows

uT (ρ, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1(ρ, z),
u2(ρ, z),
u3(ρ, z) + ui(z),

ρ > a, z ∈ (−∞,∞),
ρ < a, z > l,
ρ < a, z < l,

(2)

where u1(ρ, z), u2(ρ, z), and u3(ρ, z) denote the un-
known fields in their relevant regions. The field terms
satisfy the below boundary conditions and continuity
relations. The outer part is lined with an acoustically
absorbent material having a surface impedance β, this
gives

(ikβ + ∂

∂ρ
)u1(a+, z) = 0, z < l. (3)

The boundary condition on the rigid surface can be
given in terms of the potential function u3(ρ, z)

∂

∂ρ
u3(a−, z) = 0, z < l. (4)

Consider now the continuity conditions related to the
total field at ρ = a, z > l which are given by

∂

∂ρ
u1(a+, z) = ∂

∂ρ
u2(a−, z), z > l, (5)

u1(a+, z) = u2(a−, z), z > l. (6)

From the continuity at the point z = l, ρ < a, we get

∂

∂z
u2(ρ, l) =

∂

∂z
u3(ρ, l) +

∂

∂z
ui(l), ρ < a, (7)

u2(ρ, l) + i
ζp

k

∂

∂z
u2(ρ, l) = u3(ρ, l) + ui(l), ρ < a, (8)

ζp = [0.006 − ik(tw + 0.75dh)]/σ, (9)

where ζp is the specific impedance, describing the
acoustic properties of the perforated screen. For sta-
tionary media, the empirical formula of the specific
acoustic impedance ζp is given by Sullivan and
Crocker (1978). Here, tw is the screen thickness, dh,
the perforate hole diameter and σ, the porosity. Fur-
thermore, to obtain a unique solution the following
edge conditions at the mouth ρ = a, z = l of the cylinder
should be taken into account (Rawlins, 1978):

∂

∂ρ
u1 = O(z−1/2), z → l. (10)

3. Derivation and solution of the Wiener-Hopf
equation

In the region ρ > a, z ∈ (−∞,∞) the unknown field
u1(ρ, z) satisfies the Helmholtz equation

[1
ρ

∂

∂ρ
(ρ ∂
∂ρ

) + ∂2

∂z2
+ k2]u1(ρ, z) = 0 (11)

whose Fourier transform with respect to z yields

[1
ρ

∂

∂ρ
(ρ ∂
∂ρ

) +K2(α)]F (ρ,α) = 0, (12)

where F (ρ,α) stands for the Fourier transform of
u1(ρ, z). Here, K(α) =

√
k2 − α2 is the square
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root function defined in the complex α-plane
(Tiryakioglu, Demir, 2019; Tiryakioglu, 2019)

F (ρ,α) =
∞

∫
−∞

u1(ρ, z)eiαz dz

= eiαl (F −(ρ,α) + F +(ρ,α)) (13)

with

F −(ρ,α) =
l

∫
−∞

u1(ρ, z)eiα(z−l) dz,

F +(ρ,α) =
∞

∫
l

u1(ρ, z)eiα(z−l) dz,

(14)

here F +(ρ,α) and F −(ρ,α) are analytic functions on
upper region Imα > Im(−k) and lower region Imα <
Imk of the complex α-plane, respectively. The general
solution of (12) yields

eiαl (F −(ρ,α) + F +(ρ,α)) = A(α)H(1)0 (Kρ), (15)

where A(α) is a spectral coefficient to be determined
and H

(1)
0 is the Hankel function of the first type

(Abramowitz, Stegun, 1964). Consider now the
Fourier transform of (3), namely

eiαl (ikβF −(a,α) + ∂

∂ρ
F −(a,α)) = 0. (16)

By taking the derivative of Eq. (15) with respect to ρ
and using the relation given in (16), one can write

eiαlW +(α) = A(α)H(α), (17)

where

W +(α) = ikβF +(a,α) + ∂

∂ρ
F +(a,α), (18)

H(α) = ikβH(1)0 (Ka) −KH(1)1 (Ka). (19)

