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Scattering of sound waves in two stepped cylindrical duct which walls are coated with different acous-
tically absorbent materials is investigated by using Wiener-Hopf technique directly and by determining
scattering matrices. First, by using Fourier transform technique we obtain a couple of modified Wiener-
Hopf equations whose solutions involve four sets of infinitely many unknown expansion coefficients pro-
viding systems of linear algebraic equations. Then we determine scattering matrices of the problem and
we state the total transmitted field by using generalized scattering matrix method. Numerical results are
compared for different parameters.
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1. Introduction

The propagation of sound through the waveguide
has a significant place for researchers for many years.
According to Morse (1948) and Pierce (1981) a duct
for sound propagation also behaves like a transmission
line (e.g. air conditioning duct, car muffler, etc.). But
there is a fact that some unwanted voices are produced
during propagation of sound. Therefore physical and
geometrical properties of the ducts have an important
role in studies.

Looking at the first studies done, it is seen that
studies about infinite rigid cylindrical and rectangular
waveguides (Rayleigh, 1945) and semi-infinite rigid
ducts (Levine, Schwinger, 1948). In their study
Levine and Schwinger found reflection coefficients ana-
litically by Wiener-Hopf technique. Then their analy-
sis has been reexamined by a few researchers (Morse,
Feschbach, 1953; Noble, 1969). All these studies are
continuous in order to the geometrical and the physical
properties. In addition to these studies, involving dis-
continuities in waveguide have been made and this is
still a popular topic among the researchers. We can say
first studies about the discontinuity problem in cylin-

drical ducts was solved by Miles (1944; 1945a; 1945b)
for acoustic waves and by Papadopulos (1957) for
electromagnetic waves. In his study, Miles analysed the
effect of plane discontinuity on a plane wave propa-
gated in a cylindrical duct. Karal (1953) examined
the impedance introduced by an abrupt change of cir-
cular cross section of a tube. He formed an acoustical
transmission system by joining together two infinite
circular ducts of different cross section and investigated
the acoustic inductance for this sudden discontinuities.
Alfredson (1972) used many small discontinuities to
define duct shape and developed an approximate tech-
nique for calculating the behaviour of sound.

Pace and Mittra (1964; 1971) studied on electro-
magnetic waveguide discontinuity problems. They de-
veloped generalised scattering matrix technique to deal
with step discontinuity problems. Nilsson and Brander
applied this method to acoustic waveguides. They in-
vestigated the propagation of sound from cylindrical
ducts in different geometries. In the first study they
analysed the modes of an infinite duct, paying par-
ticular attention to possible instabilities through the
Wiener-Hopf technique (Nilsson, Brander, 1980a).
The second and third studies are devoted to the
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analysis of the reflection and transmission properties
of a single discontinuity. There are two different kind of
discontinuities, the first solvable by standard Wiener-
Hopf techniques (Nilsson, Brander, 1980b) and the
second requiring a generalization of these techniques
(Nilsson, Brander, 1980c). They found scattering
matrices for sudden area changes in a cylindrical wave-
guide with mean flow and Bulk-reacting lining. Then
they used these matrices in a similar waveguide with
several interacting discontinuities (Nilsson, Bran-
der, 1980d). Vanlaricum and Mittra (1969) used
a basic Wiener-Hopf geometry to present a modified
residue-calculus technique for solving a class of bound-
ary value problems which include waveguide disconti-
nuities for electromagnetic waves.

Kergomard and Garcia (1987) studied on pla-
nar discontinuities. They used the mode matching
technique and examined simple discontinuities in
acoustic waveguides. In their study the convergence
criteria and the number of modes to be considered for
various of the parameters were studied in more detail
provided that the work was limited to low frequencies.
Kergomard (1991) presented an alternative to the
scattering matrix approach and calculated of disconti-
nuities in waveguides by using mode maching method.
Homentcovschi and Miles (2010) investigated pla-
nar discontinuities in rectangular waveguides and gave
a new method named a re-expansion method. In their
work, they analysed the wave scattering by thin plates
and steps in rectangular acoustic waveguides having
planar discontinuities.

