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The paper describes an innovative ultrasound imaging method called Doppler Tomography (DT),
otherwise known as Continuous Wave Ultrasonic Tomography (CWUT). Thanks to this method, it is
possible to image the tissue cross-section in vivo using a simple two-transducer ultrasonic probe and
using the Doppler effect. It should be noted that DT significantly differs from the conventional ultrasound
Doppler method of measuring blood flow velocity. The main difference is that when measuring blood flow,
we receive information with an image of the velocity distribution in a given blood vessel (Nowicki, 1995),
while DT allows us to obtain a cross-sectional image of stationary tissue structure. In the conventional
method, the probe remains stationary, while in the DT method, the probe moves and the examined tissue
remains stationary.

This paper presents a method of image reconstruction using the DT method. First, the basic principle
of correlation of generated Doppler frequencies with the location of inclusions from which they originate
is explained. Then the exact process and algorithm in this method are presented. Finally, the impact of
several key parameters on imaging quality is examined. As a result, the conclusions of the research allow
to improve the image reconstruction process using the DT method.
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1. Introduction

The Doppler tomography method allows to im-
age the cross-section of the object interior (or a tis-
sue structure) by using a moving two-transducer probe
generating and receiving a continuous ultrasonic wave.
Let us assume that the probe generates a wave with
the frequency fT . Bearing in mind the Doppler ef-
fect, we can also assume that the wave reflected from
a given inclusion in the quasi homogeneous object
cross-section is equal to fR. Seeing that the Doppler
frequency fd generated by the inclusion adds (or sub-
tracts from) the transmitted frequency, it can be stated
that fd = fT −fR. It is obvious that the frequency can-
not be negative, but for our applications, we assume
that the Doppler frequency is positive when the inclu-
sion at the time of measurement moves towards the
probe. Otherwise the frequency fd is negative.

Two types of geometry can be distinguished in
which the ultrasonic probe can move (Liang et al.,
2001; 2011). It is worth noting that in both cases, the

examined tissue as well as the moving probe are im-
mersed in distilled water. The first type is the linear ge-
ometry. In this case, the ultrasonic probe archives data
moving along the tested object (Fig. 1a). The second
type is the circular geometry, where the probe moves
around the imaged object cross-section (Fig. 1b). For
this particular case, DT can be used, among others,
to examine and reconstruct the image of cancer inclu-
sions inside the female breast. The method can also be
used to image limb bones, for example in the event of
fractures.

This paper focuses on the DT method in the circu-
lar geometry. In this case, the Doppler frequency for
a single inclusion located at a distance r and the po-
sition of the probe at an angle θ can be calculated by
the formula (1):

fd = 2 ⋅ fT ⋅ ωturn ⋅ r ⋅
cos (θ)
c

, (1)

where ωturn is the frequency of the probe rotation
around the imaged object, c is the ultrasonic wave
speed in the examined object (tissue).
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a) b)

Fig. 1. DT measuring system for: a) linear geometry and b) circular geometry.

2. Acquisition of signals

In order to simplify and facilitate understanding of
the idea of image reconstruction for the DT method in
circular geometry, we assume that the probe is station-
ary and the tested object is rotated. From the point of
view of using this method, it is obviously impractical,
but it allows easier visualisation of the basic princi-
ples of this method. As for the generated Doppler fre-
quencies, they are the same when the source is moving
(probe) and the tested object is stationary, as well as
in the opposite case.

We assume that inside the imaged object there are
three inclusions marked a, b, c, as shown in Fig. 2a. In
the first step we should determine the velocity compo-
nents for each inclusion in the direction of propagation
of the ultrasonic wave for a given angle of rotation. In
this case, for a rotation angle of 0○, the values of the lin-

a) b)

Fig. 2. Example of three inclusions within the imaged object structure together with V velocities and fd frequencies (a)
and the illustration of the basic relationships of velocity V and fd inside the imaged zone (b).

ear velocity components are: Va, Vb, and Vc (Fig. 2a).
By transforming formula (1), it can be seen that each
of these velocities are correlated with a Doppler fre-
quency. In this case, the Doppler frequencies are: fda,
fdb, fdc, respectively. Depending on the direction in
which the ultrasonic probe moves, the frequency has
a sign (+) or (−). We assume that when the scatterer
moves towards the probe we have the sign (+), other-
wise it is the sign (−).