Substituting (17) into (15) yields

F −(ρ,α) + F +(ρ,α) =W +(α)H
(1)
0 (Kρ)
H(α) . (20)

In the region ρ < a, z > l. The unknown field u2(ρ, z)
satisfies the Helmholtz equation

[1
ρ

∂

∂ρ
(ρ ∂
∂ρ

) + ∂2

∂z2
+ k2]u2(ρ, z) = 0 (21)

whose Fourier transform is

[1
ρ

∂

∂ρ
(ρ ∂
∂ρ

) +K2(α)]G+(ρ,α) = f(ρ)−iαg(ρ), (22)

where G+(ρ,α) is an analytic function in the upper
α-plane, defined by

G+(ρ,α) =
∞

∫
l

u2(ρ, z)eiα(z−l) dz, (23)

while f(ρ) and g(ρ) stand for

f(ρ) = ∂

∂z
u2(ρ, l), g(ρ) = u2(ρ, l). (24)

A particular solution of (22) can be expressed in terms
of the Green’s function related to this differential equa-
tion, which satisfies

[1
ρ

∂

∂ρ
(ρ ∂
∂ρ

) +K2(α)] G̃(ρ, ρ′, α) = 0,

ρ ≠ ρ′, ρ, ρ′ ∈ (0, a)
(25)

with the condition that G̃(ρ, ρ′, α) must be limited at
ρ = 0 as well as what follows:

G̃ (ρ′ + 0, ρ′, α) − G̃ (ρ′ − 0, ρ′, α) = 0,

∂

∂ρ
G̃ (ρ′ + 0, ρ′, α) − ∂

∂ρ
G̃ (ρ′ − 0, ρ′, α) = 1

ρ′
,

(ikβ + ∂

∂ρ
) G̃ (a, ρ′, α) = 0.

(26)

The solution is

G̃ (ρ, ρ′, α) = 1

J(α)Q (ρ, ρ′, α) (27)

with

Q(ρ, ρ′, α)= π
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

J0(Kρ)[J(α)Y0(Kρ′)−Y (α)J0(Kρ′)],
0 ≤ ρ ≤ ρ′,

J0(Kρ′)[J(α)Y0(Kρ)−Y (α)J0(Kρ)],
ρ′ ≤ ρ ≤ a,

(28)
where

J(α) = ikβJ0(Ka) −KJ1(Ka), (29)

Y (α) = ikβY0(Ka) −KY1(Ka). (30)

Here Jm and Ym are the well known Bessel and Neu-
mann functions of the order m. The solution of (22)
can now be written as

G+(ρ,α) = 1

J(α)

⎡⎢⎢⎢⎢⎣
B(α)J0(Kρ)

+
a

∫
0

(f(t) − iαg(t))Q(t, ρ,α)tdt
⎤⎥⎥⎥⎥⎦
. (31)

Here B(α) stands for the spectral coefficient to be de-
termined. Taking into account the continuity relation
(5) and (6), one gets

B(α) =W +(α). (32)
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Inserting now (32) into (31) we get

G+(ρ,α) = 1

J(α)

⎡⎢⎢⎢⎢⎣
W +(α)J0(Kρ)

+
a

∫
0

(f(t) − iαg(t))Q(t, ρ,α)tdt
⎤⎥⎥⎥⎥⎦
. (33)

The function G+(ρ,α) is an analytic function on the
upper half plane, but the zeros of J(α) on this half of
complex α-plane violate the regularity of G+(ρ,α). So,
equating the residuals to zero at these poles, namely,
at α = αm:

ikaβJ0(γm) − γmJ1(γm) = 0, αm =
√
k2 − (γm/a)2,

Imαm ≥ Imk.
(34)

For the right hand side of (33) to be also analytic at
α = αm, we can derive

W +(αm) = a
2
J0(γm) [1 − (βka/γm)2][fm − iαmgm]

(35)
with

[fm
gm

] = 2

a2J2
0 (γm) [1 − (βka/γm)2]