Campos (1984) investigated the problem of wave
propagation from the waveguide of varying cross sec-
tion by using numerous methods. Hudde and Letens
(1985) considered circular lossless duct with an abrupt
change of cross section. Their analysis includes a non
rigid wall at the interface of both parts of the duct.
They gave a matrix solution which represents purely
the discontinuity untied from the influence of sound
source and reflecting terminations in the duct. Sound
wave propagation in varying cross section waveguides
by multimodal decomposition was studied by Pag-
neux et al. (1996). Gupta et al. (1995) analysed plane
wave propagation in non-uniform ducts with mean flow
by using a modified segmentation approach which di-
vides the non-uniform duct into a series of finite num-
ber of short ducts. Utsumi (1999) investigated trans-
mission of sound through non-uniform circular ducts.
His purpose on this study is to give a more efficient
analytical method, which requiers neither segmenta-
tion nor iterative calculation. Wang and Sun (2011)
aimed in their study to develop a new segmentation
approach in order to include the effect of lined ducts
on the sound propagation and attenuation.

Warren et al. (2002) investigated acoustic scatter-
ing in waveguides that are discontinuities in geometry
and material property by using mod-matching method.

They considered the discontinuity between two ducts
of different heights and at least one of the ducts is
bounded by a membran. Similarly, the hybrid mod-
matching technique has been used to analyse the prop-
agation and scattering of acoustic waves in a flexible
waveguide involving step discontinuity at an interface
by Afzal et al. (2014).

Researchers have been interested in ducts coated
with acoustically absorbent lining because of its fea-
ture to reduce unwanted voices (Rienstra, 2007;
Snakowska et al., 2017; Tiryakioglu, Demir, 2019;
Peake, Abrahams, 2020). In recent years, think-
ing of models that allow better absorption of sound
has allowed them to work on non-uniform linings
which vary circumferentially, axially, or both directions
(McApline et al., 2006; Campos, Oliveira, 2013).
Demir (2017) used in his study non-uniform linings
and defined the scattering matrices with help of the
Wiener-Hopf technique. In his paper, he divided geom-
etry of problem into two parts: expansion and contrac-
tion problem. At the end of the study, he used these
scattering matrices to obtain the transmitted field in
a lined waveguide with an inserted expansion cham-
ber whose walls are treated by another acoustically
absorbent material. In another work, Demir (2016)
investigated the transmission of sound in a duct with
sudden area expansion and extended inlet. The walls
of the duct lying in overlap region lined with different
acoustically absorbent materials. He solved this prob-
lem by using Wiener-Hopf technique.

The geometry of this problem is dealt with a two-
step waveguide and each comparment of this waveg-
uide is thought to be covered with a different sound
absorber material. The presence of two step disconti-
nuity and nonuniform admittance distribution makes
the problem interesting when considering transmission
of waves through waveguides. Due to the existing two
step discontinuity, problem reduced to two coupled
Wiener-Hopf equations differently from single step dis-
continuity. On the other hand, nonuniformities in the
admittance result in different eigenvalues and eigen-
function expansions in the related regions of waveg-
uide. These are naturally included in the Wiener-Hopf
equations and affect the obtained solution. One of our
aims in this paper is to find out the influence of nonuni-
form admittance distribution on sound transmission
in waveguides with multiple step discontinuity. In this
context, results of the analytical method applied are
obtained numerically by taking different radii and dif-
ferent impedance values. Problem is investigated with
Wiener-Hopf technique directly and with determina-
tion of scattering matrices. For direct solution, con-
sidering the mathematical model, the problem is di-
vided into regions and the necessary boundary and
continuity conditions are defined. Then, by using the
Fourier transform for the scattered field and apply-
ing the boundary conditions in the transform domain,
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the problem is reduced to a pair of Wiener-Hopf equa-
tions whose solutions consist of four sets of infinitely
many unknown expansion coefficients providing four
systems of linear algebraic equations. In the other so-
lution, problem is discussed with two different geome-
tries and scattering matrices are determined with the
help of Wiener-Hopf equations. The total transmitted
field is obtained by using generalised scattering matrix
method. In this paper, scattering matrices technique is
used to verify the results obtained by direct solution.

The time dependence is assumed to be exp (−iωt)
with ω being the angular frequency and supressed
throughout this paper.