There are two facts that are crucial when it comes
to understanding the basic idea of image reconstruc-
tion for the DT method. First of all, it should be noted
that the velocity components V increase their value as
they move away from the centre of rotation (Fig. 2b).
Secondly, on the lines in the direction of ultrasonic
wave propagation velocity values are the same (see
Fig. 2b on the example of Vc velocity). By transform-
ing formula (1) it can be concluded that the same
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principles apply to Doppler frequencies correlated with
the velocity components V . Additionally, based on the
maximum velocity in the imaging area Vmax, the maxi-
mum Doppler frequency fdmaxcan be calculated.

The next step in the image reconstruction using
the DT method is to create a Doppler frequency range
(−fdmax; +fdmax). This range is divided into bands
hereinafter referred to as Doppler bands of equal width
∆fd (Fig. 2b). For a given angle θ we can define
the sum of Doppler frequency amplitudes into each
band. When we perform this operation for each an-
gle of rotation θ we get a matrix which in rows con-
tains the sums of frequency amplitudes for individual
Doppler bands, while in the columns the angle of rota-
tion changes. This matrix is called a sinogram (Kak,
Slaney, 1988). In the geometry of parallel-radial
projections, it can be directly used to reconstruct
the cross-sectional image of the examined object by
the methods used in X-ray tomography (Opieliński,
Gudra, 2010).

The last stage of image reconstruction process is
the application of one of the algorithms used in com-

a)

b) c)

Fig. 3. Simulation of a scatterer placed on a rotating platform (a), example of the sinogram created for the moving
scatterer (b), reconstruction of the scatterer image (c).

puted tomography. In this paper, a fast algorithm
called filtered back projection (FBP) was used. It is
worth noting that this algorithm allows reconstruction
of the full image based on half of the data from the
turnover.

In order to present the image reconstruction from
simulated data, we consider the case of a rotating plat-
form on which a single scatterer was placed (Fig. 3a).
It is infinitely small and scatters the ultrasonic wave
in every direction in the same way. This inclusion is
set at a distance of 3 cm from the centre of rota-
tion and at an angle of 0○ to the probe. Other sim-
ulation parameters are: ωturn = 2 turns per second;
speed of ultrasound around the scatterer c = 1482 m/s;
fT = 4.7 MHz; number of angles θ per half turn
equals to 200; the number of Doppler bands is 125,
within a 10 cm diameter imaging area. Figure 3b shows
a sonogram in which the Doppler bands which con-
tain the Doppler frequency at a given angle of rotation
of the scatterer are marked in white. Figure 3c shows
an image reconstructed on the basis of the mentioned
sinogram.
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3. Filtered back projection algorithm

The FBP algorithm is based on the assumption
that the measurement for a single so called projection
can be treated as a two-dimensional filtering operation
in the spatial frequency domain (Kak, Slaney, 1988).
For the general case, the measurement data are contin-
uous functions, and their argument is the normalised
distance of the probe from the centre of the axis of
rotation of the imaged object. However, for the pur-
poses of the DT method, they must be converted to
a discrete form. This necessitates the use of a discrete
Fourier transform (Kak, Slaney, 1988).

For our needs, it is required to determine the
maximum frequency of Doppler frequency amplitude
changes. Let us denote this value by W . In addition,
two quantities should be specified for the FBP algo-
rithm. The first one is the so called number of projec-
tions marked as Np. For the DT method, it is the num-
ber of rotation angles θ of the ultrasonic probe (or test
object). The second parameter is the number of Mp

rays and they correspond to the number of Doppler
bands. Based on Nyquist’s theorem, it can be seen that
the values of projection pθ (mT) should be sampled
with the period T = 1/(2W ), where m = −N/2, ...,0,
(N/2) − 1, for cases of sufficiently large N . When the
algorithm is used in the DT method, the period T cor-
responds to the bandwidth ∆fd.