⋅
a

∫
0

[f(ρ)
g(ρ)]J0 (

γm
a
ρ)ρdρ. (36)

By using the continuity relation in (6) and considering
the Eqs (20)–(33) we obtain

W +(α)
M(α) − a

2
F −(a,α) = − 1

2J(α)

a

∫
0

(f(ρ) − iαg(ρ))

⋅J0(Kρ)ρdρ, (37)

where
M(α) = πiJ(α)H(α). (38)

Owing to Eq. (36), f(ρ) and g(ρ) can be expanded
into Dini series as follows (Watson, 1944)

f(ρ) =
∞
∑
m=1

fmJ0 (
γm
a
ρ),

g(ρ) =
∞
∑
m=1

gmJ0 (
γm
a
ρ).

(39)

Performing the evaluation of the integrals at the right
hand side of (37), one obtains the following Wiener-
Hopf equation valid in the strip Im(−k) < Imα < Imk:

W +(α)
M(α) − a

2
F −(a,α) = a

2

∞
∑
m=1

J0(γm)
α2
m − α2

[fm − iαgm] .

(40)

The important step to solve the equation is to factorise
kernel function as (Mittra, Lee, 1971):

M(α) =M+(α)M−(α), (41)

where M+(α) is analytic and free of zeros in the up-
per half plane. Following the similar method used in
(Buyukaksoy, Polat, 1998; Tiryakioglu, Demir,
2019), we obtain split functions as

M+ (α) =
√
πi (ikβJ0 (ka) − kJ1(ka))a∗

⋅ exp{iaα
π

[1 −C + log (2π
ka

) + iπ
2
] − ika

2
}

⋅ exp(aK (α)
π

log(α + iK (α)
k

) + q (α))

⋅
∞
∏
m=1

(1 + α

αm
) exp( iαa

mπ
) , (42)

where
a∗ = (ikβH(1)0 (ka) − kH(1)1 (ka))

here C is the Euler’s constant given by C = 0.57721...
and q(α) stands for

q(α) = 1

π
P

∞

∫
0

[1 − 2

πx

x2 − (βka)2
b∗

]

⋅ log
⎛
⎜
⎝
1 + αa√

(ka)2 − x2

⎞
⎟
⎠
dx (43)

where

b∗ = (iβkaJ0(x) − xJ1(x))2 + (iβkaY0(x) − xY1(x))2

and
M−(α) =M+(−α). (44)

In (43), P denotes the Cauchy principle value at the
singularities x = ka. Note that when we let ∣α∣ →∞ in
their respective regions of regularity, we have

M±(α) = (±α1/2) . (45)

The solution of (40) can easily be obtained through
the classical Wiener-Hopf procedure. The result is

W +(α)
M+(α)

= a
2

∞
∑
m=1

J0(γm) [fm + iαmgm]M+(αm)
2αm(α + αm) . (46)

4. Determination of the expansion coefficients

Consider now the waveguide region ρ < a, z < l
where the total field can be expressed in terms of Dini
series as

u3(ρ, z) =
∞
∑
n=0

ane
−iσnzJ0 (

jn
a
ρ) (47)
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with

J1(jn) = 0, σn =
√
k2 − (jn/a)2, σ0 = k. (48)

Consider now the continuity relation in (7), (8) and
using (24), namely,

f(ρ) = ∂

∂z
u2(ρ, l) =

∂

∂z
u3(ρ, l) +

∂

∂z
ui(l), (49)

g(ρ) = u2(ρ, l) = u3(ρ, l) + ui(l) − i
ζp

k

∂

∂z
u2(ρ, l). (50)

Inserting the series expansions of f(ρ) and g(ρ) given
in (39) in (49) and (50), respectively, and using (47),
we get

∞
∑
m=1

fmJ0 (
γm
a
ρ) = −i

∞
∑
n=0

σnane
−iσnlJ0 (

jn
a
ρ) + ikeikl,

(51)
∞
∑
m=1

(gm + i ζp
k
fm)J0(

γm
a
ρ)=

∞
∑
n=1

ane
−iσnlJ0(

jn
a
ρ) + eikl.