2. Wiener-Hopf technique

2.1. Problem formulation

The geometry of this problem consists of an infinite
cylindrical duct with two area expansions at z = 0 and
z = l. Duct walls are assumed to be infinitely thin and
they are defined by {ρ = a, z ∈ (−∞,0)}∪{ρ ∈ (a, b), z =
0} ∪ {ρ = b, z ∈ (0, l)} ∪ {ρ ∈ (b, c), z = l} ∪ {ρ = c, z ∈

(l,∞)}, where (ρ, θ, z) denote the cylindrical polar co-
ordinates. Also it is assumed that inner surface of duct
is treated nonuniformly by acoustically absorbent lin-
ings which are denoted by η1, η2, and η3 (see Fig. 1).
From the symmetry of the problem geometry and of
the incident field, the total field everywhere is inde-
pendent of θ. The incident sound wave propagating
along the positive direction is defined by

ui(ρ, z) = AnJ0 (γnρ/a) e
iλnz, (1)

ikaη1J0 (γn) + γnJ1 (γn) = 0, (2)

λn =

√

k2 − (γn/a)
2
. (3)

Here k = ω/c denotes the wave number of the space
and c is the speed of the sound. An is the amplitude of
the incident wave. λn and γn are the modes of z < 0.
For the sake of analytical convenience, we will assume
that the surrounding medium is slightly lossy and k
has a small positive imaginary part. The lossless case
can be obtained by letting Imk → 0 at the end of the

Fig. 1. Geometry of the problem.

analysis. The total field can be written in different re-
gions as:

uT (ρ, z) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1(ρ, z) + ui(ρ, z); ρ < a, −∞ < z <∞,
u2(ρ, z); ρ ∈ (a, b), z > 0,
u3(ρ, z); ρ ∈ (b, c), z > l,

(4)
where ui is the incident field as given by Eq. (1) and the
fields uj(ρ, z), j = 1,2,3, which satisfy the Helmholtz
equation,

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) +

∂2

∂z2
+ k2

]uj (ρ, z) = 0. (5)

From the geometry of the problem, one can write the
following boundary conditions

(ikη1 −
∂

∂ρ
)u1 (a, z) = 0, z < 0, (6)

(ikη2 −
∂

∂ρ
)u2 (b, z) = 0, 0 < z < l, (7)

(ikη2 +
∂

∂z
)u2 (ρ,0) = 0, a < ρ < b, (8)

(ikη3 −
∂

∂ρ
)u3 (c, z) = 0, l < z <∞, (9)

(ikη3 +
∂

∂z
)u3 (ρ, l) = 0, b < ρ < c, (10)

and continuity conditions:

u1(a, z) + ui(a, z) = u2(a, z), ρ = a, z > 0, (11)
∂

∂ρ
[u1(a, z) + ui(a, z)]=

∂

∂ρ
u2(a, z), ρ = a, z > 0, (12)

u2(b, z) = u3(b, z), ρ = b, l < z <∞, (13)
∂

∂ρ
u2(b, z) =

∂

∂ρ
u3(b, z), ρ = b, l < z <∞. (14)

In addition to these conditions, the radiation and edge
conditions are as follows to ensure the uniqueness of
the solution:

u1(ρ, z) = R(ρ)e−iλ1z +O (e−iλ2z) for z → −∞, ρ < a,

(15)

u(ρ, z) = T (ρ)eiτ1z +O (eiτ2z) for z →∞, ρ < c,

(16)

and

u(a, z) = O (z
2
3 ), z → 0+, (17)

u(b, z) = O ((z − l)
2
3 ), z → l+, (18)

∂

∂ρ
u(a, z) = O (z−

1
3 ), z → 0+, (19)

∂

∂ρ
u(b, z) = O ((z − l)−

1
3 ), z → l+, (20)

where τn (n = 1,2, ...) are the modes of region III
(z ∈ (l,∞)).
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2.2. Derivations of the modified Wiener-Hopf
equations

Fourier transform of the Helmholtz equation in the
region ρ < a for z ∈ (−∞,∞) is

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) + (k2

− α2)]F (ρ,α) = 0. (21)