To reconstruct the image, in the first step, based
on the formula (2), the approximation of the Fourier
transform Sθ(w) should be determined for each pro-
jection. For the DT method, it is a discrete function
of the frequency of changes in Doppler frequency am-
plitude for individual rotation angles θ (Świetlik,
Opieliński, 2019):

Sθ(w)≈Sθ(m
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where N is the number of projection samples equal to
the number of measurement raysMn. Due to the use of
FFT, the N parameter should be the power of 2. If this
is not the case, N increases to the value of the nearest
power of 2, remembering that additional samples have
the value of 0.

In the next step, all projections are filtered in the
frequency domain and multiplied by a window func-
tion (e.g., Hamming window). This allows us to elimi-
nate noise in the reconstructed image (Kak, Slaney,
1988). The formula (3) should be used for this purpose
(Świetlik, Opieliński, 2019):
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where k − N/2, ...,0, ...,N/2, and H(m(2W /N)) is
a window function.

The last stage is the reconstruction of the image
by means of the back projection using the formula
(Świetlik, Opieliński, 2019):

f(x, y) = π

K

K

∑
i=1

Qθi(x ⋅ cos θi + y ⋅ sin θi), (4)

whereK = Np/2, which means that half of the full rota-
tion angles θ are sufficient for reconstruction. A more
detailed description of this algorithm is presented in
the paper by Świetlik and Opieliński (2019).

4. Doppler signal simulation

The Doppler signal is the most important signal in
the DT method and consists only of Doppler frequen-
cies. It can be determined on the basis of the product of
the transmitted and received signal at a given rotation
angle θ and the simultaneous use of a filter that will
eliminate all frequencies above the maximum Doppler
frequency. This signal is of the chirp type, therefore it
can be written in the form of s(t) = A ⋅sin(ϕ(t)), where
A is the signal amplitude, and ϕ(t) is an unknown
modulating function (Świetlik, Opieliński, 2019).
The frequency of this signal is equal to (Świetlik,
Opieliński, 2019):

f(t) = 1

2π

dϕ(t)
dt

. (5)

Based on the formula (1), it can be seen that the
Doppler frequency for a single insertion changes ac-
cording to the formula (Świetlik, Opieliński, 2019):

f(t) = 4π ⋅ fT ⋅ fturn ⋅ r0 ⋅ cos (2π ⋅ fturn ⋅ t + α0)
c

, (6)

where r0 is the distance between the inclusion and the
centre of rotation, α0 is the angle at which the inclusion
is set in relation to the ultrasonic probe at a 0○ angle of
rotation, fturn is the frequency of rotation of the probe
(or tested object). By comparing formulas (5) and (6),
we can determine the value of ϕ(t), and thus the for-
mula for a Doppler signal is (Świetlik, Opieliński,
2019):

s(t) = A ⋅ sin(4π ⋅ fT ⋅ r0
c

⋅ a∗), (7)

where

a∗ = (sin (2π ⋅ fturn ⋅ t + α0) − sinα0) .

In order to calculate the signal from several inclu-
sions, we must first calculate the values for individual
scatterers, and then sum up the values for the respec-
tive t times.
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5. Basic problems of DT image reconstruction

One of the basic problems with measuring data ac-
quisition in the DT method is the need to register data
for each angle θ separately. This necessitates a very
good synchronisation of the ultrasonic probe rotation
with measurements and switching on of the probe even
several hundred times per minute. A simple solution to
this problem is the acquisition of a Doppler signal from
the full rotation of the probe (or tested object) and the
division of this signal into individual rotation angles θ
programmatically.

