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Wave motion in pipe bends is much more complicated than that in straight pipes, thereby changing
considerably the propagation characteristics of guided waves in pipes with bends. Therefore, a better
understanding of how guided waves propagate in pipe bends is essential for inspecting pipelines with
bends. The interaction between a pipe bend and the most used non-dispersive torsional mode at low
frequency in a small-bore pipe is studied in this paper. Experiments are conducted on a magnetostrictive
system, and it is observed that T(0,1) bend reflections and mode conversions from T(0,1) to F(1,1) and
F(2,1) occur in the pipe bend. The magnitude of the T(0,1) bend reflections increases with increasing
propagation distance and excitation frequency. The amplitude of the mode-converted signals also increases
with increasing propagation distance, but it decreases with increasing excitation frequency. Because of
their longer bent path, the test signals for a pipe bend with a bending angle of 180○ are much more
complicated than those for one with a bending angle of 90○. Therefore, it is even more difficult to scan
a bent pipe with a large bending angle. The present findings provide some insights into how guided waves
behave in pipe bends, and they generalize the application of guided-wave inspection in pipelines.
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1. Introduction

Ultrasonic guided wave technique (Rose, 1999; He
et al., 2001; Ta et al., 2004) has been widely used in
the nondestructive testing of long straight pipes for its
wide detection coverage and high scanning efficiency.
However, in most practical applications the tested
pipeline contains bends, thereby complicating the
guided wave based inspection significantly. Pipe bends
affect the propagation of guided waves. When an
incident mode travels through a pipe bend, complex
interactions occur between the two, thereby scattering
guided waves in other mode. Thus, different modes
will overlap with each other, confusing the interpre-
tation of test signals and even making the inspection
impractical.

In typical guided wave inspections, only one dom-
inant mode is selected for excitation in the pipe to
avoid different modes overlapping. Torsional modes

[e.g., T(0,1)] and longitudinal modes [e.g., L(0,1) and
L(0,2)] are the most used probing modes because of
their non-dispersive or low-dispersive and simple exci-
tation. The interactions between pipe bends and these
probing modes have been discussed in some studies
(Demma, et al., 2001; Sanderson et al., 2013; Zhou,
Ichchou, 2010; Nishino et al., 2006; Verma et al.,
2014). Demma et al. (2001) simulated the propaga-
tions of the L(0,2) and T(0,1) modes passing through
a pipe bend by using the finite element method, and
they studied the transmission coefficients of the L(0,2)
mode with respect to the bending radius. Also by using
the finite element method, Sanderson et al. (2013)
investigated the mode conversions of the T(0,1) mode
guided wave at bends and further analyzed the energy
focusing of the T(0,1) mode in the bend. Zhou and
Ichchou (2010) numerically simulated the propaga-
tion of a guided wave in pipes containing bends using
the wave finite element method and studied the trans-
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mission coefficients of guided waves passing through
bends. Nishino et al. (2006) experimentally investi-
gated the interaction of L(0,1) mode with a pipe bend
using a wideband laser ultrasonic system. They found
that part of the L(0,1) mode is converted to the F(1,1)
mode when passing through the bends, and the ampli-
tude of F(1,1) mode, converted from the L(0,1) mode,
increases with increasing bending angle. Verma et al.
(2014) excited the L(0,2) mode in a pipe with a magne-
tostrictive transducer and studied the effects of bend-
ing angle and bending radius on the mode conversion
and transmission coefficients of the L(0,2) mode.

Despite some preliminary studies, the effect of
bends on the guided wave propagation remains poorly
understood. In the present study, a small-bore pipe is
investigated because (i) very little work has been done
on such pipes and (ii) waves in small-bore pipes be-
have relatively simply, especially at the low frequency
where only three modes exist, namely the longitudi-
nal L(0,1) mode, the torsional T(0,1) mode and the
flexural F(1,1) mode. The L(0,1) and T(0,1) modes
are usually used as probing modes, and the T(0,1)
has attracted increasing attention in recent years be-
cause of its non-dispersive nature. In the present work,
the interaction of the low-frequency mode T(0,1) with
a pipe bend is studied experimentally on a magne-
tostrictive system. Section 2 presents the dispersion
curves of guided waves in pipe bends calculated by
using semi-analytical finite element (SAFE) method.
Section 3 reports on experiments performed according
to the dispersion curves, presenting the experimental
results and analyzing them.