Here F (ρ,α) is the Fourier transform of the field
u1(ρ, z) defined as:

F (ρ,α) =

∞

∫
−∞

u1(ρ, z)e
iαzdz = F−(ρ,α) + F+(ρ,α). (22)

F−(ρ,α) and F+(ρ,α) are analytical functions in the
lower and upper half plane of complex α plane (Demir,
2017), respectively. The solution of Eq. (21) due to the
analytical properties of F±(ρ,α) is as follows

F−(ρ,α) + F+(ρ,α) =
J0(Kρ)

J(a,α)
Φ+

1(a,α). (23)

HereK(α) =
√

(k2 − α2) is the square root function
defined in complex α plane and

Φ+
1(a,α) = [ikη1F+(a,α) − Ḟ+(a,α)], (24)

where the dot stands for the derivation with respect to
ρ and

J(a,α) = ikη1J0(Ka) +KJ1(Ka), (25)

J0 and J1 are the Bessel functions of integer order.
In the second (ρ ∈ (a, b), z ∈ (0, l)) and third

(ρ ∈ (b, c), z ∈ (l,∞)) regions, when the procedure
in (Demir, 2017) is followed and taken into account
with the first region, couple of modified Wiener-Hopf
equations (MWHE) are obtained as follows:

−
a

2
F−(a,α) + V1(α)Φ

+
1(a,α) −

eiαl

πL(α)
Φ+

2(b,α)

=
1

π

∞
∑
m=1

J (b,αm)

J (a,αm)

(ikη2 + iα)fm
α2
m − α2

+
a

2

AnJ0 (γn)

i (λn + α)
, (26)

−
a

2

J(a,α)

J(b,α)
F−(a,α) + V2(α)e

iαlΦ+
2(b,α) −

b

2
G1(b,α)

=
J(a,α)

J(b,α)

∞
∑
m=1

J(b,αm)(ikη2 + iα)fm
πJ(a,αm)(α2

m − α2)

−
∞
∑
m=1

(ikη2 + iα)fm
π (α2

m − α2)

+ eiαl
∞
∑
m=1

J(c, βm)(ikη3 + iα)hm
πJ(b, βm)(β2

m − α2)

+
a

2i

J(a,α)

J(b,α)

AnJ0(γn)

(λn + α)
, (27)

where

V1(α) =
J(b,α)

πJ(a,α)L(α)
= V +

1 (α)V −
1 (α), (28)

V2(α) =
J(c,α)

πJ(b,α)L(α)
= V +

2 (α)V −
2 (α), (29)

Φ+
2(b,α) = [ikη2G+(b,α) − Ġ+(b,α)], (30)

L(α) = Y (b,α)J(a,α) − J(b,α)Y (a,α), (31)

N(α) = Y (c,α)J(b,α) − J(c,α)Y (b,α), (32)

J(s,α) = ikη2J0(Ks) +KJ1(Ks), (33)

Y (s,α) = ikη1Y0(Ks) +KY1(Ks), s = a, b, c. (34)

G1 is an entire function and G+ is a regular function
in the upper half of the complex α plane as follows:

G1(ρ,α) =

l

∫
0

u2(ρ, z)e
iαz dz, (35)

G+(ρ,α) =

∞

∫

l

u2(ρ, z)e
iα(z−l) dz, (36)

and αm’s are the zeros of L(α) and βm’s are the zeros
of N(α). V +

1,2(α) are regular and free of zeros on the
region Im(−k) < Imα and V −

1,2(α) are regular and free
of zeros on the region Imα < Im(k). Following the
similar method used in (Pagneux et al., 1996) split
functions can be obtained (Demir, 2017).