The second, much more difficult, problem to solve
is the need to ensure adequate Doppler spectrum reso-
lution for individual rotation angles θ. Consider again
the example from Sec. 2 of a single scatterer placed on
a rotating platform at a distance of 3 cm from the cen-
tre of rotation axis and at an angle of 0○ to the probe
(Fig. 3a). The simulation assumes that we have 200
angles for half a turn or 398 angles for the whole
turn. Such a quantity ensures the correct accuracy
of image reconstruction. In addition, it was assumed
that we have 10 000 samples, formula (7) was used
and the Doppler signal was calculated. In the next
step, it was calculated that if we divided this signal
into equal 398 sections for respective angles θ, each
of them would contain 51 samples. The number of
samples should be 50, but increased by 1 so as to
obtain the odd number and as a result to determine
the centre of the given angle θ in an easier manner.
This procedure facilitates image reconstruction. The
sampling period of the Doppler signal is 25 µs, which
gives a sampling frequency of fs = 40 kHz. As a result,
the spectrum resolution for a single angle θ is equal
to ∆f = 784 Hz. Due to the diameter of the imaging
zone, the maximum Doppler frequency in this case is
equal to fdmax = 3984 Hz based on the formula (2).
From this it follows that only 11 Doppler bands can
be determined in this case. Such a small value means
that we do not have enough information in the sino-
gram to reconstruct the image with a good resolution.
In this case, the image has a resolution of 11× 11 pi-
xels, which gives the large surface about 1 cm2 for one
pixel.

In this situation, it seems reasonable to increase the
number of samples. For example, let us increase
the number of samples twice, to 20 000. This causes the
signal sampling period to decrease to 12.5 µs (fs =
80 kHz), and the number of samples to increase to 101.
However, the spectrum resolution remains at a similar
level and is equal to ∆f = 792 Hz. This again allows
us to determine only 11 Doppler bands and causes no
improvement in image resolution.

The effect of the lack of resolution improvement
results from the formula (8). If in the Doppler signal
for a given rotation angle θ we increase the number of
samples N , we simultaneously increase the sampling

frequency fs. As a result, the ratio of these quantities
remains the same:

∆f = fs
N
. (8)

6. Overlay algorithm

The solution to the problem with the resolution of
the Doppler spectrum for individual rotation angles θ
described in Sec. 5 may be the overlay algorithm. Its
idea is to increase the length (number of samples N) of
the Doppler signal for rotation angles while leaving the
sampling rate fs at the same level. In this situation,
∆f decreases and the spectrum resolution improves.
With equal division of samples into individual rota-
tion angles, the increase in N requires adding data
from adjacent Doppler signal ranges. This results in
intervals for the rotation angles in the parts overlap.
Figure 4 presents the process, on the example of an-
gles θi and θi+1. Parameter α corresponds to the length
of the Doppler signal for rotation angles θ and is the
same for each of them. It is given in relation to the full
rotation of the probe or the tested object in degrees.

Fig. 4. Idea of Doppler signal overlay algorithm for rotation
angles θi and θi+1.

Depending on the α parameter, we obtain a differ-
ent spectrum resolution ∆f , which directly affects the
accuracy of Doppler frequency determination, which
in turn affects the quality of the reconstructed image.
Figure 5 presents the results of a simulation showing
the spectrum for a single inclusion placed on a ro-
tating platform at a distance of 3 cm from the cen-
tre of rotation and at an angle of 0○ in relation to
the probe for various parameters α. The conditions
of the experiment are the same as those described in
Sec. 2, with the difference that 25 000 samples were
generated for the Doppler signal calculated from for-
mula (7). In addition, it should be noted that the
spectra are calculated for a Doppler signal slice for
the rotation angle θ = 0○. In this simulation, α took
the values: 1.8○, 3.6○, 5.4○, 7.2○, 9.0○, 10.8○, 12.6○,
14.4○, 16.2○, 18.0○. The spectral resolution values for
each case were also calculated. The ∆f values are:
398.39 Hz, 199.59 Hz, 133.15 Hz, 99.90 Hz, 79.93 Hz,
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Fig. 5. Dependence of the Doppler signal resolution for the rotation angle θ = 0○ of a single inclusion
from the parameter α.

66.62 Hz, 57.14 Hz, 49.97 Hz, 44.42 Hz, 39.98 Hz, re-
spectively. On the basis of the presented values and
on the basis of Fig. 5 it is very clear that the higher
the value of the α parameter, the better the spectrum
resolution. It can also be seen that the greatest im-
provement is obtained for α in the range (1.8○; 9.0○).
For larger α the value of ∆f decreases relatively slower.