(52)

Multiplying both sides of (51) and (52 by ρJ0 ( jsa ρ)
and integrating from 0 to a, we obtain

∞
∑
m=1

J0 (γm)
γ2m

[fm (1 − ζp) + ikgm] = e
ikl

aβ
, n = 0, (53)

2kaβ

σnJ0(jn)
∞
∑
m=1

J0(γm)
γ2m − j2n

[fm (1−σnζp
k

) + iσngm]=0,

n = 1,2, ...

(54)

By substituting α = α1, α2, α3, ... in (46) and using (35)
one can obtain

J0(γr) [1 − (βka/γr)2] [fr − iαrgr]
M+(αr)

=
∞
∑
m=1

J0(γm) [fm + iαmgm]M+(αm)
2αm(αr + αm) . (55)

Formulas (53), (54), and (55) are the required linear
systems of algebraic equations which permit us to de-
termine fm and gm.

5. Analysis of the field

In the present paper we limit ourselves to the ρ >
a for radiated field. The field ρ < a was analysed by
Snakowska (1992). The radiated field in the region
ρ > a can be obtained by taking the inverse Fourier
transform of F (ρ,α). By using (15) and (17), we write

u1(ρ, z) =
1

2π
∫
L

W +(α)H
(1)
0 (Kρ)
H(α) e−iα(z−l) dα, (56)

where L is a straight line parallel to the real α-axis,
lying in the strip Im(−k) < Imα < Imk. Utilising the
asymptotic expansion of H(1)0 (Kρ) as kρ→∞

H
(1)
0 (Kρ) =

√
2

πKρ
eiKρ−iπ/4. (57)

Equation (56) can be evaluated through the saddle
point technique (Snakowska, Idczak, 2006)

u1(ρ, z) ∼
k

iπ

W + (−k cos θ)
H(−k cos θ)

eikr

kr
. (58)

Here r and θ are the spherical coordinates defined by

ρ = r sin θ, z − l = r cos θ. (59)

6. Results

In this section, the numerical results based on
the mathematical formulation of the proposed study
are presented. All graphics are obtained by applying
the Matlab programming. Graphics are produced for
Sound Pressure Level (SPL), defined by

SPL = 20 log10 ∣
p

2 ⋅ 10−5 ∣,

where p is the amplitude of the acoustic pressure of
the sound wave, with the observation angle θ chan-
ging from 0 to π. The far field values are plotted at
a distance 46 m away from the duct edge (Demir,
Rienstra, 2010). Some parameter values remain un-
changed in all examples. They are given below:

density of un. med.
speed of sound
far radius
duct radius
duct extension
screen thickness
hole diameter
porosity

ρo
c
r
a
l

tw
dh
σ

= 1.255 kg/m3
,

= 340.17 m/s,
= 46 m,
= 0.1 m,
= 0.1 m,
= 0.00081 m,
= 0.0249 m,
= 0.037.

The surface impedance β−1 determines the ability
of a surface to guide and support the surface waves.
β−1 = β1+iβ2, where β1 and β2 correspond to the resis-
tace and reactance, respectively. The surface is lossless
when the real part of the lining is zero and the sur-
face waves can propagate on it without attenuation.
The surface is lossy and surface wave is attenuated
when real part is greater than zero. The imaginary
part of the lining can be positive or negative, then
the surface is said to be capacitive or inductive, re-
spectively (Hassan, Rawlins, 1999; Tiwana et al.,
2016). Parameter values for lining and perforated end
are taken from the study of (Sullivan, Crocker,
1978; Tiryakioglu, 2019; Peake, Abrahams, 2020).
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All the numerical results were derived by truncat-
ing the infinite series and the infinite systems of linear
algebraic equations after the first N terms. Figure 2
shows the variation of the sound pressure level against
the truncation number N . It is seen that the amplitude
of the sound pressure level becomes insensitive to the
increase of the truncation number after N = 10.

Fig. 2. Sound pressure level versus the truncation number
N with f = 2000 Hz, β−1 = 1 − 3i.