2.3. Solution of the MWHEs

Performing standard factorization and decomposi-
tion procedures and then applying Liouville’s theorem
we get

a

2

F−(a,α)

V −
1 (α)

=
∞
∑
m=1

eiδmlJ(a, δm)V +
1 (δm)Φ+

2(b, δm)

J ′(b, δm)(δm − α)

+
1

π

∞
∑
m=1

J(b,αm)(ikη2 − iαm)fm
V +

1 (αm)J(a,αm)2αm(αm + α)

−
1

π

∞
∑
m=1

J(b,αm)(ikη2 + iα)fm
V −

1 (α)J(a,αm)(α2
m − α2)

−
a

2i

AnJ0(γn)

V −
1 (α)(λn + α)

+
a

2i

AnJ0(γn)

V +
1 (λn)(λn + α)

, (37)
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V +
1 (α)Φ+

1(a,α) =
eiαlJ(a,α)V +

1 (α)Φ+
2(b,α)

J(b,α)

+
∞
∑
m=1

eiδmlJ (a, δm)V +
1 (δm)Φ+

2 (b, δm)

J ′ (b, δm) (δm − α)

+
1

π

∞
∑
m=1

J (b,αm) (ikη2 − iαm)fm
V +

1 (αm)J (a,αm)2αm (αm + α)

+
a

2i

AnJ0 (γn)

V +
1 (λn) (λn + α)

, (38)

and

V +
2 (α)Φ+

2(b,α) =
a

2

∞
∑
m=1

J(a, δm)F−(a,−δm)eiδml

a∗(δm + α)

+
∞
∑
p=1

∞
∑
m=1

eiδplJ(b,αm)J(a, δp)(ikη2 − iδp)fm

πJ(a,αm)b∗(α2
m − δ2

p)(δp + α)

+
∞
∑
m=1

J(c, βm)(ikη3 − iβm)hm
πJ(b, βm)V +

2 (βm)2βm(βm + α)

+
a

2i

∞
∑
m=1

J(a, δm)eiδmlAnJ0(γn)

a∗(λn − δm)(δm + α)
, (39)

where
a∗ = J ′(b,−δm)V +

2 (δm),

b∗ = J ′(b,−δp)V
+
2 (δp).

2.4. Determination of the expansion coefficient

The expression of Φ+
1(a,α) in Eq. (38) involves

the unknown coefficients fm, gm, Φ+
2(b, δm), and

F−(a,−δm). To determine these coefficients we substi-
tute α = α1, α2, ..., αN in Eq. (38), α = −δ1,−δ2, ...,−δN
in Eq. (37), α = β1, β2, ..., βN in Eq. (39), and α =

δ1, δ2, ..., δN in (39) and use correlation of fm and gm
coefficients with

Φ+
1(a,αm) and Φ+

2(b, βm),

then we get following infinite systems of linear alge-
braic equations:

J(a,αr)

πJ(b,αr)
ϑ1
r(ikη2 + iαr)V

+
1 (αr)fr

=
∞
∑
m=1

eiδmlJ(a, δm)V +
1 (δm)Φ+

2(b, δm)

J ′(b, δm)(δm − αr)

+
∞
∑
m=1

J(b,αm)(ikη2 − iαm)fm
πV +

1 (αm)J(a,αm)2αm(αm + αr)

+
a

2i

AnJ0(γn)

V +
1 (λn)(λn + αr)

, n, r = 1,2, ... (40)

V +
2 (βr)

J(b, βr)

πJ(c, βr)
ϑ2
r(ikη3 + iβr)hr

=
a

2

∞
∑
m=1

eiδmlJ(a, δm)F−(a,−δm)

a∗(δm + βr)

+
∞
∑
p=1

∞
∑
m=1

J(b,αm)J(a, δp)(ikη2 − iδp)e
iδplfm

πJ(a,αm)b∗(α2
m − δ2

p)(δp + βr)

+
∞
∑
m=1

J(c, βm)(ikη3 − iβm)hm
πJ(b, βm)V +

2 (βm)2βm(βm + βr)

+
a

2i

∞
∑
m=1

J(a, δm)eiδmlAnJ0(γn)

a∗(λn − δm)(δm + βr)
,

n, r = 1,2, ..., (41)

a

2

F−(a,−δr)

V +
1 (δr)

=
∞
∑
m=1

eiδmlJ(a, δm)V +
1 (δm)Φ+

2(b, δm)

J ′(b, δm)(δm + δr)

+
1

π

∞
∑
m=1

J(b,αm)(ikη2 − iαm)fm
V +

1 (αm)J(a,αm)2αm(αm − δr)

−
1

π

∞
∑
m=1

J(b,αm)(ikη2 − iδr)fm
V +

1 (δr)J(a,αm)(α2
m − δ2

r)