2. Dispersion curves for guided waves
in pipe bends

2.1. SAFE method (Hayashi et al., 2005)

According to the principle of virtual work, the gov-
erning equation for a guided wave is

∫

V

δεTσdV + ∫

V

δuTρ üdV = 0, (1)

a) b)

Fig. 1. Group-velocity dispersion curves for: a) straight pipe and b) pipe bend.

where ε, σ, and u stand for the stress, strain, and dis-
placement, respectively, and ü is the second derivative
of displacement with respect to time. The integration
in Eq. (1) is three-dimensional, so the calculation of
Eq. (1) is large when calculating with the finite ele-
ment method. Considering the harmonic propagation
in the longitudinal direction, the displacement vector
at any point in a pipe bend satisfies

u =U(r, θ) exp(ikz′) exp(−iωt), (2)

where (r, θ, z′) are the toroidal coordinates, (r, θ) are
the polar coordinates of the cross section of the pipe
bend, and the z′ axis coincides with the pipe center-
line. Also, k is for the wavenumber and ω is the an-
gular frequency. Substituting Eq. (2) into Eq. (1), the
three-dimensional integration in Eq. (1) is reduced to
the two-dimensional integration of the cross section of
the pipe bend, thereby reducing the calculation sig-
nificantly. Refer to (Hayashi et al., 2005) for detailed
derivations.

2.2. Dispersion curves for guided wave in bended pipe

This study employs a stainless steel (oCr18Ni9)
pipe (density: 7930 kg/m3; Young’s modulus: 206 GPa;
Poisson ratio: 0.27) with an outer diameter of 22 mm,
a wall thickness of 2 mm, and a bending radius of
75 mm. The dispersion curves for guided waves in this
pipe bend are calculated by using the SAFE method
(Hayashi et al., 2005). The cross section of the pipe
bends is meshed with 48 elements in circumference and
two elements in thickness. The element dimensions are
much smaller than the wavelength of the guided waves
used in this case, and thus the computational results
are convergent and accurate.

The group-velocity dispersion curves for (a) a strai-
ght pipe and (b) a pipe bend are shown in Fig. 1. Com-
pared with the dispersion curve for a straight pipes,
that for a pipe bend differs significantly. Firstly, the
LC(0,1) and TC(0,1) modes in a pipe bend have a cut-
off frequency that does not occur for the corresponding
modes [L(0,1) and T(0,1)] in a straight pipe. Second,
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the dispersion curve for a pipe bend exhibits “mode
splitting” as indicated by the circle in Fig. 1b and inter-
preted well by Demma et al. (2005). Because the pipe
bend is not axisymmetric, the originally identical mode
indicated by a single dispersion curve in a straight
pipe is no longer identical but splits into two modes
that differ depending on the orientation of their mode
shape. Finally, the dispersion curve for a pipe bend
exhibits “mode repulsion” as marked by the rectan-
gle in Fig. 1b and observed similarly in the dispersion
curves for plates (Überall et al., 1994), curved plates
(Bao et al., 1999; Maze et al., 1999), helical waveg-
uides (Treyssede, 2008), and rails (Loveday et al.,
2018), among others. These aforementioned phenom-
ena will definitely affect the propagation of waves in
pipe bends, and should be accounted for in guided wave
inspections.

3. Experiments and analysis

Experiments were conducted by using a magne-
tostrictive system to investigate the effect of pipe
bends on the propagation of the torsional T(0,1)
mode.

3.1. Experimental setup

A schematic diagram of the experimental config-
uration is shown in Fig. 2. The signals generated by
a function generator and then amplified by a power am-
plifier were sent to the transmitting transducer and ex-
cited the waves in the pipe. Incident waves propagated
along the pipe and were sensed by the receiving trans-
ducer. The received signals were then pre-amplified,
transformed from analog to digital, and sent to a lap-
top for analysis.

Fig. 2. Schematic of experimental configuration
(Wu, Wang, 2019).

In this experiment, a magnetostrictive patch trans-
ducer was used to excite torsional waves. Accord-

ing to the Wiedemann effect, two magnetic fields
of comparable magnetic intensity should be applied
in the circumferential and axial directions, respec-
tively. The circumferential magnetic field is static,
while the axial one is dynamic. As shown in Fig. 2,
a 70-mm-wide and 0.15-mm-thick iron-cobalt alloy
patch, used to amplify the magnetostrictive effect, was
bonded in the circumferential direction to the pipe
with epoxy glue. A pair of magnets was placed on top of
the patch to achieve a uniform and relatively strong cir-
cumferential static magnetic field therein. A 40-finger
solenoid coil was wound over the patch to generate
an axial dynamic magnetic field and then either ex-
cite waves in the patch or sense them by the receiving
transducer. To excite a pure torsional guided wave in
the pipe, the density of the current applied to the coil
was chosen carefully to generate an axial magnetic field
of comparable magnitude with that of the static cir-
cumferential magnetic field.