7. Influence of particular parameters
of the DT method and overlay algorithm

on image reconstruction quality

The two most important parameters having the
greatest impact on the quality of imaging in the DT
method are the number of acquisition angles and the
number of Doppler bands. It should be noted that
using the overlay algorithm, the number of Doppler
bands is closely related to the value of the parame-
ter α.

The number of Doppler signal acquisition angles
Nθ affects the coordinates of the imaged inclusions.
In order to demonstrate this effect, a simulation was

Nθ = 20 Nθ = 40 Nθ = 60 Nθ = 80 Nθ = 100

Nθ = 120 Nθ = 140 Nθ = 160 Nθ = 180 Nθ = 200

Fig. 6. Dependence of the point image reconstruction on the number of acquisition angles Nθ.

performed of scanning DT signals from a single point
located on the rotating platform at a distance of 3 cm
from the centre of rotation and set at an angle of 0○

in relation to the probe. The overlay algorithm was
used where the parameter α = 9○. The Doppler signal
recorded at half rotation has 25 000 samples. Other
simulation parameters are the same as those given in
Sec. 2. Figure 6 shows DT image reconstruction re-
sults for changing the number of acquisition angles Nθ
from 20 to 200. The dimension of each image section
is 11.22× 15.30 mm. A pixel with a red frame repre-
sents the place where in the perfect case the centre of
the inclusion image should be reconstructed. The first
conclusion is that for a small number Nθ ∈ (20; 100)
a fairly large error in the reconstruction of the inclusion
coordinates appears. In addition, for Nθ = 20 and 40,
significant interference in the reconstruction of the im-
age in the form of additional dark pixels around the
inclusion image should be noted.

In order to further investigate the error, the dis-
tance from the centre of the reconstructed point to the
place where it should be located in the ideal simula-
tion was calculated. In addition, the range of tested Nθ
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values was increased to 500, and the results are shown
in Fig. 7. The data from the graph confirms that the
largest errors in the inclusion position reconstruction
are forNθ ∈ (20; 100). For a value between 140 and 400,
the error has a value of about 1 mm, while at a value
of 500 it drops to zero.

Fig. 7. Dependence of the reconstruction error of inclusion
coordinates on the number of acquisition angles Nθ.

One of the more important conclusions from the
previous experiment is the fact that for a number of
acquisition angles of 500 and above, we do not obtain
an error in reconstructing the position of the inclusion
image. The next simulation should examine whether
and how the parameter α from the overlay algorithm
affects the reconstruction of the image of points located
in different places of the imaging area. To this end,
images of inclusions located at a distance of 5 mm from
the centre of rotation and set at selected angles relative
to the probe were reconstructed. For this simulation,
the α parameter was increased to 14.4○. The results are
shown in Fig. 8. It is worth noting that as the inclusion
moves away from the centre of rotation, the length of
its image across increases. This is the result of using the
overlay algorithm. The influence of the α parameter
on the inclusion image resolution is discussed in detail
later. However, at the moment it can be stated that

a) b) c)

Fig. 9. Idea of measuring pixel values along and across the inclusion image located 35 mm from the centre of rotation and
at an angle of 180○ to the probe (a). Example of measuring resolution and blur along image inclusion (b). Example of

measuring resolution and blur across image inclusions (c).

a) b)

Fig. 8. Image reconstruction of inclusions placed at a dis-
tance of 5 mm from the centre of rotation and at an angle
in relation to the probe: a) 0○, 90○, 180○, 270○, b) 45○, 135○,

225○, 315○.

for optimal determination of the α parameter for the
entire imaging area, the image resolution for the point
furthest from the centre should be examined, because
it will be the worst there.