−
a

2i

AnJ0(γn)

V +
1 (δr)(λn − δr)

+
a

2i

AnJ0(γn)

V +
1 (λn)(λn − δr)

,

n, r = 1,2, ..., (42)

V +
2 (δr)Φ

+
2(b, δr)

=
a

2

∞
∑
m=1

eiδmlJ(a, δm)F−(a,−δm)

a∗(δm + δr)

+
∞
∑
p=1

∞
∑
m=1

J(b,αm)J(a, δp)(ikη2 − iδp)e
iδplfm

πJ(a,αm)b∗(α2
m − δ2

p)(δp + δr)

+
∞
∑
m=1

J(c, βm)(ikη3 − iβm)hm
πJ(b, βm)V +

2 (βm)2βm(βm + δr)

+
a

2i

∞
∑
m=1

J(a, δm)eiδmlAnJ0(γn)

a∗(λn − δm)(δm + δr)
,

n, r = 1,2, ..., (43)

where as previous

a∗ = J ′(b,−δm)V +
2 (δm), b∗ = J ′(b,−δp)V

+
2 (δp).

2.5. Analysis of the field

The transmitted field in the region ρ < a, z > 0
can be obtained by taking inverse Fourier transform of
F+(ρ,α). From Eqs (22) and (23) we obtain

u1(ρ, z)=
1

2π
∫

L

[
J0(Kρ)

J(a,α)
Φ+

1(a,α) − F−(ρ,α)] e
−iαz dα,

(44)
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where L is a straight line parallel to the real α axis,
lying in the strip Im(−k) < Im(α) < Im(k). If the inte-
gral in Eq. (44) are calculated by using residue theorem
then the transmission coefficient for any mode is as:

T =

⎧⎪⎪
⎨
⎪⎪⎩

i
aπ

2

∞
∑
m=1

eiδmlJ(a, δm)F−(a,−δm)

a∗(δm − τr)

+ i
∞
∑
p=1

∞
∑
m=1

J(b,αm)J(a, δp)(ikη2 − iδp)e
iδplfm

πJ(a,αm)b∗(α2
m − δ2

p)(δp − τr)

+ i
∞
∑
m=1

J(c, βm)(ikη3 − iβm)hm
πJ(b, βm)V +

2 (βm)2βm(βm − τr)

+
aπ

2

∞
∑
m=1

J(a, δm)eiδmlAnJ0(γn)

a∗(λn − δm) (δm − τr)

⎫⎪⎪
⎬
⎪⎪⎭

×
Y (c, τr)J (b, τr)V

+
2 (τr) e

−iτrl

J ′ (c, τr)
, (45)

where again

a∗ = J ′(b,−δm)V +
2 (δm), b∗ = J ′(b,−δp)V

+
2 (δp).

3. Scattering matrices technique

In this part, the problem is investigated over two
infinite ducts with area expansions z = 0 and z = l
respectively. The first geometry is defiened by {ρ =

a, z ∈ (−∞,0)} ∪ {ρ ∈ (a, b), z = 0} ∪ {ρ = b, z ∈ (0,∞)},
and the second geometry is defined by {ρ = b, z ∈

(−∞, l)} ∪ {ρ ∈ (b, c), z = l} ∪ {ρ = c, z ∈ (l,∞)}. The
problem is reformulated according to geometries and
scattering matrices are found by the help of Wiener-
Hopf equation (Demir, 2017). Matrix sizes vary ac-
cording to the number of incoming, reflected or trans-
mitted modes. In this study, the number of modes tak-
ing into account is denoted by n, r, and p in the first
(z < 0), second (0 < z < l), and third (z > l) regions,
respectively.

4. Numerical results

In this section, transmission coefficient is calcu-
lated numerically and some graphs are represented
comparatively with scattering matrices technique and
direct solution of Wiener-Hopf equations. The graphs
are obtained by considering the change of radii and
impedances. Infinite series in the formulas are trun-
cated at some number N and after some observations,
truncation number is chosen as N = 10 (see Fig. 2).
While the transmission coefficient is found for direct
solution, the fundamental mode is taking into account,
that is in Eq. (45) n = r = 1. In Figs 3–5, as the value
of first region radius a increases, value of the trans-
mission coefficient starts as a higher point and contin-
ues to decrease. Similar behaviour is observed for the
second region radius b while the reverse for the third

Fig. 2. Transmission coefficient versus truncation
number N .