Figure 3 displays the variation of the sound pres-
sure level against the observation angle θ for values of
f = 1000 Hz and β−1 = 1 − 0.1i, β−1 = 1 − 1i. As ex-
pected, the sound pressure level decreases with outer
lining compared to the rigid surface.

Fig. 3. Sound pressure level for rigid lined duct
with f = 1000 Hz.

Figure 4 shows the variation of the sound pressure
level versus observation angle for the values of different
frequency. It is observed that the sound pressure level
increases when the value of frequency is increased for
β−1 = 1 − 3i.

Figures 5 and 6 display the variation of the sound
pressure level for the values of reactance and resistance.
As it can be seen, the sound pressure level can be re-
duced by changing the values of Imβ−1 and Reβ−1.

Fig. 4. Sound pressure level for different values of frequency
with β−1 = 1 − 3i.

Fig. 5. Sound pressure level for different values of resistance
with f = 1250 Hz.

Fig. 6. Sound pressure level for different values of reactance
with f = 1250 Hz.

Figures 7, 8, and 9 show the effect of the acous-
tic impedance of the perforated end on the sound
pressure level with different values of frequencies and
impedances. It is observed that perforated end pro-
vides additional sound absorbtion in all directions.
Also, one can see that a second and third mode is re-
vealed when the frequency is increased.

Figure 10 depicts the variation of the sound pres-
sure level versus the outer surface impedance, which is
taken purely imaginary (Demir et al., 2002), for open
perforated end duct with f = 1000 Hz. It is seen that
sound pressure level decreases with β2 > 0 compared
to the β2 < 0 case.

Figures 11 and 12 show an excellent agree-
ment between the present paper and the study of
(Tiryakioglu, Demir, 2019) and (Tiryakioglu,
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Fig. 7. Sound pressure level for open perforated end duct
with f = 1250 Hz, β−1 = 1 − 1i.

Fig. 8. Sound pressure level for open perforated end duct
with f = 2500 Hz, β−1 = 2 − 2i.

Fig. 9. Sound pressure level for open perforated end duct
with f = 4000 Hz, β−1 = 3 − 3i.

Fig. 10. Sound pressure level versus the surface impedance
with f = 1000 Hz.

Fig. 11. Comparison of the radiated field with the study of
(Tiryakioglu, Demir, 2019) with rigid inner surface.

Fig. 12. Comparison of the sound pressure level with the
study of (Tiryakioglu, 2019) with rigid outer surface.

2019), respectively, both in the radiated field and
sound pressure level. In Fig. 11, when the per-
forated end is absent, the curve corresponding to
ζp = 0 coinsidse exactly with the result obtained in
(Tiryakioglu, Demir, 2019) (Fig. 10, solid line). No-
tice that for Fig. 11,

F(θ) = k

iπ

W + (−k cos θ)
H (−k cos θ) .

In Fig. 12, when the outer surface impedance ap-
proaches zero, the curve pertaining to sound pressure
level agrees closely with the results of (Tiryakioglu,
2019) for the rigid pipe (Fig. 6, solid line).

7. Conclusions

The effect of the existence of outer lining and per-
forated end in the duct to the sound pressure level is
investigated rigorously and some numerical results are
presented. The problem is reduced to a Wiener-Hopf
equation whose solution involves infinitely many ex-
pansion coefficients satisfying an infinite system of lin-
ear algebraic equations, solved by using the classical
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factorisation and decomposition procedures. A numer-
ical solution to these systems is obtained for various
values of the problem parameters such as rigid lined
cases, open perforated end, etc.

As it is well known, the inner absorbent lining pro-
vided a few decibels of sound wave reduction. In ad-
dition, it is found that presence of the outer lining
and perforated end reduced the sound pressure level
when compared with the rigid outer surface and open
end case. In this case, by using both outer lining and
perforated end, the highest sound absorption can be
achieved.

The results are also compared with the study
of (Tiryakioglu, Demir, 2019) (without perforated
end) and (Tiryakioglu, 2019) (rigid duct). It is ob-
served that the agreement is perfect.
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