The experiments were performed on a straight pipe
and two bent pipes with bending angles of 90○ and
180○, respectively. The dimensions and material prop-
erties of the pipes were the same as those in Sec. 2.

3.2. Experimental results and analysis

A five-circle square pulse was used in the exper-
iments. The exciting and receiving transducers were
placed at the same end of the pipe, and the received
signals were filtered by a band-pass filter to reduce
noise. The excitation frequency was 20 kHz, 30 kHz, or
40 kHz. Figure 3 shows the testing signals used for the
straight pipe. At each excitation frequency, a relatively
pure T(0,1) mode was excited in the pipe, thereby
making this type of magnetostrictive patch transducer
suitable for the following experiments. Other than the
T(0,1) mode, another small signal can also be ob-
served, indicated by the cycles in Fig. 3. The mode
of this signal can be determined by its flying times of
approximately 2.2 ms, 2.3 ms, and 2.5 ms for one trip
of 5500 mm, which correspond roughly to the group
velocities of the F(1,1) mode at 20 kHz, 30 kHz, and
40 kHz, respectively. Thus, we concluded that the flex-
ural F(1,1) mode is also excited in this experimental
setting.

Figures 4 and 5 show the testing signals used for
the pipe bends with bending angles of 90○ and 180○, re-
spectively. Compared to those in Fig. 3 for the straight
pipe, the testing signals for the pipe bends are more
complicated and difficult to interpret.

In general, the end reflections of the T(0,1) mode
are observed clearly in the testing signals, and the of
T(0,1) mode decays faster in bent pipes than it does
in the straight pipe, especially for the 180○ bent pipe.
This indicates that mode conversions are taking place,
and more energy has been transferred to the converted
mode.
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a) b)

c)

Fig. 3. Testing signals for the straight pipe at frequencies of: a) 20 kHz, b) 30 kHz, and c) 40 kHz.

a) b)

c)

Fig. 4. Testing signals of the bent pipe with a bending angle of 90○ at frequencies of: a) 20 kHz, b) 30 kHz, and c) 40 kHz.
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a) b)

c)

Fig. 5. Testing signals of the bent pipe with a bending angle of 180○ at frequencies of: a) 20 kHz, b) 30 kHz, and c) 40 kHz.

In the case of the 90○ bent pipe, as shown in Fig. 4,
a weak signal is detected before the first end reflection
of the T(0,1) mode, whereas no such signals are ob-
served in Fig. 3, indicating the bend reflection of the
T(0,1) mode. This is further confirmed by the signals
that appear regularly in the middle of every two suc-
cessive T(0,1) end reflections because the bend is in
the middle of the pipe. The T(0,1) bend reflections in-
crease with increasing propagation distance, which is
because reflections occur every time the T(0,1) mode
travels across the bend and overlaps each other. The
amplitude of the T(0,1) bend reflections is also found
to increase with increasing frequency, implying that
more energy is reflected by the bend with increasing of
excitation frequency of the T(0,1) mode.

As well as the T(0,1) reflections, other mode-
converted signals can be seen in Fig. 4. According
to the dispersion curves of the straight pipe (Fig. 1a),
the frequency range of 20–40 kHz contains four modes,
namely L(0,1), T(0,1), F(1,1), and F(2,1). Therefore,
L(0,1), F(1,1), and F(2,1) are the potentially converted
modes. The mode shape of L(0,1) differs completely
from that of T(0,1), and thus the possibility of con-
verting the T(0,1) mode into L(0,1) is slight. First,
we focus on Fig. 4b because the signals seem to over-
lap less with each other, thereby facilitating analysis.
As well as the T(0,1) bend-reflection signal located