Images at 0○ and 180○ were examined to accurately
analyse inclusion images. The idea of the measure-
ments is presented in Fig. 9. The resolution was tested
along and across the image of an example inclusion
sample located 35 mm from the centre of rotation and
located at an angle of 180○ to the probe (Fig. 9a).
Other simulation parameters remain unchanged. Ana-
lysing pixel values for individual images, it was
assumed that the resolution will be tested with a 3 dB
decrease in the maximum pixel value (Figs 9b and 9c).
In addition, inclusion blur was tested assuming that it
would the 10% of the maximum pixel value (Figs 9b
and 9c). The test results for all 18 inclusion images
are shown in Fig. 10. Both on the basis of these results
and on the basis of Fig. 8, it can be seen that the
inclusions located at the same distance from the centre
of the image are symmetrical and have the same lon-
gitudinal and transverse resolutions. It should also be
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a) b)

c) d)

Fig. 10. Resolution and blur along and across inclusions placed at an angle of 0○ and 180○.

noted that the resolution and blur along the inclusions
increase in line with the distance from the centre of
the image (Figs 10a and 10b). Bearing in mind that
we simulate the image of infinitely small inclusions, it
can be seen that closer to the centre we can reconstruct
images with fairly good resolution of about 1 mm and
blur at the level of 3 mm.

In extreme cases, near the edge of the image, resolu-
tion up to about 3.5 mm, and blur up to about 7.5 mm
is noticed and this is still a good result. As far as the
resolution across the inclusions’ image is concerned, it
remains the same regardless of the distance between
the scatterer and the centre of the image and for this
test it is equal to about 1 mm (Figs 10c and 10d). In
the case of blur, it is also constant for inclusions close
to the centre, but then increases to the value of about
4 mm (Figs 10c and 10d).

In the next simulation the dependence of the in-
clusion image resolution on the α parameter from the
overlay algorithm was measured. An inclusion 4.5 cm
from the centre of rotation was chosen because of the
highest resolution and blur values at the edge of the im-
age. This would allow the worst case imaging to be
examined and would give the opportunity to deter-
mine the optimal α parameter for the entire imaging
area. A larger distance from the centre point would
result in the image being cut off in some simulation

cases. It should also be noted that the angle at which
the measured inclusion is set does not matter because
we have the same longitudinal and transverse resolu-
tions for inclusions at the same distance from the cen-
tre of the image. Therefore, in order to simplify mea-
surements, the angle of 0○ was chosen. The α parame-
ter took the following values: 1.8○, 3.6○, 5.4○, 7.2○, 9○,
10.8○, 12.6○, 14.4○, 16.2○, 18○. Other simulation param-
eters remained the same.

In order to examine the impact of overlay algo-
rithms in the DT method, we first simulated the so
called perfect case (with the simulation of Doppler fre-
quencies directly) for whose imaging this algorithm
was not used. In this case, we used the formula (1)
to calculate Doppler frequencies. As a result, we elim-
inated errors in determining this frequency. The simu-
lation results are shown in Fig. 11. Each image section
is 15× 15 mm. Image reconstruction was possible be-
cause for each value of the α parameter from the so
called real simulation, the number of Doppler bands
was calculated. They are equal to, respectively: 21, 39,
59, 79, 99, 119, 139, 159, 179, 199. It can be clearly
seen in Fig. 11 that the higher the number of Doppler
bands, the better the image resolution (Świetlik,
Opieliński, 2016). This effect was thoroughly exam-
ined by the method presented in Fig. 9, and the results
are shown in Fig. 13.
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α = 1.8○ α = 3.6○ α = 5.4○ α = 7.2○ α = 9○

α = 10.8○ α = 12.6○ α = 14.4○ α = 16.2○ α = 18○

Fig. 11. Simulation of the perfect case of inclusion image reconstruction for selected values of the
number of Doppler bands corresponding to the α parameters.