Fig. 3. Transmission coefficient versus frequency,
for different values of radius a.

Fig. 4. Transmission coefficient versus frequency,
for different values of radius b.
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Fig. 5. Transmission coefficient versus frequency,
for different values of radius c.

Fig. 6. Transmission coefficient versus frequency,
for different values of length l.

region radius is observed. Figure 6 shows the transmis-
sion coefficient with different values of length l which
is the distance between the steps. It is seen that the
transmission coefficient decreases with increasing value
of l, as expected. In Figs 7–12, transmission coeffi-
cient graphics are presented with different values of
impedances for resistance and reactance. As the re-
sistance of η−1

1 decreases, the transmission coefficient
increases. Conversely, the transmission coefficient de-
creases with decreasing value of the resistance of η−1

3 .
In Fig. 9, it is seen that after starting at the same
point the transmission coefficient values deceases with
increasing value of the resistance of η−1

2 , and after a cer-
tain frequency, it takes the form of increasing transmis-
sion coefficient with increasing value of the resistance
of η−1

2 . In Fig. 8, it is observed that the transmission
coefficient decreases up to a certain frequency range, as
the reactance of η−1

1 increases. Beyond this frequency
range a reversed behaviour is observed. In Fig. 10,

Fig. 7. Transmission coefficient versus frequency,
for different values of Reη−11 .

Fig. 8. Transmission coefficient versus frequency,
for different values of Imη−11 .

Fig. 9. Transmission coefficient versus frequency,
for different values of Reη−12 .
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Fig. 10. Transmission coefficient versus frequency,
for different values of Imη−12 .

Fig. 11. Transmission coefficient versus frequency,
for different values of Reη−13 .

Fig. 12. Transmission coefficient versus frequency,
for different values of Imη−13 .

Fig. 13. Transmission coefficient versus radius kc.

Fig. 14. Transmission coefficient versus frequency.

Fig. 15. Transmission coefficient versus frequency.
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increased values of the reactance of η−1
2 , the transmis-

sion coefficient also increases. But, in Fig. 12, it is seen
that transmission coefficient decreases with increasing
value of the reactance of η−1

3 . In Fig. 13, the transmis-
sion coefficient is calculated for only fundamental mode
and for fundamental mode together with higher order
modes. Results are compared with direct solution. To
see the effect of adjusting the matrix dimensions on the
transmission coefficient, result obtained by taking only
fundamental mode is shown in the graph, too. When
the matrix dimensions are adjusted according to prop-
agated mode number and graph is obtained, it is seen
that there is a perfect agreement with the direct solu-
tion. That’s why we need to adjust the dimensions of
the matrices. Figures 14 and 15 are given as a compari-
son of direct solution and scattering matrices technique
for different radii and impedance values.

5. Conclusion

Model of the problem consists of two stepped duct
which walls are treated by acoustically absorbent lin-
ing. Mainly, the problem is handled with Wiener-Hopf
technique. Scattering matrices technique is used for
validation of results. For convenience, the problem is
divided into regions in the direct solution and two mod-
ified Wiener-Hopf equations were obtained whose solu-
tions involve infinitely many expansion coefficients sat-
isfying an infinite system of linear algebraic equations.
In the technique of scattering matrices, the main ge-
ometry is considered as two sub-geometries and trans-
mission and reflection matrices are obtained with the
help of these geometries. Then the transmission co-
efficient formula is obtained from these matrices for
the problem containing two points of discontinuity. Nu-
merical results are obtained for different radii, different
impedances and distance between steps. In addition, in
the method of scattering matrices, fundamental mode
and higher order mode comparison are made to em-
phasize the importance of adjusting the matrix dimen-
sions. As a future work, we will generalise the trans-
mission coefficient formula which is found by the help
of scattering matrices, for n-stepped lined duct. In this
way, we will be able to examine the scattering from
a waveguide which radius is linearly varying.
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