in the middle, four other signals can be observed be-
tween the two T(0,1) end reflections. The time differ-
ences between the end reflections and these four fol-
lowing signals are approximately 0.24, 0.56, 1.2, and
1.47 ms, respectively. According to Fig. 1a, the theo-
retical group velocities of T(0,1), F(1,1), and F(2,1) at
30 kHz are approximately 3200, 2390, and 1520 m/s,
respectively. In one round of T(0,1) propagation, the
incident T(0,1) travels across the bend twice, and
hence mode conversions occur twice. For the first time
of traveling through the bend, the possible converted
modes of F(1,1) and F(2,1) travel three-quarters of
the length of one 5500-mm round, whereupon the time
differences between the T(0,1) end reflection and the
converted modes of F(1,1) and F(2,1) are 1.34 and
1.42 ms, respectively. In the same way, the time dif-
ferences between the T(0,1) end reflection and the
converted modes of F(1,1) and F(2,1) for the sec-
ond time are 0.15 and 0.47 ms, respectively. Then,
considering the errors between the theoretical group
velocities and the practical ones, as well as the dis-
persion and overlap of signals, which confuse the fly-
ing time of the signals, the theoretical time differ-
ences are agree well with those of the testing sig-
nals. Therefore, we conclude that these four signals
are F(1,1), F(2,1), F(1,1), and F(2,1), as indicated in
Fig. 4b.
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All the mode-converted signals increase in ampli-
tude with increasing propagation distance because en-
ergy is converted every time the T(0,1) mode passes
through the bend. Another interesting phenomenon
found in Fig. 4b is that the amplitudes of F(1,1)
and F(2,1), mode-converted at the time when T(0,1)
travels backward and through the bend, seem much
larger than those of F(1,1) and F(2,1) modes, mode-
converted when T(0,1) travels forward and through the
bend. This may be due to the dispersions of these two
flexural modes. These two flexural modes are dispersive
according to Fig. 1a. Thus, the wave that propagates
the shorter distance has a larger amplitude than the
one that travels farther.

Mode-converted signals are also observed in Figs 4a
and 4c. Because the F(2,1) mode is highly dispersive
at 20 kHz, which is also close to the cut-off frequency
of F(2,1), the mode conversion from T(0,1) to F(2,1)
is weak and cannot be observed in Fig. 4a. Hence, we
can observe three signals between two T(0,1) end re-
flections including the F(1,1), T(0,1) bend-reflection,
and F(1,1) signals. The four converted signals are also
found between the two T(0,1) end reflections in Fig. 4c,
which coincide with those in Fig. 4b. However, the
amplitudes of these mode-converted signals are much
smaller than those of their corresponding signals in
Fig. 4b. Therefore, we can conclude that the mode con-
versions are getting smaller with increasing excitation
frequency.

As for the inspection of bent pipes with a bending
angle of 180○, the testing signals, as shown in Fig. 5,
are much more complicated than those for the bend-
ing angle of 90○. This is because the wave modes in
pipe bends are much more dispersive according to the
dispersion curves in Fig. 1b. Thus, the doubled length
of the bent path leads to more dispersed signals and
stronger overlaps, resulting in signals that are much
more complicated.

The T(0,1) bend reflections can also be observed
in Fig. 5, whose amplitude increases with the increase
of propagation distance and excitation frequency. The
mode-converted signals overlap strongly with each
other and are therefore difficult to distinguish. Closely
following the T(0,1) end reflections, all three parts of
Fig. 5 contain an interesting mode-converted signal
with a significant amplitude, which is found to be the
F(1,1) mode by its flying time.

4. Conclusions

Because the axis of a pipe bend is curved, the
wave behavior therein is considerably more compli-
cated than that in a straight pipe, thereby motivating
further study of the interaction between a pipe bend
and the commonly used probing modes. The torsional
T(0,1) mode is used most because of its non-dispersive
nature. In this study, we focused on the wave behav-

ior of the T(0,1) mode at low frequencies in small-bore
pipes. The dispersion curves for straight and bent pipes
were calculated to interpret the testing signals. Exper-
iments were conducted on a magnetostrictive system.
A fairly pure T(0,1) mode was excited in the pipes
by using a magnetostrictive patch type transducer.
The T(0,1) bend reflection and the mode conversions
from T(0,1) to F(1,1) and F(2,1) were observed in the
testing signals. The magnitude of the T(0,1) bend re-
flections increased with the increase of propagation
distance and excitation frequency. The amplitude of
the mode-converted signals also increased with the in-
crease of propagation distance, but it decreased with
the increase of excitation frequency. The bent path in
a pipe bend with a bending angle of 180○ is longer than
that in one with a bending angle of 90○. Hence, the
testing signals for the 180○ pipe bend were are much
more complicated than those for the 90○ one because
the wave modes in a pipe bend are highly dispersive.
Therefore, scanning the pipe bends with larger bend-
ing angles is more difficult.
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