α = 1.8○ α = 3.6○ α = 5.4○ α = 7.2○ α = 9○

α = 10.8○ α = 12.6○ α = 14.4○ α = 16.2○ α = 18○

Fig. 12. Simulation of the real case of inclusion image reconstruction for selected values of α parameter.

a) b)

c) d)

Fig. 13. Resolution and blur along and across inclusions for the perfect and real cases of simulation.
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In the second real case with the simulation of
full scattered signals, the inclusion images were re-
constructed using an overlay algorithm. The results
are shown in Fig. 12. As before, each image section
has a dimension of 15× 15 mm. In this case, you can
also see an improvement in resolution as the α pa-
rameter increases. However, in contrast to the per-
fect case for values above α = 9○, the image elonga-
tion along the inclusion is clearly visible. The reso-
lution and blur of the image were measured accurately
along and across the inclusion by the method presented
in Fig. 9, and the results are shown in Fig. 13.

Analysing Fig. 13, it can be seen that both reso-
lution and blur across the image of the inclusion for
the perfect and real case do not differ significantly.
As the α parameter increases, the resolution decreases
from around 7 mm to 1 mm in both cases. When it
comes to blur, the values for the real case are on aver-
age 2 mm larger than those for the perfect case. The
blur value drops from about a dozen mm for small α
to a single mm for larger values of this parameter.

We have a completely different situation for the re-
solution and blur measured across the inclusion image.
For the real case, it can be observed that after noting
a decrease for small α at a value of about 9○, we ob-
serve an increase in both the value of resolution and
blur. When it comes to the perfect case, notice a simi-
lar decrease in value as it was for the study of pixels
across the image. The conclusion that comes to mind
is that the value of parameter α should not exceed 9○,
but at the same time it should be as high as possible
to ensure good resolution and low image blur.

8. Conclusions

Doppler tomography is a relatively new method of
imaging tissue cross-section in vivo, but in combina-
tion with the fast FBP image reconstruction algorithm
it can give good results. However, we have to keep in
mind the limitations of this method. First of all, at-
tention should be paid to obtaining adequate resolu-
tion of the Doppler signal spectrum for a single view-
ing angle θ. With the classic division of the Doppler
signal from the full rotation of the probe (or tested
object) into the number of acquisition angles Nθ, we
obtain insufficient resolution ∆f . The solution to this
problem may be the application of an overlay algo-
rithm that allows a significant improvement in spec-
trum resolution, and thus more accurate determination
of Doppler frequencies using the appropriate α parame-
ter. It should be remembered that these frequencies are
crucial when it comes to image reconstruction in the
DT method.

The three parameters which have the greatest im-
pact on image quality are the number of Nθ acquisition
angles, the number of Doppler bands and parameter α

from the overlay algorithm. As for the number of Nθ
angles, it has the greatest impact on the accuracy of
reconstructing the position of a given inclusion in the
imaged section. If this parameter is too small and has
values of e.g. 20, the image will be reconstructed even
9 mm further than it is in reality. WithNθ values above
120, the error decreases to 1 mm, while with a value
above 500 it is equal to zero. So, to avoid an error in
the insertion coordinate imaging, it should use 500 or
more acquisition angles.

In the case of the number of Doppler bands and
the α parameter, the image resolution changes. If the
values of these parameters are too small, the reso-
lution of the reconstructed inclusion is low, which
can be seen in Figs 11 and 12. This relationship re-
sults, among others, from the fact that by divid-
ing the frequency range from −fdmax to +fdmax into
Doppler bands we are able to more accurately deter-
mine the value of the Doppler frequency when we have
more bands. This also translates into more columns
in the sinogram, which gives better resolution after
using the FBP algorithm. However, research shows
that the alpha parameter cannot be too large because
there is image elongation along the inclusion. To pre-
vent this, average values of this parameter should be
used. In the cases described, it was α = 9○. To deter-
mine the α parameter, it should be also remembered
that the elongation of the inclusion image increases
with the distance from the centre of the image. There-
fore, to determine this parameter for the entire imaging
area, inclusions close to the zone boundary should be
tested.

Analysing the results of the described simulations,
it can be stated that the DT method allows imaging
of inclusions that have a relatively small diameter of
about 2 mm to 3 mm. The blur of such an image is
not more than 7 mm. Thus, this method could be used
to screen for cancerous inclusions inside female breasts.
Another possible way to use this method is bone imag-
ing, e.g., in the case of fractures due to the high reflec-
tion coefficient of the ultrasonic wave.
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